Goal and Contributions
We predict which words people will associate with an image, using three main ideas:

- Implement basic-level categories from cognitive psychology;
- Use visual context such as object and scene properties;
- Model language context such as statistical co-occurrence of words.

There are three key contributions:
- A new method to predict context-dependent basic-level categories.
- The first large-scale catalogue of context-dependent basic-level categories, of thousands of visual concepts and hundreds of thousands of images.
- A word ranking benchmark on a dataset two orders of magnitude larger than in previous work [1], with consistent improvements.

Basic-level Categories
The basic level of categorization is “the most inclusive (abstract) level at which the categories can mirror the structure of attributes perceived in the world” [2].

Basic-level categories is influenced by context – people are known to choose different names for visual concepts depending on (a) visual attributes of the object, (b) contextual priming, and (c) the rest of the visual scene [2].

Method

Detecting visual concepts

\[p(s = 1|x) = \sigma(w^T \cdot x) \] \hspace{1cm} (1)

2633 concept detectors are trained with ImageNet dataset by adapting the last supervised layer of a Convolutional Neural Network.

Generating basic-level name candidates
- Tracing the WordNet hierarchy up 5 levels;
- Extracting the lemmas of each ancestor synset.

Choosing basic-level names

\[p(y^*_i = 1|x, s) = \sum_{u_i \in \{0, 1\}} p(y^*_i = 1|x, s, u_i)p(u_i|x, s) \] \hspace{1cm} (2)

For each visual concept \(s \),
- Learn \(p(u_i = 1|x, s) \), the probability that synset \(s \) is-described.
- Learn \(p(y^*_i = 1|x, s, u_i = 1) \), to choose among the possible names.

Ranking basic-level names across synsets

\[r_{i, m, k} = w^T \cdot h_{i, m, k} \] \hspace{1cm} (3)

We learn a linear ranking function using a ranking objective that prefers synset \(n \) name \(k \) that appeared with image \(i \) over synset \(q \) name \(l \) that did not appear with the same image. The ranking features include:

- Scores from classifiers at different stages;
- Aux-iliary information about classifiers and classification targets;
- KNN – nearest images with TF-IDF over their captions;
- Word2vec features consisting of the vector-space similarity and probability of the target word given other context words.

Experimental Results

Datasets
- ImageNet-Flickr: Training synset classifiers.
- 80% of SBU-1M images: Training basic-level name classifiers.
- SBU-1KA and SBU-1KB: Evaluation with words generated by MTurk.
- SBU-148K: Evaluation with words from Flickr captions.

Accuracy improvements of basic-level name classification over the Frequency+described baseline for 2,633 synsets. The percentage of improved synsets is on par with the percentage of synsets with ambiguous basic-level names – two or more names used with similar frequency.

Precision-recall curves on SBU-1KA (left) and SBU-148K (right).
- Our methods: BasicName-Visual and BasicName-Visual+Lang
- Four baselines: varying amounts of naming information.

Word ranking result on example images.

References