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Goal and Contributions
We predict which words people will associate with an image, using three
main ideas:

◦ Implement basic-level categories from cognitive psychology;

◦ Use visual context such as object and scene properties;

◦ Model language context such as statistical co-ocurrence of words.

There are three key contributions:

• A new method to predict context-dependent basic-level categories.

• The first large-scale catalogue of context-dependent basic-level cat-
egories, of thousands of visual concepts and hundreds of thousands
of images.

• A word ranking benchmark on a dataset two orders of magnitude
larger than in previous work [1], with consistent improvements.

Basic-level Categories
The basic level of categorization
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by context – people are known to
choose different names for visual
concepts depending on (a) visual
attributes of the object, (b) con-
textual priming, and (c) the rest
of the visual scene [2].

Method Overview
Given image xi, our system pre- Test 
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dicts the most likely words in
three steps:
(1) Detect synset s.
(2) Identify the most likely basic-
level names for synset s, by com-
puting the probability of each
possible name ys from a candi-
date set Ts, and whether or not
synset s is described (us).
(3) Rank all names yk for all con-
cepts sm in image i, by comput-
ing a rank score ri,m,k.

Method
Detecting visual concepts

p(s = 1|x) = σ(wT
s x) (1)

2633 concept detectors are trained with ImageNet dataset by adapting
the last supervised layer of a Convolutional Neural Network.
Generating basic-level name candidates

- Tracing the WordNet hierarchy up 5 levels;

- extracting the lemmas of each ancestor synset.

Choosing basic-level names

p(ysi = 1|x, s) =
∑

us∈{0,1}

p(ysi = 1|x, s, us)p(us|x, s)

= p(ysi = 1|x, s, us = 1)p(us = 1|x, s) (2)

For each visual concept s,

- Learn p(us = 1|x, s), the probability that synset s is-described.

- Learn p(ysi = 1|x, s, us = 1), to choose among the possible names.
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Ranking basic-level names across synsets

ri,m,k = wT
r hi,m,k; ri,m,k > ri,q,l (3)

We learn a linear ranking function using a ranking objective that prefers
synset m name k that appeared with image i over synset q name l that
did not appear with the same image. The ranking features include:

• Scores from classifiers at different stages;

• Aux-liary information about classifiers and classification targets;

• Knn – nearest images with TF-IDF over their captions;

• Word2vec features consisting of the vector-space similarity and
probability of the target word given other context words.

Experimental Results
Datasets

• ImageNet-Flickr: Training synset classifiers.

• 80% of SBU-1M images: Training basic-level name classifiers.

• SBU-1K a and b: Evaluation with words generated by MTurk.

• SBU-148K: Evaluation with words from Flickr captions.

Accuracy improvements of basic-level name classification over the
Frequency+described baseline for 2,633 synsets. The percentage of im-
proved synsets is on par with the percentage of synsets with ambiguous
basic-level names – two or more names used with similar frequency.
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Precision-recall curves on SBU-1Ka (left) and SBU-148K (right).

- Our methods: BasicName-Visual and BasicName-Visual+Lang

- Four baselines: varying amounts of naming information.
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Word ranking result on example images.
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