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1 The Problem

• How to describe and measure popularity over time?
• How to better predict popularity?

Ju
l-0

9

Oct
-0

9

Ja
n-

10

Apr
-1

0

Ju
l-1

0

Oct
-1

0

Ja
n-

11

Apr
-1

1
0

20

40

60

80

100

da
ily

 v
ie

w
co

un
t

Aug
-0

9

Oct
-0

9

Dec
-0

9

Fe
b-

10

Apr
-1

0

Ju
n-

10

Aug
-1

0
0

200

400

600

800

1000

1200

Aug
-0

7

Nov
-0

7

Fe
b-

08

M
ay

-0
8

Aug
-0

8

Nov
-0

8

Fe
b-

09

M
ay

-0
9

0

100

200

300

400

500

600

700

800

da
ily

 v
ie

w
co

un
t

Nov
-0

9

M
ay

-1
0

Nov
-1

0

M
ay

-1
1

Nov
-1

1

M
ay

-1
2

Nov
-1

2

M
ay

-1
3

0

100

200

300

400

500

600

700

800

dates (mmm-yy)

(a) ID: 3o3hfNmtxYg (b) ID: IoNcZRkwbCA

(c) ID: Hi0cQ5ELdt4 (d) ID: LRDihKbdrwc

Figure 1: The complexity of viewcount dynamics: the lifecycles of four example videos.
Blue dots: daily viewcounts; red curves: phase segments found by our algorithm. (a)
A video with one power-law growth trend. (b) A video with one power-law decay. (c)
A video with many phases, including both convex and concave shapes - this video
contains a gymnastic performance. (d) A video with seemingly annual growth and
decay - this video demonstrates how to vent a air-conditioner, and reaches peaks
during each summer. Viewcount shapes such as (a) and (b) are explained by Crane and
Sornette’s model [PNAS 2008], but (c) and (d), and many more like them, are not.

2 Main Contributions

• New representation: popularity phases.
• New method: phase extraction algorithm from popularity history.
• A large-scale, longitudinal measurement study of popularity.
• Better prediction of future popularity using phase representations.

3 Phase Detectionthe phase-finding algorithm
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Figure 2: The phase
detection algorithm.
1) Fits a generalized
power-law shape for
each phase; 2) Finds
the best segmenta-
tions for phases, with
a trade-off in fitting
error and the number
of phases.

Code/Dataset: https://github.com/yuhonglin/ytphasedata

4 Dataset

172,841 videos from 184 million Tweets Jun–July, 2009.
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Figure 3: Left: Boxplots of video viewcounts at T = 735 days, for popularity percentiles
quantized at 5% each. Viewcounts of the 5% most- and least- popular videos span
more than three orders of magnitude, while videos in the middle bins are within 30%
views of each other. Right: The change of popularity percentile from 1.5 years (y-axis,
from 0.0% to 100.0%) to 2 years (x-axis, in 5% bins). While most videos retain a similar
rank, videos from almost any popularity at 18 months of age could jump to the top 5%
popularity bin before it is 24 months old (left most boxplot).

5 Observations

four types of phases
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Figure 4: Left: Four types of phase shapes and their basic statistics; Right: Red curves
are the probability of a video having a new phases in 15-day intervals over time,
broken down by phase types. Blue curve is the average daily viewcount.

Phase, Video Type and Popularity

Distribution of videos broken down by
the number of phases they contain

Fraction of phase types in each popularity
bin and content category

Percentage of videos with a dominant
decreasing phase
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Figure 5: Left: Percentage of videos broken down by the number of phases they have,
over (a) popularity percentile and (b) content categories. Middle: Percentage of the
four phase types, broken down by (c) popularity percentile and (d) content categories
. Right: Percentage of videos with a dominant convex-decreasing phase (≥ 90%T ),
broken down by (e) popularity percentile and (f) content categories. A general trend is
that popular videos and entertainment content (e.g. music videos) have more phases
overtime, and more than half of news videos and the least popular videos have one
dominant decreasing phase.

Concave phases
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Figure 6: Popular and entertaiment videos have more concave shapes. Such phase
shape cannot be generated from Crane-Sornette model, our ongoing work focus on a
generative model that can explain all phase shapes.

Phase types of the most popular videos
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Figure 7: Phase
type and popularity
evolution for the
top 5% videos over
time. We can see
that videos that have
jumped by more than
30% in popularity
either have new
phases or have been
in a continuously
increasing phase.

6 Viewcount Prediction
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I Target: χ∗ =
∑∆t

τ=1 x[tp + τ ]

I Prediction: χ̂ =
∑tp

τ=1 ατx[τ ]

I Measure: normalized MSE,

ε = 1
∆t|V|

∑
v∈V(χ

∗ − χ̂)2

•Baseline : Multi-linear regression
•Phase-aware : Use phase feature to group videos and train separate

models for each group.
Phase-informed prediction consistently out-perform baseline ap-
proach across all phase types and task settings.
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Figure 8: Mean
normalized MSE
for the baseline and
phase-informed
prediction over
different pivot dates
(x-axis) for videos
with less than 5
phases, broken down
by the shape of the
last phase of x1:tp,
∆t=15 days
.

https://github.com/yuhonglin/ytphasedata
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