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The uncertainty principle shows that one can not jointly localize a signal in time and
frequency arbitrarily well; either one has poor frequency localization or poor time localiza-
tion. The degree of localization is measured in the theorem below by the quantitires
D; these are like the standard deviation of a probability distribution.

The proof we present was originally due to Weyl [H. Wétheory of groups and Quan-
tum MechanicsDover, NY, (1950); Appendix A]

Theorem 1 (Uncertainty Principle) Supposef(t) is a finite energy signal with Fourier
transformF'(w). Let
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and equality holds only if (¢) has the form
f(t) = Ceor,

In order to prove the theorem we need the following Lemma which is very useful in many
other situations.

Lemma 2 (Cauchy-Schwarz Inequality) For any square integrable functiongz) and
w(x) defined on the intervak, b],
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and equality holds if and only i(z) is proportional tow*(z) (almost everywhere on
[a, b]).

Proof Assumez(z) andw(x) are real (the extension to complex-valued functions is
straight-forward). Let
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ClearlyI(y) > Oforally € R. Butif I(y) = A —2yB + 4 > 0forall y € R then
B? — Ac < 0. If B2 — AC = 0, thenI(y) has a double real roofik: I(k) = 0 for
y = k. Thus (1) holds and if it is an equality, thdify) has a real root which implies

Jk: I(k) = f:[z(x) — kw(z)]>dz = 0. But this can only occur if the integrand is identi-
cally zero; thus:(z) = kw(z) for all z. [ |

Proof (Theorem) Assumef (t) is real. Lemma 2 implies
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(by the chain rule for differentiation)
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using integration by parts. By assuptiQﬁHf — 0= |t|f? - 0= tf? — 0. Thus
a = 0. Furthermore3 = E/2 and so
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Recalling that%, f(t) < jwF(w), by Parseval's theorem we have
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Substituting (3) and (4) into (2) we obtain
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If (6) is an equality, then (2) must be also which is possible only if
L pie) = ke (o
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= f(t)y=Ce "

(notee ™" — ¢=7(f/1)* _ the Fourier transform of a Gaussian is a Gaussian). il



