
The Uncertainty Principle

Bob Williamson
Australian National University

November 18, 2000

The uncertainty principle shows that one can not jointly localize a signal in time and
frequency arbitrarily well; either one has poor frequency localization or poor time localiza-
tion. The degree of localization is measured in the theorem below by the quantititiesd and
D; these are like the standard deviation of a probability distribution.

The proof we present was originally due to Weyl [H. Weyl,Theory of groups and Quan-
tum Mechanics, Dover, NY, (1950); Appendix A]

Theorem 1 (Uncertainty Principle) Supposef(t) is a finite energy signal with Fourier
transformF (ω). Let

E :=
∫ ∞
−∞
|f(t)|2dt =

1
2π

∫ ∞
−∞
|F (ω)|2dω

d2 :=
1
E

∫ ∞
−∞

t2|f(t)|2dt

D2 :=
1

2πE

∫ ∞
−∞

ω2|F (ω)|2dω

If
√
|t|f(t)→ 0 as|t| → ∞, then

Dd ≥ 1
2

and equality holds only iff(t) has the form

f(t) = Ce−αt
2
.

In order to prove the theorem we need the following Lemma which is very useful in many
other situations.

Lemma 2 (Cauchy-Schwarz Inequality) For any square integrable functionsz(x) and
w(x) defined on the interval[a, b],∣∣∣∣∣

∫ b

a

z(x)w(x)dx

∣∣∣∣∣
2

≤
∫ b

a

|z(x)|2dx
∫ b

a

|w(x)|2dx (1)

and equality holds if and only ifz(x) is proportional tow∗(x) (almost everywhere on
[a, b]).

Proof Assumez(x) andw(x) are real (the extension to complex-valued functions is
straight-forward). Let

I(y) =
∫ b

a

[z(x)− yw(x)]2 dx

=
∫ b

a

z2(x)dx︸ ︷︷ ︸
A

−2y
∫ b

a

z(x)w(x)dx︸ ︷︷ ︸
B

+y2

∫ b

a

w2(x)dx︸ ︷︷ ︸
C

= A− 2yB + y2C
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Clearly I(y) ≥ 0 for all y ∈ R. But if I(y) = A − 2yB + yC ≥ 0 for all y ∈ R then
B2 − Ac ≤ 0. If B2 − AC = 0, thenI(y) has a double real root:∃k : I(k) = 0 for
y = k. Thus (1) holds and if it is an equality, thenI(y) has a real root which implies
∃k : I(k) =

∫ b
a

[z(x) − kw(x)]2dx = 0. But this can only occur if the integrand is identi-
cally zero; thusz(x) = kw(x) for all x.

Proof (Theorem)Assumef(t) is real. Lemma 2 implies∣∣∣∣∫ ∞
−∞

tf
df

dt
dt

∣∣∣∣2 ≤ ∫ ∞
−∞

t2f2dt

∫ ∞
−∞

∣∣∣∣dfdt
∣∣∣∣2 dt. (2)

Let

A :=
∫ ∞
−∞

tf
df

dt
dt

=
∫
t
d(f2/2)
dt

dt

(by the chain rule for differentiation)

= t
f2

2

∣∣∣∣∞
−∞︸ ︷︷ ︸

α

−
∫ ∞
−∞

f2

2
dt︸ ︷︷ ︸

β

using integration by parts. By assuption
√
|t|f → 0 ⇒ |t|f2 → 0 ⇒ tf2 → 0. Thus

α = 0. Furthermoreβ = E/2 and so

A = −E
2

(3)

Recalling thatddtf(t)↔ jωF (ω), by Parseval’s theorem we have∫ ∞
−∞

∣∣∣∣dfdt
∣∣∣∣2 dt =

1
2π

∫ ∞
−∞

ω2|F (ω)|dω (4)

Substituting (3) and (4) into (2) we obtain∣∣∣∣−E2
∣∣∣∣2 =

∣∣∣∣∫ ∞
−∞

tf
df

dt
dt

∣∣∣∣2 ≤ ∫ ∞
−∞

t2f2dt︸ ︷︷ ︸
Ed2

× 1
2π

∫ ∞
−∞

ω2|F (ω)|2dω︸ ︷︷ ︸
ED2

(5)

⇒ dD ≥ 1
2

(6)

If (6) is an equality, then (2) must be also which is possible only if

d

dt
f(t) = ktf(t)

⇒ f(t) = Ce−αt
2

(notee−π(bt)2 ↔ e−π(f/b)2
— the Fourier transform of a Gaussian is a Gaussian).
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