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Abstract. We consider the sample complexity of agnostic learning with
respect to squared loss. It is known that if the function class F' used for
learning is convex then one can obtain better sample complexity bounds
than usual. It was also previously claimed that there is a lower bound that
showed there was an essential gap in the rate. In this paper we show that
the lower bound argument is flawed and that one can get “fast” sample
complexity bounds for nonconvex F. The new bounds depend on the
detailed geometry of F', in particular the distance in a certain sense of
the target’s conditional expectation from the set of nonuniqueness points
of the class F'.

1 Introduction

The agnostic learning model [5] is a generalization of the PAC learning model
that does not presume the target function lies within the space of functions
(hypotheses) used for learning. There are now a number of results concerning
the sample complexity of agnostic learning, especially with respect to the squared
loss functional. In particular, in [8] it was shown that if ¢ is the required accuracy,
then the sample complexity (ignoring log factors and the confidence terms) of
agnostic learning from a closed class of functions F' with squared loss is O(d/¢) if
F is convex, where d is an appropriate complexity parameter (e.g. the empirical
metric entropy of the class). This result was extended and improved in [9].

It was claimed in [8] that if F' is not convex, there exists a lower bound of
2(1/€%) on the sample complexity. Thus, whether or not F is convex seemed
important for the sample complexity of agnostic learning with squared loss.

However, these are deceptive results. The claimed lower bound relies on a
random construction and the fact that for nonconvex F', one can always find a
target “function” (actually a target conditional expectation) f* which has two
best approximations in the class F. Unfortunately, as we show here, the random
construction is wrong. It is the case though that sample complexity of agnostic
learning does depend on the closeness of f* to a point with a nonunique best
approximation. In this article we will develop some nonuniform results which
hold for “most” target conditional expectations in the agnostic learning scenario
from a nonconvex class F' and obtain sharper sample complexity upper bounds.



The proof we present here is based on recently developed methods which can
be used for complexity estimates. It was shown in [9] that the complexity of a
learning problem can be governed by two properties. The first is the Rademacher
complexity of the class, which is a parameter that indicates “how large” the class
is (see [10,1]). The other property is the ability to control the mean square value
of each loss function using its expectation. We will show that indeed the mean
square value can be bounded in terms of the expectation as long as as one knows
the distance of the target from the set of points which have more than a unique
best approximation in the class.

In the next section we present some basic definitions, notation, and some
general complexity estimates. Then, we present our nonuniform upper bound.
Finally, we briefly present the proof on the lower bound claimed in [8], show
where the argument fails, and prove that the claim itself can not be true.

2 Definitions, Notation and Background Results

If (X,d) is a metric space, and U C X, then for ¢ > 0, we say that C C X
is an e-cover of U with respect to d if for all v € U, there exists w € C such
that d(v,w) < e. The e-covering number with respect to d, N(e,U,d), is the
cardinality of the smallest e-cover of U with respect to d. If the metric d is
obvious, we will simply say e-cover etc.

The closed ball centered at ¢ of radius r is denoted by B(c,r) := {x € X: ||z —
|| < r}. Its boundary is 0B(c,7) :={z € X: [z —¢||=r}. Ifz € X, and A C X,
let the distance between A and x be defined as d4(z) := inf{d(z,a): a € A}.
The metric projection of x onto A is Pa(z) := {a € A: ||z —al| = da(z)}. Hence,
elements of P4 (z) are all best approzimations of x in A.

Denote by Ly (X) the space of bounded functions on X with respect to the
sup norm and set B (LOO (DC)) to be its unit ball. Let p be a probability measure
on X and put Ls(u) to be the Hilbert space of functions from X to R with the
norm endowed by the inner product (f,g) = [ f(z)g(z)du(z). Let Y C [-1,1],
and set F' to be a class of functions from X to Y, and thus a subset of La().
Assumptions we will make throughout are that F' is a closed subset of Lo(u)
and that it satisfies a measurability condition called “admissibility” (see [3,4,
14)) for details.

Definition 1. Let F C Lao(p). A point f € Lo(u) is said to be a nup point
(nonunique projection) of F with respect to (w.r.t.) Lo(p) if it has two or more
best approximations in F with respect to the Lo(p) norm. Define

nup(F, p) :={f € La(p) : f is a nup point of F w.r.t. Ly(p)}.

It is possible to show that in order to solve the agnostic learning problem of
approximating a random variable Y with values in Y by elements in F', it suffices
to learn the function f* = E(Y'|X = z). Indeed, for every f € F,

E(f(X)-Y)* =E(E(Y|X) - (X)) + E(E(Y|X) - Y)*
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= E(f*(X) - £(X))* +E(f*(X) - Y)".



Thus, a minimizer of the distance between f(X) and Y will depend only on
finding a minimizer for E( f*(X) — f(X))Q, that is, solving the function learning
problem of approximating f* by members of F with respect to the La(p) norm.

Assume that we have fixed the target f*. We denote by f, its best approxi-
mation in F with respect to the given Ls(u) norm. For any function f € F, let
the squared loss function associated with f* and f be

gr.g- 2w = (F(2) = f1(2))? — (fal2) — f*(2))?,

and set L(f*) =L :={gys: f € F}.

Interestingly, although a “randomly chosen” f* € Ly(u) is unlikely! to be
in nup(F, ), as we shall see below, nup(F, i) nevertheless controls the sample
complexity of learning f* for all f* € La(u) \ F.

Definition 2. For any set {z1,...,z,} C X, let u, be the empirical measure
supported on the set; i.e. pu, = %Z?Zl 0z,- Given a class of functions F, a
random variable Y taking values in'Y, and parameters 0 < ¢,6 < 1 let Cr(£,4,Y)
be the smallest integer such that for any probability measure p

Pr {Hgf,f* € L(f*) (B, 950 <&, Eugp e > 28} <9, (1)
where f* =E(Y|X = z).

The quantity Cr(s,6,Y) is known as the sample complezity of learning a
target Y with the function class F. The definition means that if one draws a
sample of size greater than Cr(e,d,Y") then with probability greater than 1 — 4,
if one “almost minimizes” the empirical loss (less than ¢) then the expected loss
will not be greater than 2e. Typically, the sample complexity of a class is defined
as the “worst” sample complexity when going over all possible selections of Y.

Recent results have yielded good estimates on the probability of the set in
(1). These estimates are based on the Rademacher averages as a way of mea-
suring the complexity of a class of functions. The averages are better suited
to proving sample complexity results than classical techniques using the union
bound over an e-cover, mainly because of the “functional Bennett inequality”
due to Talagrand [13].

Definition 3. Let u be a probability measure on X and suppose F is a class of
uniformly bounded functions. For every integer n, set

ZSif(Xi)

where (X;)7_, are independent random variables distributed according to u and
(€:)P_y are independent Rademacher random variables.

1
R, (F) :=E,E, 7= ?gg

! Since Hilbert spaces are uniformly convex it follows from a theorem of Stechkin [12]
(see [16, page 9]) that La(u) \ nup(F, u) is a countable intersection of open dense
sets. This implies that if one puts a reasonable probability measure v on Lz (), then

v({f € L2(p) : f ¢ nup(F, p)}) = 1.



Various relationships between Rademacher averages and classical measures
of complexity are shown in [10, 11]. It turns out that the best sample complexity
bounds to date are in terms of local Rademacher averages. Before presenting
these bounds, we require the next definition.

Definition 4. We say that F C Lo(u) is star-shaped with centre f if for every
g € F, the interval [f,g] ={tf+(1—1t)g:0<t <1} C F. Given F and f, let

star(F, f) := U [f, g].

geF

Theorem 1. Let F' C B(Loo (fX:)), fix some f* bounded by 1 and set L(f*) to be
the squared loss class associated with F and f*. Assume that there is a constant
B such that for every g € L(f*), Eg?> < BREg.

Let G := star(L,0) and for every e > 0 set G. = GN {h : Eh? < &}. Then for
every 0 < e, < 1,

Pr{dge L,E,, g<e/2,Eg >¢c} <0
provided that

2 Blog 2
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where C is an absolute constant.

Using this result one can determine an upper bound on the sample complexity in
various cases. The one we present here is a bound in terms of the metric entropy
of the class.

Theorem 2 ([11]). Let Y be a random variable on'Y and put f* = E(Y |X = z).
Let F,L,G and B be as in theorem 1.

1. If there are vv,p,d > 1 such that for every e > 0,
supsup log N (g, F, La(up,)) < dlog? <1> ,
no pn €
then for every 0 < e,6 < 1,

C 1 2
< Yo p L Z
C(e,6,Y) < E max{dlog 6,Blog 5},

where Cp, o depends only on p and .
2. If there are 0 < p < 2 and v > 1 such that for every e > 0,

supsup log N (e, F, La(pn)) < ve P
n Hn
then

C(ga 67 Y) S Cp7fy max{(§)1+g,310g %}’

where C),  depends only on p and .



From this result it follows that if the original class F' is “small enough”, one
can establish good generalization bounds, if, of course, the mean-square value
of each member of the loss class can be uniformly controlled by its expectation.
This is trivially the case in the proper learning scenario, since each loss function
is nonnegative. It was known to be true if F' is convex in the squared loss case [8]
and was later extended in the more general case of p-loss classes for 2 < p < c©
[9].

Our aim is to investigate this condition and to see what assumptions must
be imposed on f* to ensure such a uniform control of the mean square value in
terms of the expectation.

3 Nonuniform Agnostic Learnability of Nonconvex
Classes

We will now study agnostic learning using nonconvex hypothesis classes. The
key observation is that whilst in the absence of convexity one can not control
]E[g%f*] in terms of E[gy, s+ ] uniformly in f*, one can control it nonuniformly in
f* by exploiting the geometry of F'. The main result is corollary 1.

The following result is a generalization of [7, lemma 14] (cf. [6, lemma A.12]).

Lemma 1. Let F be a class of functions from X to Y. Put « € [0,1), set f* €
Lo(u) and suppose f* has range contained in [0,1]. If for every f € F

(fa—Ffa— D) < 50— I7, (2)

then for every gs - € L(f*),
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Elg? ;-] < Elgy,p+]-

Proof. For the sake of simplicity, we denote each loss function by g¢. Observe
that
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Elg7] = E[((f*(X) = F(X))* = (
= E[((2f*(X) = f(X) = fa(X))(fa(X) = f(X)))’]
< 16E[(F(X) — fa(X))?]
= 16]|f. — fII*. 3)



Furthermore,

E[gf] E[(f*(X) = £(X))* = (f*(X) = fa(X))’]
E[(f*(X) = fa(X))* + (fu(X) = f(X))?
+2(£*(X) = fa(X)) (fa(X) = (X)) = (£*(X) = fa(X))?]
= E[(fo(X) — £(X))? +2(£*(X) — fa(X))(fa(X) — f(X))]
= E[(fa(X) = £(X))*] + 2E[(f* (X) = fa(X))(fa(X) = F(X))]

:Hfa_f||2+2< fa:fa_f

)
Hfa_f||2_2<fa_f*,fa_f>

> ||fa = fII? — el fa — £II?
=1 -a)llfa—fI?

1«
= TﬁE[Q?]

Lemma 2. Fix f* € Ly(n). Then, f € Ly(p) satisfies (2) if and only if f is not
contained in

B =B (L - )+ ha LI - 1)

which is the closed ball in Ly(p) centered at < (f* — fu) + fo with radius || f* —
fall-

Proof. Note that (f* — fa, f — fa) < §|lfa— fI|? if and only if || f, — f[|* = 2(f*
fa, [ — fa) > 0. Clearly, the latter is equivalent to

QIr

(f—nx(ﬂ—mwwgﬂ—nxgﬁ—n»
<f favfa_f>_

QIr

<fa_f7fa_f>+<

QINJ

Thus,

Jam T+ 2" = foda= T+ (= ) 2 U = f) o (= L)) ()

Clearly, f satisfies (4) if and only if ||f — (fa+ 2 (f* — fa))|| = L||f* — fall; hence
it belongs to the region outside of B(®). [ |

In the limit as a — 0, 0 B,, approaches a hyperplane. Then by the unique sup-
porting hyperplane characterization of convex sets [15, theorem 4.1] this implies
F is convex.

We will use lemma 2 as indicated in figure 1. The key factor in bounding B
is the closeness of f* to nup(F, u) in a particular sense. Suppose f* € La(p) \
(F Unup(F, p)), and let

reu(f7) = mf{||lf = Pe(f)I: £ € QA" = Pe(f7)) : A > 0} Nnup(F, p)}-



Fig. 1. Illustration of lemma 2 and the definition of 7z, (f*).

Observe that 7g,,(f*) = || faup — Pr(f*)|| where foyp is the point in nup(F, u)
found by extending a ray from Pp(f*) through f* until reaching nup(F, u1) (see
Figure 1). Let

5t Pe( _ IF Pr(e)]
a7 e — Pr(F)]

apu(f):

and observe that ap,(f*) € [0,1] is the largest o such that B;‘a)(f*) only
intersects F' at Pp(f*).

Note that if F' is convex then nup(F, ) is the empty set; hence for all f* €
Lo(p), rp,u(f*) = oo and ap,(f*) = 0.

Combining theorem 2 with lemmas 1 and 2 leads to our main positive result:

Corollary 1. Let F C Lao(u) be a class of functions into [0,1], set Y to be
a random variable taking its values in [0,1], and assume that f* = E(Y|X) ¢
nup(F, ). Assume further that there are constants d,~y,p > 1 such that for every
empirical measure p,, log N (g, F, Ly(puyn)) < dlog?(v/€). Then, there exists a
constant Cp, , which depends only on p and vy, such that for every 0 <¢e,0 <1,

C 1 log 2
Cr(e,6,Y) < 22 dlogh =, ———2% 1.
F(Ea ) ) = ¢ max{ 0g 6’ 1— aF,u(f*)

Note that this result is non-uniform in the target Y because some functions f*
are harder to learn than others. For all f* € F*:= {f € H: ar,(f) > a}, one
obtains a uniform bound in terms of «. Figure 2 illustrates the boundaries of F'®



Fig. 2. Illustration of the sets F'*. The lines marked o = % and a = % are the bound-

aries of F'/2 and F'/* respectively.

for a given F' and two different values of a. If F' is convex, then ap,(f*) =0
always and one recovers a completely uniform result.

4 The Lower Bound

In this section we present the geometric construction which led to the claimed
lower bound presented in [8]. We then show that the construction is wrong, and
can not be corrected. In our discussion we shall use several geometric results,
the first of which is the following standard lemma, whose proof we omit.

Lemma 3. Let X be a Hilbert space and set x € X and r > 0. Put By =
B(z,r) and let y € 0By. For any 0 < t < 1 let zz = tx + (1 — t)y and set
By = B(Zt, ||Zt — y”) Then By C By and 831 n 832 = {CE}

Using lemma 3 it is possible to show that even if x has several best approxima-
tions in GG, then any point on the interval connecting = and any one of the best
approximations of x has a unique best approximation.

Corollary 2. Let x € X, set y € Pg(x) and for every 0 < t < 1 let 2z, =
te + (1 —t)y. Then, Pg(z) = y.

Proof. We begin by showing that Pg(z:) C Pg(z). To that end, note that
da(zt) = llze—yl|l = (1 —¢t) ||z — y||. Indeed, dg(z:) < ||zt — yl|. If there is
some y' € G such that ||y’ — z¢|| < (1 —¢) ||z — y|| then by the triangle inequal-
ity |y —z|| < ||y — z|| + ||zt — z|] < ||z — yl|, which is impossible. In fact, the



Fig. 3. Illustration for lemma 4

same argument shows that if ' € Pg(z;) then ||z — ¢'|| = dg(z), implying that
y' € Pg(z). Therefore,

Pg(z) C 0B(z,dg(x)) N OB (2, de(21)),
and thus, by lemma 3, Pz (2;) contains a single element — which has to be y. il

In the next two results we deal with the following scenario: let R > 0 and let
B = B(0,R). Fix any y1,y2 € OB which are linearly independent, and put
U C X to be the space spanned by y; and y». Let ¢ = R(y; + v2)/ ||ly1 + y2]]
and set v € U to be a unit vector orthogonal to ¢, such that <v,y1> > 0.
Denote V- = {z : (z,v) <0} and S_ = V_ N Sx, where Sx is the unit sphere
Sx ={z € X :||z|| = 1}. In a similar fashion, let V}, = {z : (z,v) > 0} and set
S+ = V+ N SX

Lemma 4. For every 0 < t < 1, d(ty;, RS_) = |[ty; — ¢|| and c is the unique
MINIMUM.

The lemma has the following geometric interpretation: for every 0 < ¢ < 1, let
B; be the ball centered in ty; which passes through c. Then, by the lemma, any
point in the intersection of B; with V_ other than c is contained in the interior
of B(0, R). (See Figure 3.)

Proof. For any Rs € RS_,
lltyr — Rs||* = [[ty1]|* + R* — 2tR(y1, s),

hence, the minimum is attained for s € S_ which maximizes <y1, s). Set U = v+,
and since X =V @ U then

<y155> = <va1,PvS> + <PUy1aPU5>a



where Py (resp. P,) is the orthogonal projection on U (resp. v). Note that for ev-
ery s € S_, (Pyy1, Pys) < 0 and (Pyyy, Pys) < [|Pyy. Thus, (y1,s) < ||Puyl|
and the maximum is attained only by s € S_ such that Pys = Pyy1/ || Puyil|
and P,s = 0. The only s which satisfies the criteria is s = Pyy;/ ||Pvyl|, and
Rs =c.

Theorem 3. Let G C X be a compact set and x € nup(G, u). Set R = dg(x),
put y1,y2 € Pgz and set ¢ = R(y1 + y2)/ ly1 + y2||. For every 0 < t < 1
let zp = y1 + tR(x — y1)/ llz = will, 2 = y1 +tR(z — y2)/ & — 2| and & =
|2t —c|| = ||t — y1|- Then, if p satisfies that da(z}) < p < da(2t) + &, and
g € B(z},p) NG then ||g — vil| < |lg — yz||. Similarly, if g € B(22,p) NG then
lg — wall <llg — wll-

Proof. Clearly we may assume that = = 0, thus z} = ty; and 22 = ty,. Also,
note that e, = ||zt2 — c|| - ||zt2 — y2||, hence the second part of the claim follows
by an identical argument to the first part. By corollary 2, y; is the unique best
approximation to 2}, hence &; > 0. If y; and y, are linearly dependent then
Y2 = —y1 and the result is immediate, thus, we may assume that y;,ys are
independent. Let U be the space spanned by {y;,y>}, and let v € U be a unit
vector orthogonal to ¢ such that <v, y1> > 0. By lemma 4 and using the notation
of that lemma,

B(ty1, p) N V- C intB(ty, |[tyr — ¢||) N V= C intB(0, R).

Thus GN(B(ty1, p)NV-) C GNintB(0, R) = 0, implying that GNB(ty1,p) C V.
Clearly, for every g € Vi, |lg — v1l| < |lg — v2]|, as claimed.

Remark 1. It is easy to see that there is a constant Cy r such that for every
0<t<l, Hzé - c|| — ||z§ - y1|| > Cg rt, where R = dg(x) and d = ||y1 — 2.

Theorem 3 was the key idea behind the argument in [8] of the incorrect lower
bound. What was claimed by the authors is the following:

Theorem 4 (False). Let G C Ly(u) NbB(Loo(p)) be compact and nonconves.

For any € > 0 there exists a random variable W, such that Cg(e,d, W) =
2(1/e%).

Note that even this claim does not guarantee that there is a target concept
for which the sample complexity is O(g~2). Rather, its actual claim is that it
is impossible to obtain an upper bound which is better than the GC limit in
the nonconvex case. The targets W, will be constructed in such a way that for
smaller values of €, the conditional expectation of W is closer to nup(F, u). It
does not (as incorrectly claimed in [8]) imply that Cg(e,8,Y) = 2(1/€?) for
some random variable Y. As we will show in the sequel, even this weaker claim
is wrong. In the next few lines we shall present the outline of the incorrect proof.

“Proof”. Set x € nup(G, ) and put d = diamPg(z) and R = dg(x). Let y1,y2 €
Pg(z) such that ||y; — y2|| = d and for every 0 < ¢t < 1 and i = 1,2 let 2! =
ty; + (1 — t)z. Assume that y; and yo are linearly independent (the other case



follows from a similar argument) and let U = span{y;,y2}. As in theorem 3,
set ¢ = R(y1 + y2)/ |ly1 + y2|| and choose v € U to be a unit vector orthogonal
to ¢ such that (v,y;) > 0. Since v = (y1 — y2)/ |ly1 — v2|| then |[v]|, < 2b/d.
Also, recall that by remark 1, there is a constant Cy, such that for 0 <t <1
and i = 1,2, p; = ||z; —c|| - ||z§ —yiH > Cg rt. For every 0 < ¢ < 1 define
the following {0,1}-valued random sequence: let &; be ii.d Bernoulli random

variables such that

1_8

A= ‘E@ =<
By a result stated as lemma 3 in [8] and originally proved in [2], there is an
absolute constant C' such that one needs a sample of at least C(log(1/d)e?)
points to identify whether A = ¢/2 or A = —¢/2 with probability 1 — §. The
idea is to assume that there is an efficient algorithm for agnostic learning, and
to use this algorithm to identify the value of A with high confidence.

Let cc. = (1 — )z +e(y1 + y2)/2, and for every integer n set

n_ Jdv+c if& =1,
We _{—dv—i—cS if &, =0.

Note that the EW? = dv/2 +c. = 2z} if A =¢/2, and EW, = 22 if A = —¢/2.
Also, for every 0 < e < 1, [|[W||, < 3b. By remark 1, there is a constant Cg r
such that for every 0 < ¢t < 1, ||z§ - c|| - ||z§ - y1|| > Cq rt. Let € < 1/2 and set

e = %Cd,RE- Assume that h € G is such that

28 = Bl* = 12t sl <"
Since Hzé - h|| > ||z; - y1|| then

! !
€ : < 15 - Care
il + [t =yl = 2|2 —yll 2

o2 = bl a2 =l < e

Therefore, h € intB(z}, ||2L — c||), implying that ||h — y1|| < ||k — y2].

Now, assume that one had an efficient algorithm to learn W, at the scale
¢’. Since the conditional expectation of W, is either 2! or 22 depending on
A, then the learning rule would produce a function h which satisfies either
|22 - hH2 — ||zt —ylH2 < & or |22 - h||2 — |22 —ylH2 < ¢'. We can identify
which one it was according to the distances ||k — y1|| and ||h — y2||. We predict
that A =¢/2 if h is closer to y; and that A = —/2 if h is closer to ys.

By the lower bound on the sample complexity of estimating A, it was claimed
that the agnostic sample complexity

C(;(El, 5, We) Z

where K is an absolute constant. To conclude, if this were the case, one could
find constants K7, Ko (which depend only on R and on d) such that for every
0 < £ < 1/2 there is a random variable Y, such that E(Y |X) = z! and

1

K,
CG’(K]_E,&, Y) Z 5_2 log g



The error in the proof is due to the different probability spaces used. The first
is the space defined by the Bernoulli random variables, and the second is the one
associated with the learning problem. The transition between the two algorithms
corresponds to a map between the two probability spaces. The problem arises
because this map does not have to be measure preserving. Hence, a “large”
subset in one space can be mapped to a very small set in the other. [ |

Below we will show that this random construction can not be corrected.

Definition 5. Let G be a class of functions on a probability space (X, X, 1),
and let f be a (deterministic) function in Lo (X). For every integer n and every
€ >0, let M. ,(f) be the set of n-tuples {1, ...,z } which satisfy that for every
x € M. ,,(f) the learning rule assigns to the sample s, = (z;, f(z;)) a function
L, € G such that

— L, | — inf ||f — gl .
IF = L, I? = inf 1~ gl* < &

Clearly, for a class to be learnable, the probability p™ (Msm( f)) must tend to 1
as n tends to infinity for every f € Lo, (X). Thus, we can have a “deterministic”
version of the sample complexity:

Definition 6. For a class of functions G on a probability space (X, X, ) and a
(deterministic) function f let D¢ (e,0) be the smallest integer ng such that for
every n > nyg, ,u”(MEn(f)) >1-9.

If X is distributed according to p, let C¢(e,6) be defined as

Ct(e,0) = 5111/p C(s,4,Y), (5)

where the supremum is taken with respect to all real random variables Y, such

that E(Y|X) = f.

Moreover, if one has an efficient learning rule L for f, it depends only on
{z1,...,zn}. Thus, if {z1,...,z,} € M, ,(f), then for every {yi,...,yn} L will
serve as a learning rule for (x;,y;). Hence, for every Y such that E(Y|X) = f
and every 0 < £, < 1,

0(6,6, Y) < Df(sa(;)a (6)

implying that
Cf(E,(S) < Df(E, J).

The next step in our construction is to observe that if f € nup(G, u) and if g €
Pg(f), then the deterministic sample complexity of the function z; = (1—t)f+tg
increases in some sense for t € (0,1). In other words, as long as one is restricted
to the interval (f, g), it is easier to learn as one moves closer to f.

Lemma 5. Let e > 0 and 0 < t1 < to < 1. Then, there is a constant C* which
depends only on ty such that if h € G satisfies that |h — z,,||” — |lg — 20, ])° < &
then ||h — 2z, ||* = lg — z1,1|> < C*e, where g € Pg(f). In fact, if ty < 1/2 then
one can take C* = 2.



Proof. By the definition of h, it follows that

€
=p.
1P = 2t, [l + llg — 22,

1P =z, || = [lg = 22| <

Note that for every p > 0,
B(zt27 ”g - th” +P) C B(Ztu Hg - Zt1H +p)
Indeed, if ||u — 24, || < [lg — 2,|| + p, then
lu =20, || < 20, = 20| + [ = 20, || <20, = 20/ +lg — 21, | +
= [lze, —gll + p.
Clearly, h € B(z4,,||g — 2,|| + p) and thus h € B(z,, g — 2, || + p). Therefore,

1P =20, [+ llg = 20, [l _
1k = zt, || + [lg = 26, |

(*)

2 2
1P = ze, ™= llg = 2z, " < p(lIh = 22, | +[lg = 21, ]1) = ¢

Since h € G and g is the best approximation of z;, in G then

1= 26| = [lg = 26, |l = (A = £2) [[f — gl
Thus, by the triangle inequality and the observation above,

(*) <6||h_zt2“+||zt1 _Zt2||+||g_zt1|| (t2_t1)||f_g|| )
- Ih =z, || + |9 — 2t | [h =zt || + g — 2t |l

t
<<1—|—12 )6. [ |

= 1

§5(1+

Corollary 3. Let f,g and z; be as in lemma 5. Fiz some 0 < t* < 1 and let C*
be the constant appearing in the lemma for to = t*. Then, for every e > 0, every
integer n and every 0 < t < t*,

Ma,n(zt*) C MC*E,n(zt)a
and in particular, for every 0 < e,6 <1 and every 0 <t < 1/2
D21/2(6,5) > D,,(2¢,9).

Proof. Fix an integer n and £ > 0 and assume that L is a learning rule for z;-.
If s, € M, (%) then L, € G and

2<e.

2
- ||9 — Rt

ILs, — 2t~
By lemma 5, for every 0 < t < t*,
ILs, = 2ell” = lg = 21" < Ce,

and thus s,, € Mc¢«c (%), by using the learning rule L. The second part of the
claim follows immediately from the first. [ |



Now we can prove that it is impossible to obtain a lower bound in a sim-
ilar way to the one stated in theorem 4. Indeed, we show that if the random
construction where to be true, there must have been a function which is not on
nup(G, p) for which the sample complexity is 2(1/£?).

Note that in the claim of theorem 4 there is no assumption on the “size” of G.
In particular, if the construction is correct, its assertion should hold for classes
for which log N (g, G, La(p)) = O(e7?) for p < 2. We will show that this creates
a contradiction, since the lower bound will exceed the upper bound proved in
corollary 1.

Proof. Assume that the assertion of theorem 4 is true. Using its notation, there
are constants K; and K, such that for every 0 < ¢ < 1/2 there is a random
variable Y; such that E(Y;|X) = 2} and

Ky 1
Dy (Kqt, ) > Coi(Kqt,6) > Co(K1t,6,Yy) > 722 log =, (7)

where the first inequality follows from (6). By corollary 3, for every ¢ > 0
and every 0 < ¢t < 1/2, DZ%/2(5,5) > D.1(2¢,0). Fix 0 < ¢t < 1/2 and select
e = K1t/2. By (7),

D,

Z1/2

K 1
(K1t/2,0) > D1 (Kqt,0) > t—;logg.
Renaming the variables it follows that there are absolute constants K and K*
such that for every € > 0,

. K. 1
Dzi/z(K €,0) > 5_210g 5 (8)
On the other hand, by corollary 1, if G is a class such that log N(s, G, Ly(un)) =
O(e7P) for p < 2 for every empirical measure i, then for any h & nup(G, p
there is a constant C'(h, G) such that for every 0 < £, < 1,

c 1
Dp(g,6) < pREny log 5

This creates an impossible situation, since by construction, for every 0 < ¢ < 1,
2} & nup(G, ). | |

5 Conclusion

We have shown that a previously presented lower bound on the sample com-
plexity of agnostically learning nonconvex classes of functions F' with squared
loss is false. We have also presented an improved upper bound on that sample
complexity in terms of the geometry of F' and nup(F'). The interesting thing
about the upper bound is that it is intrinsically nonuniform — functions closer
to nup(F, p) are harder to learn.
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