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ABSTRACT
Automated image tagging is a problem of great interest, due
to the proliferation of photo sharing services. Researchers
have achieved considerable advances in understanding mo-
tivations and usage of tags, recognizing relevant tags from
image content, and leveraging community input to recom-
mend more tags. In this work we address several important
issues in building an end-to-end image tagging application,
including tagging vocabulary design, taxonomy-based tag
refinement, classifier score calibration for effective tag rank-
ing, and selection of valuable tags, rather than just accurate
ones. We surveyed users to quantify tag utility and error tol-
erance, and use this data in both calibrating scores from au-
tomatic classifiers and in taxonomy based tag expansion. We
also compute the relative importance among tags based on
user input and statistics from Flickr. We present an end-to-
end system evaluated on thousands of user-contributed pho-
tos using 60 popular tags. We can issue four tags per image
with over 80% accuracy, up from 50% baseline performance,
and we confirm through a comparative user study that value-
ranked tags are preferable to accuracy-ranked tags.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing

Keywords
Image tagging, social media, user value

1. INTRODUCTION
Social tagging has been popularized by ubiquitous and di-

verse content sharing services, from bookmarks, articles, to
photos and videos. Tag recommendation plays an important
role in enhancing user-experience: it reduces the effort of
text entry, and assists content organization, searching, and
sharing. Unlike social sharing on sites such as bookmarks
on del.icio.us or articles on digg.com, tags for user-generated
photos and videos do not recur across users. Furthermore,
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visual tags are not easily extracted from the content directly
as in the case of topical keywords in articles, and both of
these factors make photo tag recommendation difficult.

Considerable advances have been achieved in several sub-
topics around image tag recommendation, such as under-
standing user tagging motivation and behavior, image/video
classification and semantic concept detection, and community-
based tag recommendation. However, several important ques-
tions remain. Which tags shall the system recommend? De-
spite formal ways of organizing concepts in natural language
and images [10, 19], single word plain text descriptors (“vi-
sual tags”) have taken root as the prevalent form of social
tags. We note that visual tags are distinct from “visterms”
or “visual words” such as feature vectors often used in quan-
tization. We systematically examine the most popular and
most visually salient tags to construct a tag vocabulary, and
then hierarchically organize them to assist visual classifica-
tion. Which tags are the most descriptive for an image? We
calibrate and re-rank tags for an image based on the infor-
mation content of a tag and its perceived utility in a large
photo sharing site (ie, Flickr). We conduct a user-study to
measure the value of visual tags, and to quantitatively com-
pare the tag ranking schemes as perceived by the user.

This paper has several novel contributions. (1) We have
systematically studied the most popular and visual salient
tags for constructing a comprehensive visual vocabulary. (2)
We have devised ways to estimate tag value from large data
collections. (3) We successfully developed methods for cal-
ibrating classifiers scores and issuing accurate tags for each
image based on tag relationships. (4) We have recruited over
20 pilot users, who helped validate the results both with per-
formance measures on user-contributed test set, and with a
comparative study between different re-ranking strategies.

2. RELATED WORK
Problems related to image tagging are addressed in several

research communities. The image retrieval and computer vi-
sion community has created many algorithms and systems
for performing image annotation and object recognition; the
web, human-computer interface communities have been en-
gaged in studying user intention and usage of social tagging
systems; information from social sharing, media content and
ontology are then used to improve and revise photo tags.

Object and scene recognition has been one of the grand
challenges in computer vision, and considerable progress has
been made in recent years by learning a separate model for
each semantic category and evaluating it on each image.
The success of such systems have been witnessed by sev-
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eral ongoing benchmark evaluation campaigns [28, 3]. A
variety of approaches represent the state-of-the-art in per-
formance, training and generalization, including discrimi-
native ensembles over many features [30], multiple scales
and local regions [32], many data samples [18], models for
local parts [11], real-time annotation [15], and association
between words and regions [5]. External knowledge and
concept relationships can also be used to help, examples
include using universal ontologies such as WordNet [10] for
additional training data [29], or using task-specific ontolo-
gies [21, 26].

Not all tags are created or used equally. A number of
categorizations have been proposed based on the motivation
and utility of tags: categorization vs. description [7], refine
vs. identify [13], personal vs. sharing [20], organization vs.
communication [4]. Bischoff et. al [6] proposed a 8-way
segmentation of social tags and evaluated their utility for
searching.

Using social knowledge to help re-rank, filter or expand
tags is also a very active research problem. Several Flickr
image tag recommendation systems are based on tag concur-
rence and inter-tag aggregation, used in a fully-automatic [27]
or interactive [12] setting. Liu et. al [16] have incorporated
image similarity in conjunction with tag co-occurrence, eval-
uated with subjective labeling of tag usefulness; Kennedy et.
al [14] use shared visual appearance to improve the retrieval
of specific tags such as landmark or proper names.

Our work performs image classification with ensemble bi-
nary classifiers [18, 35], calibrates the output with preci-
sion estimates, and refines labels with a novel multi-faceted
taxonomy. We systematically examine visually salient and
popular tags, whereas most prior work does not address the
aspect of proper visual tag vocabulary design. We also focus
on estimating tag utility in our tag re-ranking design, which
was most inspired by [4, 6]. Our tag re-ranking strategy
models the inherent usefulness of visual tags, and proposes
estimation of such criteria from social and local collections.
Our users do not only provide ground-truth for system eval-
uation, their inputs guide the end-to-end system design and
are used for direct comparison of re-ranking algorithms.

3. TAGGING SYSTEM OVERVIEW
We have built an end-to-end image tagging system to ac-

quire and process photos from social media sources, as il-
lustrated on Figure 1. It builds upon the IBM Multimedia
Analysis and Retrieval System (IMARS) [2], and adds com-
ponents for score calibration, tag refinement and re-ranking,
which are the focus of this paper. We also created a Flickr
AutoTagr app, built using the Flickr API [1], which down-
loads images from Flickr and uploads machine-generated
tags back to Flickr. We first classify each of the downloaded
images with a set of pre-built visual classifiers using IMARS,
which uses approximately 100 visual features to create en-
semble models of SVM classifiers [18, 35] for each of the tar-
get visual categories, defined in Sec 4. We calibrate the out-
put of these classifiers to estimated accuracy (Sec 5), refine
the top tags with a multi-faceted visual taxonomy (Sec 6),
and perform importance-based tag re-ranking with a num-
ber of different tag value estimates (Sec 7). We use the
outcome for quantitative evaluation and comparative user
study (Sec 8).

4. TAG VOCABULARY CONSTRUCTION
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Figure 1: Image tagging system overview

A good set of target tags is the foundation of an auto-
mated tagging system. There are three desired properties
for visual tags—they must be: (a) popular, to cover as many
images and users as possible; (b) visually observable, to fo-
cus on the image content, rather than subjectivity or con-
text. (c) machine learnable, to ensure high accuracy for au-
tomated tagging systems. The outcome of our vocabulary
design is 5000 concepts, and a subset 60-node tag taxonomy.

We use Flickr tag frequency to select the most popular
tags. Since there is no publicly available tag vocabulary,
we start with over 4 million unique tags from the CoPhiR
collection [22] of 100M Flickr photos. We case-normalize the
tags, filter out non-alphanumeric characters, and exclude
rare tags with counts less than 100. We collect frequency
counts of the remaining 196,391 tags using the Flickr API [1].
We further prune the vocabulary off rare tags (tagged less
than 10,000 times on Flickr, or 1/1000th of the most popular
tag)—this leaves a set of 24,444 tags of top popularity, which
are the tags perceived as most important or useful by users.
Note that many of these popular tags refer to contextual
information that may not be present or observable in the
image itself (e.g., 2008, july, family, fun, usa),

We use an ESP Game [33] data set to further select vi-
sually observable tags. The ESP game is designed to record
words that two independent users agree on for the same
image, which naturally favors the most relevant and non-
subjective visually observable tags. The most frequently
occurring ESP game tags are good representatives of un-
ambiguous tags purely from visual appearance, and do not
require contextual information on when, where, how, or why
a photo was taken. This dataset1 contains 100K images and
27,629 unique tags, out of which 6,092 appear at least 10
times. We keep tags that are popular in both the Flickr and
ESP lists (by taking the max. rank), and this results in a
final prioritized list of 5,060 tags, which are both frequently
appearing, popularly used, and visually observable.

In order to study the effect of such tag filtering and se-
lection strategy, we manually analyze the top 500 tags, and
categorize them into visual, contextual (e.g., events, holi-
days), dates/times, named entities (e.g., locations, brands,
people), and other non-visual tags (e.g., too abstract, am-
biguous, emotional, or subjective), similar to existing tag
classification schemes [6]. Table 1 shows a comparison of the
distribution of tag categories before and after tag re-ranking,
and we can see that the fraction of visual tags increases sub-
stantially, from 42% in the original Flickr top 500 to 70%,
or ˜350 visual tags, in the re-ranked top-500 set. Mean-
while, the fraction of named entities drops from 36% to only

1http://www.cs.cmu.edu/~biglou/resources/
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Figure 2: Comparison tag cloud for original top-100

Flickr tags (left, in red) vs. re-ranked top-100 tags (right,

in blue) using the proposed tag selection approach.

7%. Figure 2 visually illustrates the difference in the top-
100 tags before and after re-ranking using a comparison tag
cloud. We can see that many of the original top-100 Flickr
tags (in red) are subjective or non-visual in nature, and are
replaced largely by visual tags in the re-ranked set (in blue).

Table 1: Comparison of original top-500 Flickr tags vs.

top-500 re-ranked tags based on the proposed method.

Tag Category
Top-500 Top-500

Flickr tags Re-ranked tags
Visual 41.6% 69.6%
Contextual/events 4.0% 2.2%
Dates/times/seasons 4.6% 1.8%
Locations 30.2% 5.0%
Brands/people 5.4% 2.4%
All named entities 35.6% 7.4%
Other/non-visual 14.2% 19.0%

We further select a machine learnable subset in this vo-
cabulary. We start from the visual tags in the top 500 list,
we group synonyms, as well as related but visually indis-
tinguishable categories such as cat and dog [9]. We trained
105 classifiers, and selected a subset of 60 classifiers that
perform well and have sufficient coverage on an independent
validation set. Details on the final taxonomy structure and
tag value can be found in Section 6 and 8.1.

5. CLASSIFIER SCORE CALIBRATION
We use an ensemble of bagged SVM classifiers to gener-

ate initial classification scores [18, 35]. Calibrating SVM
output scores is a problem well known among SVM users.
It includes estimating output probability from the score, or
choosing a cut-off threshold. Let s ∈ R denote classification
score, y = ±1 denote the binary class label. Vapnik [31]
parameterizes y and s in the feature space with a cosine
series expansion in a direction orthogonal to the separat-
ing hyperplane. Directly parameterizing the output score
in the feature space requires solving a linear system for ev-
ery evaluation of the SVM, which is difficult to carry out
in high-dimensional nonlinear feature space. Platt [23] pro-
posed a logistic model for the class posterior given a score,
i.e. p(y = 1|s) = 1

1+exp(as+b)
. Platt’s model is learnable

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

classifier score s

p
(y

=
1

|s
>

=
s 0

)

 

 

validation data
piece−wise linear fit

 concept: meeting

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

classifier score s

p
(y

=
1

|s
=

s 0
)

−0.5 0 0.5 1 1.5 2 2.5 3

0.4

0.6

0.8 g

re

p
(y

=
1

|s
>

=
s 0

)

facecloseup
downtown

skyline_night
snow

party
wedding

meetin
computer

d

car
sunset

(a) concept: meeting(b)

(c)

Figure 3: Classifier score calibration. (a) Validation

data and non-parametric estimate of accumulated preci-

sion for concept meeting. (b) Local precision (as mod-

eled by [23]) for concept meeting. (c) An overview of

non-parametric estimates for 11 concepts.

from data, simple, and widely used. However, noise is often
too great for the learning to yield meaningful results, and a
single logistics model has difficulty fitting an SVM ensemble
when each unit classifier has different probability mappings.

We propose the following smoothed non-parametric esti-
mate to calibrate SVM scores. We obtain empirical esti-
mates of P (y = 1|s ≥ s0) from a separate validation set,
and we perform piece-wise linear fit to the observations. For
each positive data point with score si in the validation set,
P (y = 1|s ≥ si) is taken as the fraction of positive points
with scores no less than si:

P (y = 1|s ≥ si) =
#(y = 1, s ≥ si)

#(s ≥ si)
.

We choose a series of control points pc at every 0.05 inter-
val in [0.25, 0.95]. We then estimate value of sc that satisfies
P (y = 1|s ≥ sc) = pc. We use a five-point local triangle win-
dow to smooth the estimates, ensuring that the (pc, sc) pairs
are monotonically increasing. Using such a non-parametric
model on the cumulative probability of y is more robust to
outliers since the precision is computed over a range of s
instead of a local neighborhood, and it can adapt to uneven
local gradients over s vs p, commonly seen with a classi-
fier ensemble. Furthermore, P (y = 1|s ≥ s0) gives a direct
estimate of accuracy if we were to threshold scores at s0.

Examples of such probability calibrations can be found
in Figure 3. Figures 3(a) and (b) show the validation data
points on the same visual concept meeting, plotting accu-
mulated or local precision estimates vs. raw classifier scores.
We can see that this is unsuitable for fitting local precision
estimates [23], while we can still get a smoothed accumu-
lated precision. Figure 3(c) gives a snapshot of calibrated
scores of 11 concepts. Note that the classifier scores are
in very different numeric ranges, making calibration an es-
sential step for tag ranking. Detailed evaluation setup and
validation data information can be found in Section 8.

6. TAXONOMY-BASED TAG REFINEMENT
We use a faceted tag taxonomy, which encodes external

knowledge about the relationships and structure between
the target visual tags, and which can be used to eliminate
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Figure 4: Hierarchical multi-faceted taxonomy of 60 target visual tags. Yellow nodes represent faceted tags
that capture independent visual aspects and can co-occur; blue nodes represent mutually exclusive tags.

conflicting tags and to automatically infer additional correct
ones. A key question is how to encode the tag relationship
information so that it can be used for automatic reasoning.

While there are various large concept ontologies based
on linguistic relationships [25, 10, 17], visual vocabularies
are much scarcer, The Large-Scale Concept Ontology for
Multimedia, or LSCOM [19], is arguably the largest visual
ontology, consisting of over 2,000 visual concepts related
to broadcast news video that are linked in to a subset of
Cyc [25]. However, LSCOM was primarily designed to meet
the needs of broadcasters and analysts of professionally pro-
duced content rather than social media users. Furthermore,
traditional hierarchical tree taxonomies are not very suitable
for automatic reasoning and refinement of visual categories
since the latter are inherently fuzzy. For example, a photo
from inside a room, looking through a window, depicts both
indoor and outdoor aspects, which is a virtual impossibility
if we consider only the semantic relationships of these two
concepts. Similarly, a photo can depict many concepts at
the same time, and is therefore unlike words, which is what
linguistic taxonomies are designed to organize.

We tackle the above problems by introducing a faceted
taxonomy of visual concepts, where faceted nodes represent
independent visual aspects that can co-occur within an im-
age, and regular category nodes represent mutually exclu-
sive concepts that rarely co-occur in an image. The pro-
posed faceted taxonomy of the 60 target visual concepts
is illustrated in Figure 4. Note that taxonomy design is
subjective, and there are always examples that violate the
encoded relationships, frequently mutual exclusivity. The
above taxonomy is simply a tool to minimize tagging errors
and improve overall tagging quality, even if some of the rela-
tionships can clearly be violated (e.g., we intentionally force
a choice between door and windows in order to emphasize
the dominant aspect of images).

The proposed faceted taxonomy allows us to improve the
set of recommended tags for an image in a number of ways:

• Precision: We can eliminate conflicting tags that ap-
pear as mutually exclusive siblings in the taxonomy by
selecting at most one such sibling (e.g., choose indoor
vs. outdoor, sand vs. snow vs. vegetation, etc.).

• Recall: We can augment the set of tags by propagat-
ing tag confidence scores bottom-up in the taxonomy
(e.g., mountain implies nature).

• Clarity: We can disambiguate meaning of otherwise
similar tags by explicitly encoding parent-child rela-
tionships between them (e.g., urban → town).

• Usability: We can prioritize and re-rank tags based
on their depth in the taxonomy, since users would typi-
cally prefer to see more specific tags (e.g., church/tower
À landmark À building À urban).

In Section 8, we report the results of a 24-user evalua-
tion on various aspects related to the visual tag vocabulary
and taxonomy, including tag usability and perceived user
value (Section 8.1), accuracy of the taxonomy-refined tags
(Section 8.2), and user preference assessment of several tag
re-ranking approaches (Section 8.3).

7. VALUE-BASED TAG RE-RANKING
The best tag for an image isn’t necessarily the one with

the highest precision estimate. Tag recommendation under
uncertainty tries to find a trade-off between the accuracy of
tags being issued, the perceived usefulness of each tag, and
the risk of issuing a wrong tag. In the following, we present
several approaches for obtaining an overall tag importance
value, and we multiply the precision-normalized tag scores
by the estimated tag values to re-rank suggested tags based
on a combination of tag relevance and tag importance. Here
we use c to denote a “visual tag”, i.e. one that is distinguish-
able by a visual classier here, and u to denote its social tag
counterpart such as those found on Flickr.

7.1 Re-ranking by perceived tag value
We surveyed a group of users, asking each of them to

rate the subjective value of each tag on a scale of 1-5 (Sec-
tion 8.1). We take the mean value across all users, denoted
as fuser(u). While this is a direct way to measure perceived
tag values, it would be difficult to scale up the number of
tags and the number of representative users.

7.2 Re-ranking by tag information content
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One well-known method for measuring the usefulness of
observing a probabilistic event (e.g. observing visual con-
cept c) is the information content (IC) [8], measured as the
negative logarithm on the probability of the event. The IC
re-ranking factor for each visual concept is simply:

fic(c) = IC(c) = log
1

P (c)
= − log(P (c)). (1)

Information content is a measure of specificity, and will nat-
urally boost more specific tags, whose presence in a given
image is considered more informative than the presence of
common or generic tags. We estimate P (c) from a partially-
labeled validation set by thresholding probability-calibrated
classification scores (Section 5) and estimating the corre-
sponding concept frequency. The information content of our
tag vocabulary ranges from 2 bits (e.g. outdoors, nature) to
9 bits (e.g boat/ship, fireworks). This estimate can be noisy
due to the incompleteness of ground-truth, and assigning a
higher value to rarer concepts does not take into account the
inherent preferences users may have for some topics.

7.3 Re-ranking by tag popularity on Flickr
Another heuristic for tag ranking is that tags used more

frequently by a large number of users are more valuable.
For example, wedding and party are both among the most
popular tags on Flickr. Wedding is more specialized than
party, occurring much less frequently, yet photos tagged with
wedding outnumber those with party at 12.2 million to 8.7
million. Therefore tag counts on Flickr can serve as a“Flickr
measure” of tag importance. Although this approach may
favor some of the more frequent tags, such as nature with
7.8 million tagged images, such tags are still outnumbered
by the less frequent but more important concepts such as
wedding. To compute the Flickr value, we map each visual
tag to one or more Flickr tags, accounting for word mor-
phology, synonyms and most related tags, such as animal
and animals, flower and blossom. We collect the tag counts
using the Flickr API, and take the sum of the counts from
different tag variants. We use the log of tag counts as the
ranking factor in order to smooth out noise and large scale
differences in a scale-free tag collection.

fflickr(u) = log(#(u)). (2)

7.4 Re-ranking by tag posterior probability
Ideally a re-ranking scheme should be able to automati-

cally incorporate both the “unexpectedness” of a visual tag
and its “usefulness”, as vetted by users. The less expected a
tag is and the higher its utility, the larger its importance for
ranking purposes. We examine the probability P (u|I) of a
tag u being assigned to an image I by an arbitrary user. We
unroll this conditional probability on the actual presence of
a corresponding visual tag c in the image:

P (u|I) = P (c|I)·P (u|c, I)+P (c̄|I)·P (u|c̄, I) ≈ P (c|I)·P (u|c)
We can further assume that u is independent of I once c is
given, which simplifies the first term to P (c|I) ·P (u|c). This
is a reasonable assumption to make, essentially stating that
once the relevance of a tag to a given image is known, the
image itself is no longer required to determine if the user
will apply the corresponding tag, and the latter becomes a
function only of the user tagging preferences. Furthermore,
the second component in the above formulation is a product
of two terms involving the absence of the visual tag, c̄. Note
that P (u|c̄, I) encodes the chance that a user will apply the
tag to the image even though the tag is not relevant to the

image, essentially producing a semantic“false alarm”. While
this is unfortunately a frequent phenomenon in user photo
tagging (e.g., bulk-tagging all vacation photos as beach), it
is certainly an undesirable behavior for an automatic visual
tagging system. We therefore set this factor to zero and
only model the first component of P (u|I). For the remain-
ing part, we apply Bayes rule to further factorize P (u|c),
yielding three terms, P (u), P (c), and P (c|u):

P (u|I) ≈ P (c|I) · P (u)

P (c)
· P (c|u) ≈ αPc

P (u)

P (c)
(3)

P (c) is the prior probability of observing visual tag c as
visually present in a random image, which can be estimated
from large corpus statistics. P (u) is the prior probability of
an arbitrary user applying tag u to an arbitrary image, which
can be estimated as the fraction of Flickr photos bearing
tag u. For P (c) we use the estimated validation set prior
as in Section 7.2; for P (u) we use the the tag count from
Section 7.3 divided by 4 billion, the last published Flickr
photo count.P (c|u) is the fraction of photos tagged with a
given tag that are actually relevant to that tag. For a large
photo pool, this should be a tag-agnostic constant (denoted
as α), as noted earlier [24]. We denote the photo-specific
confidence P (c|I) with shorthand Pc, and we estimate it
from the calibrated classifier scores, as detailed in Section 5.

We name the ratio P (u)/P (c) the likelihood-ratio factor,
and use it to re-weight the calibrated confidence values,Pc,
for tag re-ranking purposes. Note that this re-weighting fac-
tor combines the heuristics from fic and fflickr above as it
gives more weight to popular tags, yet de-emphasizes tags
that are not specific and discriminant, performing a trade-off
with the estimated classification accuracy.

flr(u, c) =
P (u)

P (c)
(4)

Each of the four factors fic, fflickr, flr and fuser serve
as a re-scoring factor for the classifier confidence among the
different tags within the same image. We simply multiply
these factors with the classifier confidence.

P ∗s (u) = Ps · f(u)

Note that a few pre-processing steps and assumptions have
made the construction of our weighting factor easy. Map-
ping both the visual and text tags to the same vocabulary
makes each of the fic, fflickr, flr and fuser a single score list
on all 60 concepts. We have not considered multiple word
senses (e.g. apple being both fruit and a class of electronic
products) as they did not seem prevalent in our controlled
vocabulary of 60 visual tags, while models from prior re-
search [34] can be used to disambiguate tags.

8. EVALUATION
We performed several user studies in order to evaluate

each aspect of the proposed tagging system: the usefulness
of the chosen tag vocabulary, the accuracy of the generated
tags, and the quality of the tag re-ranking approaches. The
user studies comprised of 24 volunteers and a total of 5245
photos donated by them for this evaluation. Travel pic-
tures, celebrations, natural scenery, tourism, and city street
scenes were the most common elements, representing typi-
cal consumer imagery. We received multiple forms of feed-
back from the users, which included responses to a detailed
survey questionnaire, over 35,000 manually-provided or ver-
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ified tags, and over 11,000 personal preference judgments
comparing pairs of tagging results.

8.1 Tag vocabulary evaluation
In order to evaluate the usefulness of the tag vocabulary,

we conducted a user survey. The participants were asked
to assess the perceived value of each target visual tag on
a 5-point scale, ranging from 1 (useless) to 5 (very useful).
A summary of the user responses, aggregated across all 25
responders, is presented in Figure 5(a). On average, the
target tags received a value score of 3.6, with a standard
deviation of 1. Over 40% of the target tags received average
value scores ≥ 4 (i.e., rating of Quite Useful or above), and
over 80% of the tags received scores ≥ 3 (i.e., Somewhat
Useful or above). The remaining ˜20%, or 11 tags, were
predominantly the color tags, which were perceived as not
very useful by our users, even though they are in the top-100
most popular tags both on Flickr and the ESP game.

In addition to tag usefulness, the survey participants were
also asked to assess how many incorrect tags they would tol-
erate per image as a fraction of the total number of auto-
generated tags. We asked this question in two different ways:
1) How many incorrect tags (out of 10) would you tolerate
and still consider the results useful? and 2) If you would tol-
erate 1 incorrect tags along with X correct tags, what would
X be? We then converted the responses into corresponding
precision ranges, resulting in minimum user-acceptable pre-
cision of 74± 6% on question 1 and 82± 5% on question 2,
indicating a user-acceptable precision range of 74% ∼ 82%.
Based on this finding, we set the target precision of our sys-
tem to 80% as a good trade-off between precision and recall.

8.2 Tag accuracy evaluation
We evaluate tag accuracy on 5245 user-donated photos.

The photos were uploaded to a Flickr account, the users
enter tags they deem useful, as well as verify the machine-
generated tags as correct or not, by deleting the latter. The
user-entered tags were then manually mapped to the com-
mon tag vocabulary, where possible. We also required users
to delete a special NotYetReviewed tag for each of their pho-
tos in order to ensure that each image had been manually
inspected. The resulting mix of ˜30K manual and auto-
generated but manually verified tags formed the basis of our
ground-truth for accuracy evaluation. The distribution of
user-entered vs. auto-generated-but-manually-verified tags
was 46% to 54%, indicating that we more than doubled the
completeness of the ground-truth by assisting users in the
tagging process. We further propagated relevance judgments
from specific tags to more generic ones using the taxonomy
described in Section 6 (i.e., lake implies water scene and
outdoors), adding ˜6K extra tags to the ground-truth.

Based on the above ground-truth, we quantitatively evalu-
ate the proposed classifier score calibration (Section 5) and
taxonomy expansion (Section 6) methods. We collate all
(score, tag, image) tuples, sort them by score in a descend-
ing order, and compute“micro-precision”on this ranked list,
i.e., the fraction of tags that are correct at any given depth n
(divided by the total number of images). Figure 6 shows the
comparison among two baseline runs and our methods. The
purple square run is generated by sorting the raw classifier
scores, equivalent to the “unsupervised” probability estima-
tion method in [23], this run performs poorly mainly due
to the significantly different ranges among different classi-
fiers (c.f. Figure 3(c)). The blue circle run is another base-

line with manually selected calibration threshold for each
concept (corresponding roughly to .5 local precision in a
neighborhood of 50 images), and then range-normalizing the
scores above the threshold to between 0 and 1. The green
diamond run uses scores calibrated with the non-parametric
precision estimate from Section 5, and the red star run is
generated using the green diamond run after taxonomy-
based refinement (Section 6). From the performance com-
parison, we can see that the probability score calibration is
a critical step, and the proposed approach outperforms even
the manually chosen thresholds and calibration points. The
taxonomy-based run further improves the results by produc-
ing less errors (due to eliminating conflicting tags) and more
complete tags (due to taxonomy-based expansion), resulting
in the best precision for any given number of issued tags.
Overall, the system achieves 83% precision with an average
of four tags issued per image, which meets or exceeds the
threshold of minimum user-acceptable accuracy for image
tagging applications, as described in Section 8.1.

8.3 Tag re-ranking evaluation
We conduct a user study on the tag re-ranking methods

(Section 7), to validate the selection of more relevant or valu-
able tags, and not just the correct ones. The baseline run
here is the score-calibrated and taxonomy-expanded tags as
is, with no re-ranking. Specifically, we created a web appli-
cation which presents the user with an image and the top
4 tags assigned to the image, from each of two target runs
being compared. Any tags that were in common between
the two sets were grouped together, and the tags which dif-
fered were presented in a column on the left or right. We
randomized the right / left placement of the differing tags
with each image in order to eliminate any unintentional user
bias. The user would then choose either the left or right side
as being superior, based on their own subjective judgment
of the usefulness of the tags. There was a third choice as
well, to indicate indifference between the two sets. We had 5
users participate in this study, giving their preferences for all
possible pairs of 5 runs, a total of ten pairwise comparisons.
We did this for a subset of 300 images in which there was
significant variation in the tags among the 5 runs. The 5
users provided 11,700 preference choices, and each pairwise
comparison was evaluated by 4 users on average.

We consider aggregate statistics across all 10 pairwise
comparisons in order to derive overall rankings of the 4 tag
re-ranking methods and the baseline. For each pairwise com-
parison, we first measure fraction of votes cast for each of

taxonomy-expanded run

precision-calibrated run

manually-calibrated run

raw classifier scores

average # tags per image
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Figure 6: Comparison of tagging approaches.
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tag value relationship 
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(b)

(a)

(b) and  (a) agreeblue

orange (b) and (a) disagree

:

:

beach > nature > vegetation car > town > sky_clouds

church_tower > building_architecture > urban > outdoors

group_people > urban > outdoors

landmark_monument > tree_foliage > grass_field

lake > nature

mountain > outdoors

sand > nature > vegetation

snow > sky_clouds

waterscene > sky_clouds wave > nature

tree_foliage > mountain

vegetation > grass_field

skyline_day > building_architecture

windows > outdoors

sky_clouds > nature > grass_field

Figure 5: Tag values. (a,top) From user survey (Section 8.1), tag are sorted in descending value, the error
bars denote variance. (b,bottom) Discovered relationships in tag re-ranking experiments (Section 8.3).

the two runs being compared, and then average these frac-
tions across all comparisons each run participates in. This
gives us an overall measure of how frequently each run“wins”
when compared against any of the other runs, similar to a
group tournament ranking system. We deal with ties in two
different ways: a) in one alternative, we split the ties equally
among the two runs (i.e., give half votes to each run for each
tie); and b) we consider only the subset of votes where vot-
ing users agree on the winner unanimously, and we discard
tie votes and votes where users contradict each other. We
note that consensus is reached in approximately 57% of the
total votes.

The results of the aggregate user preferences are sum-
marized in Table 2. Results for option a), which counts
ties as half votes, are presented in the third column of Ta-
ble 2, while option b), which considers only consensus non-
tie votes, is reflected in the middle column. We note that
the overall ranking is the same according to both aggregate
measures, although the consensus column can discriminate
a bit more effectively. From the results, we can conclude
(with statistical significance at p = 0.05) that 1) any re-
ranking approach is better than no re-ranking (the base-
line); 2) the user value-based, information content-based and
Flickr popularity-based methods are not statistically differ-
ent, that is, we can recover the performance of explicitly
provided user value-based re-ranking with approaches based
on automatically computed value estimates; and 3) the pos-
terior probability-based approach outperforms all other ap-
proaches. These aggregate performance observations are
generally confirmed when looking at individual pairwise com-
parisons, which are omitted here due to space limitations.

We also use the ten pairwise run comparisons to extract
individual tag relationships. We extract the subset of top-
four tags that differ, and we add one “winning” vote to the
set being preferred when there is a consensus among the an-
notators. Specifically, we only accumulate votes when both
sets are in the ground-truth (1,535 pairs total, out of which
784 have annotator consensus), eliminating cases where one
set of tags is being preferred simply because the other set is
incorrect. For any image I, let the sets of tags that differ be
T ∗1, and T ∗2, each with size k tags. We add 1/k votes to
tag pair ordering (t1, t2), and subtract 1/k to tag pair order-
ing (t2, t1), ∀ t1 ∈ T ∗1, t2 ∈ T ∗2. The votes are normalized
by the total number of times a tag-pair is voted on. From

Table 2: Comparisons of baseline and 4 tag re-
ranking methods from Section 7. Results aggregated
across 11,700 votes from 5 users for 10 pairwise com-
parisons. Each number represents fraction of votes
received by the corresponding re-ranking approach
when compared against the other methods.

Re-Ranking Method
%Winning Votes

(consensus) (all votes)
Baseline (no re-ranking) 39.0% 44.7%
User perceived value 49.9% 49.8%
Information Content 51.7% 49.9%
Flickr popularity 52.7% 50.5%
Posterior probability 56.7% 55.1%

this result we extract both pairwise tag preferences and the
accumulated votes on any tag to obtain a sort order. Out
of the 60 tags, 25 tags and 83 pairs (with votes ≥ 0.1) can
be meaningfully compared.

Figure 5(b) shows a few examples of tag preferences—the
full result set has 62 pairs that agree with Figure 5(a) and 21
pairs that do not. We can see that the users tend to prefer
more specific tags in both scoring and image comparison
(e.g. beach>nature, church/tower>building), and that the
preference over specific tag pairs may be ambiguous or may
also vary depending on image context (e.g. windows vs.
outdoors, tree/foliage vs. mountain). Figure 7 shows the
25 tags sorted in descending order of the total votes they
received (against each other). While the gross ballpark of
tags agrees with the user scores, e.g. beach, snow among
the most preferred, and outdoors, urban among the least,
individual tag order may vary, suggesting there may be a
few equivalence tag classes.

9. CONCLUSIONS
In this paper, we have presented a detailed case study

in the design and evaluation of an end-to-end image tag-
ging system for consumer photos. We proposed a method-
ology for extracting meaningful visual tag vocabularies for
image auto-tagging systems, and defined a sample 5000-tag
vocabulary and a subset 60-tag taxonomy. We proposed
a novel faceted taxonomy structure for capturing both co-
occurrence and mutual exclusivity relationships across tags,
and proposed methods for automatic taxonomy-based tag
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refinement, which can increase both recall and precision. We
presented a classifier score calibration method based on non-
parametric precision estimates, which boosts overall system
accuracy from less than 50% to over 80%. Finally, we pro-
posed and evaluated four tag re-ranking approaches based
on various estimates of perceived tag values. All aspects of
the system are evaluated with several user studies, includ-
ing over 20 users, 5,000 photos, 35,000 tag judgments, and
11,000 tagging preference judgments. The experiments vali-
date the utility and accuracy of the chosen tags, and confirm
that value-ranked tags are preferable to accuracy-based tags.
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