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Abstract

This paper derives a general expression for the mean square error in estimating

the fundamental frequency of a multiharmonic signal from a �nite sequence of noisy

measurements� The distinguishing feature of this expression is that it is applicable

at values of signal�to�noise�ratio �SNR� within the threshold region� in contrast to

earlier expressions �the Cramer Rao bounds� that are valid only at high SNR�s�

Theoretical performance curves are thereby calculated �mean square error versus

SNR� that establish the existence of a threshold e�ect� Until now� the existence of

a threshold e�ect was demonstrable only by simulation�

Examples are given comparing various multiharmonic estimation scenarios to the

single tone case under comparable conditions� The theoretical performance curves

in these examples are corroborated by Monte�Carlo simulation�



� Introduction

The problem of estimating the frequency of a sine wave in noise is an old one�

and many di�erent solutions have been presented� The natural generalization of

this problem whereby a harmonic signal is corrupted by noise and its fundamen�

tal frequency is estimated has not been considered to such an extent� Recently the

maximum likelihood estimator �MLE� for this problem was derived in �	
 and its per�

formance in the high signal�to�noise�ratio �SNR� region analysed� Like the problem

of estimating the frequency of a single tone� this multiharmonic �MH� estimation

problem �as we will refer to it� exhibits a threshold e�ect� This manifests itself in a

sudden degradation of performance as the SNR is lowered� We shall see that above

this threshold point� the MH MLE attains a performance equal to the Cramer�Rao

�CR� bound� It is the purpose of this paper to ascertain the performance at and

below the threshold point�

Further motivation for a detailed analysis of the behaviour below the threshold

point �and not just a determination of the point� comes from the observed successful

application of a tracking estimator for sinusoidal signals based on Hidden Markov

Models �see ��
�� These estimators have been shown to work in remarkably low sig�

nal to noise ratio conditions� and in fact the MLE component of them is operating

well below threshold� We aim eventually to extend the ML�HMM tandem estima�

tor structure to the MH case� In order to be able to mathematically analyse the

performance of the hybrid tracking estimator� it is necessary to have a good under�

standing of the behaviour of the MLE below threshold� in addition to the location

of the threshold point�

One of the new features seen in operating the MH MLE below threshold is

the phenomenon of rational harmonic locking� The e�ect has been observed in

alternative MH estimators based on Coupled Phase�Locked Loops �see �

�� We

provide a complete analysis of this e�ect for the MH MLE� We will also consider the

e�ect of assuming there are more harmonics in the signal than there actually are�

An analysis of the threshold e�ect in single tone maximum likelihood frequency

estimation has been carried out by Rife and Boorstyn in ��
� Their key idea was



to recognise that threshold is associated with an increasingly large probability of

certain well�de�ned �outlier� events as the SNR is lowered� These outlier events

correspond to the MLE procedure yielding estimates well away from� as opposed to

in the vicinity of� the true frequency� The location of the threshold point may be

determined theoretically �via performance curves� upon calculation of the outlier

probabilities�

The purpose of this paper is to extend the analysis of Rife and Boorstyn to the

multiharmonic case �with m harmonics present�� The analysis follows the broad

direction of Rife and Boorstyn� but is considerably more complex� The main reason

for the extra di�culty is the possibility of rational harmonic locking �to be later

precisely de�ned�� The main result of the paper is contained in ����� a general

expression for the mean square error� applicable at SNR�s within the threshold region�

in estimating the fundamental frequency of a multiharmonic signal from a �nite

number of measurements� The various parameters in ���� are de�ned in the body

of the paper� thus ���� represents a complete determination of the performance of

the MH�MLE� Some example calculations and a comparison with simulation results

are presented in Section ��

In the next section� by way of an introduction to outlier analysis of the multi�

harmonic MLE� the corresponding single tone analysis of ��
 is brie�y described�

� Rife and Boorstyn outlier analysis � single tone

MLE threshold

We consider the following underlying real signal

s�t� � b� cos ���t� ��� �	�

along with its quadrature counterpart

�s�t� � b� sin ���t� ��� � ���



The parameters b�� �� and �� are assumed constant but unknown� Suppose that a

set of N discrete noisy measurements are taken at intervals of T seconds beginning

at time t � ��

Xn � s�nT � � w�nT � �
a�

Yn � �s�nT � � �w�nT � �
b�

�where � � n � N �	�� The sequence w de�nes a zero�mean white� gaussian noise
process of variance ��� The sequence �w is suitably de�ned in terms of the Hilbert

Transform of w such that �w is also a zero�mean white� gaussian noise process of

variance ��� As shown in ��
 �see the discussion after lemma 	 in ��
� if the analytic

signal Zn � Sn � jH�Sn� �H��� the Hilbert transform operator� is downsampled

by a factor of �� Zn will be white as long as Sn is white� Such downsampling is

permissible since one only needs to sample a complex analytic signal of single sided

bandwidth W at a rate W �rather than �W � in order to avoid aliasing� This point

is discussed in more detail in ��
� We will ignore practical di�culties in generating

the analytic signal� as they only arise when one has a single �xed block of data� if

there is a continuous data stream arriving� then formation of the analytic signal is

straightforward� Thus we can now assume we are given the complex valued time

series Zn � Xn � jYn�

Given N noisy measurements of the complex tone Xn � jYn� the ML estimates

of the frequency �� �assuming unknown phase� is given by

��
�
� arg maxjA���j ���

where

A���
�
�
	

N

N��X
n��

�Xn � jYn� exp ��nj�T � � ���

Note that A��� is just the discrete Fourier transform of theN samples of the complex

tone� The formula for the ML frequency estimate holds whether the amplitude b� is

known or not�

A variety of means may be employed to determine the ML estimate of the fre�



quency ��� In principle� it may be calculated to any desired degree of accuracy� the

only constraints being those of a practical nature� computation time� wordlength

etc� Rife and Boorstyn describe how such an algorithm is composed of two stages�

a coarse search followed by a �ne search� The coarse search is generally performed

by passing the measurement data through an FFT �fast Fourier transform� routine�

The coarse frequency estimate is then taken to be the frequency corresponding to

the maximum of the magnitude of the output data� The �ne search then uses the

coarse frequency estimate as its initial condition�

The function jA���j normally has a number of local maxima in addition to the
global maximum corresponding to the ML frequency estimate ��� For high SNR�

this global maximum occurs very near to the true frequency ��� However� as the

measurement noise intensity increases �i�e�� as the SNR decreases� the outlying max�

ima may increase in amplitude� with the result that the probability that the global

maximum lies a �long way� from the true frequency increases rapidly� Such large

�though rare� errors in the frequency estimate cause the frequency error variance to

be much greater than the CR bound� in the threshold region�

The analysis of Rife and Boorstyn presented in ��
 sought a means of computing

the frequency error variance below threshold� This essentially reduces to the prob�

lem of determining the probability of an outlier� that is� a frequency estimate far

removed from the true frequency� It is at the stage of the coarse search that outliers

occur� since the �ne search serves merely to provide a more accurate determina�

tion of the ML estimate in the immediate neighbourhood of the coarse frequency

estimate� In other words� a grossly inaccurate frequency estimate will only hap�

pen when the coarse search fails� Hence consideration of a coarse search algorithm

alone is su�cient for the purpose of computing the probability of an outlier and

subsequently for computing the below threshold performance�

In the outlier analysis of Rife and Boorstyn� the coarse search is performed by

evaluating jA���j at the set of frequencies

��k �
��k

NT
� � � k � N � 	 ���



with the assumption� that �� � ��T �i�e�� the true frequency is half the sampling

frequency �s � ���T �� This is easily implemented via an FFT routine� in that case�

N is always chosen to be a power of ��

Given the assumption concerning the true frequency� the greatest element of the

set fjA���k�j � � � k � N � 	g should be jA���N���j� However� the presence of noise
will ensure that sometimes jA���l�j� for some l �� N��� will be the greatest� In this

case� the coarse frequency estimate� ��l� is called an outlier�

Hence we may identify two mutually exclusive events� one being the event that�

given the measurement sequence� an outlier occurs in the coarse search� and the

other being the event that no outlier occurs� The frequency error variance may then

be expressed

E��� � ���
� � �	� q�E���� � ���

�jno outlier
 � qE���� � ���
�joutlier
 ���

where �� is the result of a �ne search performed subsequent to the coarse search

described above �and initialised by the coarse frequency estimate �k�� and q is the

probability of the occurrence of an outlier� For the case where no outlier occurs�

E���� � ����jno outlier
 is approximated by the CR bound given on the frequency
estimation error variance for the single tone problem given �from ��
� by

E���� � ���
�jno outlier
 � 	���

N�N� � 	�T �b��
� ���

Where an outlier occurs� �� is assumed to be uniformly distributed on the interval

��� �s
� so that

E���� � ���
�joutlier
 � ��


T �
� ���

Rife and Boorstyn derive analytical expressions for q by observing that jA���k�j�

�This apparently restrictive assumption is made because the MLE is unbiased �i�e�� E������� �
	� only if �� � �s�� �see 
�� �� Large bias errors are introduced into the frequency estimate if ��
is close to 	 or �s� The outlier analysis is concerned only with errors caused by outliers� not bias�
hence the choice of ��� Of course in practice� it is not possible to choose the sampling frequency
�s so that �� � �s�� �if we could there would be no need to estimate ���� Provided the sampling
frequency is chosen so that bias errors are small� the analysis with �� � �s�� is strongly indicative
of the resulting performance� as demonstrated by simulation�



for � � k � N � 	� de�nes a set of independent random variables that are Rayleigh
distributed for k �� N�� and Rician otherwise� They were able to calculate theoret�

ical performance curves that agree well with simulation results and clearly exhibit

the existence of a threshold e�ect� In the next section we extend this basic approach

to the multiharmonic case�

� Outlier analysis of multiharmonic MLE thresh�

old

This section presents new results relating to the multiharmonic MLE� The major

result is the derivation of an approximate expression for the frequency estimation

error �similar in form to ���� that is applicable at SNR�s above and below the

threshold point� Also� the novel notion of rational harmonic outliers is introduced

and explored in depth� These are entities unique to the multiharmonic case which

greatly complicate the internal analysis�

To make the analysis tractable� we occasionally approximate or give bounds on

the quantity of interest� The reasoning behind the approximations is given were

necessary� The �nal justi�cation for the approximations comes from the simulation

results in Section � which corroborate the theoretically derived results�

We consider the following underlying real signal comprising a known number of

harmonics� m

s�t� �
mX
k��

bk cos �k��t� �k� �	��

with Hilbert Transform

�s�t� �
mX
k��

bk sin �k��t� �k� � �		�

The parameters b�� � � � � bm� ��� ��� � � � � �m� are assumed constant but unknown� Sup�

pose that a set of N discrete noisy measurements are taken at intervals of T seconds



beginning at time zero�

Xn � s�t� � nT � � w�t� � nT � �	�a�

Yn � �s�t� � nT � � �w�t� � nT � �	�b�

�where � � n � N �	�� The sequence w de�nes a zero�mean white� gaussian noise
process of variance ��� By downsampling �via the same argument as presented in

section �� the sequence �w is suitably de�ned in terms of the Hilbert Transform of w

such that w � j �w is a complex zero�mean white� gaussian noise process of variance

���

The ML estimate� � �� of �� is given� for the case where the amplitudes and

phases are unknown� by

�� � arg max
�

L��� �	
�

where

L���
�
�

mX
l��

jA�l��j� � �	��

Again� a numerical procedure is required to generate the ML estimates� given

the measurement data� As before� it takes the form of a coarse search� followed by

a �ne search� Just as in the single tone case� the quantity to be maximised� L����

has a number of local maxima in addition to the global maximum corresponding to

the ML frequency estimate� ��� Some of these local maxima are associated with the

presence of harmonics in the measured signal� Of course� there is no analogue of this

class of maxima in the single tone case� the presence of harmonics is the cause of

much of the increase in di�culty associated with analyzing the threshold e�ect via

outlier theory for the multiharmonic problem over that for the single tone problem�

There are� in fact� two classes of outliers in the multiharmonic case� The �rst

is familiar to us from the single tone problem and comprises those outliers due

solely to the measurement noise� The second is unique to the multiharmonic case�

quite distinct in character from the �rst and potentially less damaging in nature�

�Equation �
�� actually yields an approximate ML multiharmonic frequency estimator� How�
ever� asymptotically �as N increases� it is equivalent to the true ML estimator�



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

3500

4000

Frequency (Hz)

SNR = 10dB

Figure 	� Typical jA���j� for SNR � 	�dB� �� � ���

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Frequency (Hz)

SNR = 10dB

Figure �� L��� corresponding to Figure 	



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Frequency (Hz)

SNR = -6dB

Figure 
� Typical jA���j� for SNR � ��dB �same signal as
Figure 	�

for reasons that will be clear shortly� It comprises those outliers corresponding to

global maxima of L��� occurring close to a frequency that is a rational harmonic

of the fundamental frequency� ��� �We say that � is a rational harmonic of �� if

i� � j��� where i and j are mutually prime positive integers� In other words� the

ith harmonic of � occurs at the same frequency as the jth harmonic of ��� If the

multiharmonic signal with fundamental frequency �� has a signi�cant fraction of its

energy in the jth harmonic� then incorrect identi�cation of � as the fundamental

frequency is a distinct possibility��

This type of outlier arises in a fashion exempli�ed by Figures 	��� Figure 	 is a

plot of the squared magnitude� jA���j�� of the DFT �discrete Fourier transform� of a
typical observed signal with two harmonics with fundamental frequency �� � ���Hz�

for an SNR of 	�dB� Figure � shows a graph of the corresponding likelihood function�

The SNR is su�ciently high to ensure that no outlier of any kind occurs� Figure 


is for the same deterministic signal as Figure 	 except that the e�ective SNR is now

lowered to ��dB� In fact� it is su�ciently low that L��� � jA���j�� jA����j� attains
its global maximum at � � ����� as shown in Figure ��

While clearly undesirable from the point of view of any practical multiharmonic
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MLE� the outliers local to a rational harmonic frequency nevertheless have a clear

relationship to the true frequency �i�e�� via some rational multiplier�� It would

thus seem feasible to include an additional level of algorithm capable of recognizing

rational harmonic outliers when they occur along with determining their relationship

to the true frequency� In the absence of such an algorithm� the rational harmonic

outliers are just as detrimental in their e�ect upon the performance of a practical

MLE as those due to the measurement noise alone� However� we stress that the

potential exists for their e�ect to be removed� and consequently that measures of

performance of the MLE that include the detrimental e�ect of rational harmonic

outliers are� in a signi�cant sense� inappropriate�

As we discussed in Section �� outliers are associated with the coarse search stage

of the maximization procedure� In the analysis to follow� a particular coarse search

algorithm that computes L��� at a �nite set of frequencies �to be termed �bin�

frequencies� after the FFT nomenclature� will be considered� As in the single tone

case� a �nite number of noise outliers then need only be considered� as opposed to

a continuum of values� The number of rational harmonic outliers is also �nite�

For parity with the single tone treatment� we assume that the coarse frequency

estimate takes one of N values� To ensure this� mN measurements must be taken�



The likelihood function� L���� is computed at the bin frequencies

��k �
k��

mNT
� � � k � N � 	 � �	��

We assume� just as for the single tone case� that the true frequency� ��� coincides

with one of the bin frequencies� say ��r �see the remark below�� As in the single

tone case� the coarse frequency estimate is the bin frequency� ��l� associated with the

greatest element of the set

L �
� fL���k� � � � k � N � 	g � �	��

At least in a high SNR situation� this will usually be the true frequency ��l � ��r � ���

However� the presence of noise will ensure that on some occasions l �� r� in which

case� an outlier� due either to noise or to a rational harmonic� has occurred�

Remark� The choice made for �� is not critically important and is prompted by

a desire for consistency with the single tone treatment where an argument based

on the bias of the MLE was given� To the best of our knowledge� there has been

no corresponding analysis of the multiharmonic MLE� One might conjecture on the

basis of the single tone result� that such an analysis would specify the sampling

frequency required for the multiharmonic MLE to be unbiased� and that this sam�

pling frequency is such that �� coincides with a bin frequency� If this were the case�

the same supporting arguments given in relation to the choice of �� for the single

tone outlier analysis could be given here� If not �and if �� did not coincide with a

bin frequency�� we could simply interpret a coarse frequency estimate given by ��r

�where ��r is the bin frequency closest to ��� to be the coarse estimate corresponding

to the true frequency ���

Similarly to the single tone analysis� the frequency estimation error variance may

be expressed in terms of the following mutually exclusive and collectively exhaustive

events� the non�occurrence of an outlier� the occurrence of a rational harmonic

outlier� and the occurrence of a noise outlier� In other words� the set of bin frequency



indices denoted by Z� where

Z �
� f�� 	� � � � � N � 	g� �	��

may be decomposed into the union of three disjoint sets as follows�

Z � S � R �N � �	��

The set S is de�ned by S �
� frg� where r is the bin frequency index corresponding

to the true frequency ��� The set R is de�ned to contain those bin frequency indices
corresponding to rational harmonic frequencies� and N contains the remainder� i�e��

those indices corresponding to potential noise outliers�

We need to be more precise concerning the nature of the set R� since it is clear
that not all rational harmonic frequencies of �� coincide with bin frequencies� As

described earlier� a rational harmonic of �� is a frequency� �rh� � related to �� via

�rh� � ���� � � i�j� where i and j are mutually prime positive integers� with i � m�

j � m� and i �� j� �the case i � j obviously does not correspond to an outlier��

The quantity � is termed the rational multiplier of �rh� � The set of possible rational

multipliers for m harmonics is denoted ��m� and is formally de�ned by

��m� �
� f� � � � i

j
� 	 � i� j � m� i �� j� i� j coprimeg �	��

�for example� ���� � f�
� �

�
��

�
� �

�
��

�
� �

�
��

�
� � �� 
� �g�� The number of elements in ��m� is

given by the Lemma below� �The symbol  denotes �cardinality of���

Lemma ��� Let ��m� be de�ned as in ����� Then

 ��m� � ��m�
�
� �

mX
i��

	�i� ����

where 	�i� is Euler�s totient function �see ��	 � which denotes the number of integers

less than i that are mutually prime to i�

proof� See Appendix A�



A table of ��m� is given below

m 	 � 
 � � � � � � 	� 		 	� 	
 	� 	�

��m� � � � 	� 	� �� 
� �� �� �� �� �� 		� 	�� 	��

As we mentioned before� the rational harmonics do not necessarily all coincide

with the bin frequencies ��k� �In other words� there may exist at least one � � ��m�

such that ��� �� ��k� for all integers k such that 	 � k � N �� However� each

rational harmonic frequency will lie in a frequency interval of width ���mNT centred

at a particular bin frequency� Such an interval is termed� perhaps obviously� the

frequency bin corresponding to that particular bin frequency� Thus if the outcome

of the coarse search is a bin frequency whose associated bin contains a rational

harmonic frequency� then a rational harmonic outlier is said to have occurred� R
is then de�ned to be the set of bin frequency indices whose associated bins contain

rational harmonic frequencies� and so� the number of elements inR is given by ��m��
provided that there is no more than one rational harmonic frequency per frequency

bin� This can be ensured by choosing N su�ciently large that r��m�m � 	�
 
 	�
where r � ��mNT��� is the index of ��� by an earlier de�nition� In this case� there

exists a one�to�one relation between the elements of ��m� and R� e�g�� �rh� lies in the
frequency bin corresponding to ��j� j � R�
Having said this� we remark that a necessary and su�cient condition for all the

rational harmonic frequencies to coincide with bin frequencies is that the subhar


monic frequencies �i�e�� those rational harmonic frequencies given by �rh� � ����

� � �sub �
� f� � � � 	�k � � � k � mg� all coincide with bin frequencies� That

the condition is su�cient is established straightforwardly as follows� Firstly observe

�from the de�nition of ��m� in �	��� that if � � ��m�� then � � i�sub for some integer

i� 	 � i � m�� and for some �sub � �sub� Since by assumption all the subharmonic
frequencies coincide with bin frequencies� �i�e�� for each �sub � �sub there exists an
integer k� 	 � k � N such that �sub�� � ��k� then the rational harmonic frequency



�rh� can be written in the form

�rh� � ��� � i��sub���

� i��k � ���i�k� ��	�

where i and �sub are as earlier de�ned� and ���i�k� is a bin frequency� The necessity of

the condition is trivial to establish� since �sub � ��m�� We also remark that it might

well be easy� in practice� to satisfy the above condition by suitable choice of N and

r� In this case� all the rational harmonic frequencies coincide with bin frequencies�

with the result that R is given by the set fk � k � �r � � � ��m�g�
We return now to the discussion of the mutually exclusive outlier events� In

order to de�ne these precisely� let

Dk
�
� L���k� � � � k � N � 	 � ����

The events are then de�ned as follows�

De�nition ��� �� Let A denote the event that no outlier occurs�

A � arg max
k

Dk � S ��
�

�� Let Bj denote the event that an outlier at the bin frequency ��j� j � R� corre


sponding to the rational harmonic frequency �rh� � � � ��m� occurs�

Bj � arg max
k

Dk � j � R ����


� Let C denote the event that a noise outlier occurs

C � arg max
k

Dk � N ����

The overall mean square frequency estimation error �MSE� is then given by the



weighted sum

E�������� � Pr�A�E���������jA
�
X
j�R

Pr�Bj�E���������jBj
�Pr�C�E���������jC

����

where

Pr�A� �
X
j�R

Pr�Bj� � Pr�C� � 	 � ����

As before� �� is the outcome of a �ne search� the details of which are not im�

portant for this discussion� We should remark that ���� is not necessarily a fully

adequate measure of error to the extent that it accounts for the possible occurrence

of rational harmonic outliers� As we remarked earlier� such outliers are not neces�

sarily damaging if their relationship to the true frequency �as determined by the

associated rational multipliers� is known� One might envisage that their contribu�

tion to the error could be removed if additional means were available to determine

that relationship� However� in the absence of such an extra level of algorithm� ����

stands as an accurate �if not in a practical sense adequate� representation of the

error associated with the ML frequency estimates�

The task now is to calculate the various probabilities Pr�A�� Pr�Bj� and Pr�C�

appearing in ����� This proves to be singularly di�cult �as opposed to the relatively

straightforward nature of the single tone analysis�� in most cases� only bounds on

approximations to the probabilities are calculated�

��� Probability of an outlier due to noise alone � Pr�C�

The quantities Dk� k � Z� due to the presence of measurement noise� are really
random variables� Let us consider Dk for values of k in the set N � These are simply
the values of the likelihood function L��� at each of those bin frequencies that do not

correspond to a rational harmonic frequency� or the true frequency� The cardinality

of N is then easily seen to be N � ��m�� 	�
The random variable Dr �where r is the bin frequency index of the true funda�

mental frequency ��� is the value of L��� at ��� An outlier due to noise alone occurs

if arg maxkDk � N �this is merely the de�nition of event C�� We want to evaluate



the probability of this happening� namely Pr�C�� Let Xk�x� denote the event that

Dk � x and qnoise be an estimate of the desired probability� de�ned by

	 � qnoise � Prf �
k�N

Xk�Dr�g�

The quantity qnoise is actually a conservative estimate of the probability Pr�C�� in

the sense that qnoise 
 Pr�C�� This is because the event that Dj 
 Dk 
 Dr� for

some k � N and some j �� N � is possible� �if this were to happen� ��j � a rational
harmonic� would be the outlier� not ��k�� though highly improbable� at least for

SNR�s moderately far below the threshold point� This is supported by the results

of example calculations� which indicate that for these SNR�s� qnoise is generally a

very small quantity� e�g� no greater than something of the order of 	��	� We would

therefore expect the probability of the event described above to be something roughly

like the square of that number � a negligibly small amount�

Whether the conservative nature of the estimate qnoise of Pr�C� leads to the later

overestimation of E��� � ���� �as de�ned in ����� is di�cult to say� This is because

the interaction between the estimates of the various probabilities �some of which

are yet to be de�ned� appearing on the RHS of ���� is not understood� However�

simulation results in a later section suggest the estimate is not overly conservative�

�Refer to the remark in Section � below��

Conditioning on Dr�

	� qnoise �
Z
x
Prf �

k�N

Xk�x�gfDr�x�dx ����

where fDr�x� is the probability density function �p�d�f�� of Dr� �The fact that ��k

and ��r are not harmonically related is crucial for obtaining the second expression

for 	� qnoise� it implies that Dk assumes a value based purely on the noise�� Now

Prf �
k�N

Xk�x�g � PrfG � xg

where

G
�
� max

k�N
Dk� ����



A more convenient way of writing this is

qnoise �
Z
x
PrfG 
 xgfDr�x�dx

�
Z
x
FG�x�fDr�x�dx �
��

where FG�x� � 	 � FG�x� and FG�x� is the cumulative distribution function of G�

The di�culty now encountered is that �in contrast to the single tone case� the

Dk� k � N � are not all independent� and so the determination of FG is not trivial�
�The non�independence of Dk� k � N � can be seen by writing Si�k � jA�i�k�j� �
jA��i�k�j�� Thus Dk �

Pm
i�� Si�k� Setting m � 
� D
 and D� can both be seen to

depend on S���

In Appendix B� the following lemma is proven�

Lemma ��� Let Dk be de�ned by ����� G by ����� and ��m� by ����� Then

�FDk
�x�
��m�N��m
� � FG�x� � �FDk

�x�
N���m���

�where FDk
is the cumulative distribution function of Dk� k � N � or

	� �FDk
�x�
N���m��� � FG�x� � 	 � �FDk

�x�
��m�N��m
�

where !�m�N� � �N�� � �m and �n is the number of primes not exceeding n�

proof� See Appendix B�

Using this lemma and �
�� we can write

Z �

x��

�
	� �FDk

�x�
��m�N��m
�
�
fDr�x�dx � qnoise �Z �

x��

�
	� �FDk

�x�
N���m���
�
fDr�x�dx� �
	�

The functions FDk
and fDr are derived in Appendix C and given by ���� and ����

respectively� Combining these with �
	�� there holds

"L�!�m�N��m� 	� � qnoise � "L�N � ��m�� 	� �
��



where

"L��� �
Z �

x��

�
	 �

�

�m��x�

#�m�

����
x

�

�m��
�

� exp ������ x�
 Im�����
p
�x�dx�

�

�


��� �� is the incomplete Gamma function de�ned in ����� Ik is the modi�ed Bessel
function of the �rst kind� of order k� and

� �
N

���
�
�a�

� �
mX
i��

b�i � �
�b�

An interesting feature of the above expressions is the appearance of the parameter

� �
Pm

i�� b
�
i � as opposed to the e�ective signal power

$ �
mX
i��

i�b�i �
��

that is so important in the expressions for the Cramer�Rao bounds derived in ��


and �	
 and given in ����� A possible insight as to why this is so is given as follows�

At high SNR�s� the peaks of jA���j corresponding to the harmonic and fundamental
frequencies are tightly synchronised or coherent� in the sense that the frequencies

at these peaks� to a very high order of approximation� obey a strict harmonic re�

lationship� This is re�ected by the form of the parameter of importance at these

high SNR�s� namely $� which is a sum of terms weighted by corresponding squared

harmonic indices� As the SNR is lowered� the coherence� or synchronism� of the

peaks is more or less maintained until the threshold point is reached �as evidenced

by the agreement of the MLE performance with the CR bounds above threshold��

Below the threshold point� coherence is� roughly speaking� lost� The parameters of

importance in this region do not� then� include $� but those associated with out�

lier probabilities� one of which is
P

k b
�
k� The multiharmonic frequency estimation

problem is examined further in ��
 and �

�



��� Probability of a rational harmonic outlier � Pr�Bj�� j �

R

As de�ned previously� �rh� � for some � � ��m� denotes a frequency that is a rational

harmonic of ��� with rational multiplier �� i�e�� �rh� � ���� As already mentioned�

each rational harmonic frequency is associated with a particular bin frequency� In the

following analysis� we will ignore the fact that not all rational harmonic frequencies

coincide exactly with bin centre frequencies� We assume either that N is chosen

so that most of the rational harmonic frequencies of importance �i�e�� those with

rational multipliers � � 	�k� 	 � k � m � the so�called subharmonics� coincide with

bin frequencies� or that N is su�ciently large to ensure that the distance between

a rational harmonic frequency and its nearest bin frequency is essentially negligible

�in the sense that the probabilities of coarse searches resulting in the two frequencies

are virtually the same��

Once again� we seek an estimate of a probability� on this occasion� the proba�

bility that the outcome of the coarse search is the rational harmonic frequency �rh� �

More precisely� we seek an estimate of Pr�Bj�� where Bj denotes the event that

arg maxkDk � j� j � R� and j is the frequency index corresponding to ��
It is expected �from empirical evidence� that rational harmonic outliers are more

probable than noise outliers at intermediate noise levels� Therefore we make the

assumption that if Dj 
 Dr� for some particular j � R� then it is very unlikely that
Dk 
 Dj � k � N � In other words� if the value of L��� at ��j �Dj� is greater than

that at the true frequency �Dr�� then it is almost certain that no� greater� noise

outlier will occur�

This does not account for the possibility of there being another highly likely

rational harmonic outlier� We shall discuss this point further in Subsection 
�
 and

an example for m � 
 is given in Section ��

Therefore� as an estimate of the probability of an outlier corresponding to the

rational harmonic frequency �rh� � given that no other outlier has occurred� choose

q�
�
� Pr

	
mX
i��

jA�i�rh� �j� 

mX
i��

jA�i���j�



� �
��



Consider the RHS of the expression in �
��� Note that the quantity in braces

can be rewritten X
j�H�

jA�j���j� 

X
k�Zm

jA�k���j� �
��

where

H�
�
� f�� ��� � � � �m�g� �
��

and

Zm
�
� f	� � � � �mg � �
��

One can interpret an element of the set H� as being the rational multiplier �with

respect to ��� associated with a particular harmonic of an m harmonic signal with

fundamental frequency �rh� � The expression �
�� can be further simpli�ed with the

aid of the following de�nitions

H i
�

�
� H� 	 Zm ����

Hs
�

�
� Zm nH i

� ��	�

Hr
�

�
� H� n Zm � ����

The set H i
� corresponds to those harmonics of �

rh
� that are also harmonics of ���

Hs
� to those harmonics of �� that are not harmonics of �

rh
� and �nally Hr

� to those

harmonics of �rh� that are not harmonics of ��� The expression �
�� may then be

written

q� � Pr

��


X
j�H�

jA�j���j� 

X
k�Zm

jA�k��j�
��
�

� Pr

���
�

X
j�Hr

�

jA�j���j� �
X
j�Hi

�

jA�j���j� 

X
k�Hs

�

jA�k���j� �
X
k�Hi

�

jA�k���j�
���
��

� Pr

��


X
j�Hr

�

jA�j���j� 

X
k�Hs

�

jA�k���j�
��
� � ��
�

For the sake of convenience� de�ne dj
�
� jA�j���j�� Then� observe that� since Hr

� 	
Zm � 
� the term P

j�Hr
�
dj contains only noise terms� and since Hs

� � Zm� the

term
P

k�Hs
�
dk contains only signal harmonic frequencies� Furthermore the fact that



Hr
� 	Hs

� � 
 means that the two terms are independent�
Thus we can use the p�d�f� of Dr and the c�d�f� of Dk for k � r and k �� r �as

derived in Appendix C� to calculate the distributions of

U r
�

�
�
X
j�Hr

�

dj ����

and

U s
�

�
�

X
k�Hs

�

dk� ����

Since U r
� is made up of a sum of lr

�
�  Hr

� terms of the form jA��k�j�� where all
the frequencies �k do not correspond to any signal harmonics� we can see from ����

that
�
NUr

�

��

�
is distributed as �� with �lr degrees of freedom� Thus

FUr
�
�x� �

	

#�lr�

�lr� �x� ����

�with � � N
���
and 
 is as de�ned in ������

Similarly we can see that U s
� is a sum of ls

�
�  Hs

� terms jA��k�j� where all the
frequencies �k correspond to some signal harmonic� Thus from ����� we can see that�
NUs

�

��

�
is distributed as non�central �� with �ls degrees of freedom and non�centrality

parameter �� �
P

k�Hs
�
b�k� Hence the p�d�f� of U

s
� is

fUs
�
�x� � �

�
x

��

� ls��
�

exp ������ � x�
 Ils�����
q
��x� ����

where again � � N
��� and Ik is the modi�ed Bessel function of the �rst kind� of order

k�

Collecting ��
�� ���� and the analogue of �
�� and using the fact that

FUr
�
�x� � 	 � FUr

�
�x� �

#�lr� �x�

#�lr�



�where #��� �� is the complementary incomplete gamma function�

#�a� x� �
Z �

t�x
e�tta��dt � #�a�� 
�a� x��

and 
��� �� is as in ������ we obtain

q� �
Z �

x��

#�lr� �x�

#�lr�
�

�
x

��

� ls��
�

exp ������ � x�
 Ils�����
q
��x�dx ����

where � � N
��� � lr �  H

r
� � ls �  H

s
�� �� �

P
k�Hs

�
b�k�

��� Calculation of Pr�A�

Having calculated estimates of Pr�Bj� and Pr�C�� it remains to calculate an estimate

of Pr�A�� From ���� there holds

Pr�A� � 	� Pr�B�� Pr�C� ����

where

Pr�B�
�
�
X
j�R

Pr�Bj� ����

is the probability of any rational harmonic outlier occurring�

The value of q� is the probability of the rational harmonic outlier �� given that no

other rational harmonic outlier has occurred� Recall that it has been assumed that

the probability of a noise outlier is negligible at the intermediate SNR�s of interest�

The total rational harmonic outlier probability may be written therefore as

Pr�B� �
X

����m�

q� Pr�Dj 
 max
i�Rnfjg

Di� ��	�

where j is the index corresponding to ���� Dk is de�ned in ���� and r is the index

of the frequency bin corresponding to the true frequency� It is generally di�cult to

get an estimate of

Pr�Dj 
 max
i�Rnfjg

Di�



for a given number of harmonics� m� however we give a speci�c example �for m � 
�

where it is possible in Section ��

An easily derived upper bound on Pr�B� is given simply by

X
����m�

q� � ����

The di�culty is that the events whose probabilities are given by q� are not necessarily

independent� so that ���� will be greater than Pr�B�� Another upper bound on

Pr�B� may be straightforwardly derived using the concept of associated random

variables �as de�ned in Appendix B� and is stated below without proof�

Pr�B� � 	� Y
����m�

�	� q��
�
� q��m� � ��
�

It is easy to see that this estimate is guaranteed to be less than unity� however it

cannot in general be shown that the same guarantee holds for ����� Hence� using

q��m� as an estimate of Pr�B� in ����� there holds

Pr�A� � Y
����m�

�	� q��� qnoise � ����

� Evaluation of Mean Square Frequency Estima�

tion Error

Having computed estimates of the various probabilities required for evaluation of the

overall MSE in ����� the remaining task is to determine the individual contributions

to the MSE by each of the mutually exclusive events� A� Bj � j � R and C� This

is particularly straightforward for the case where no outlier of any description has

occurred �i�e�� event A�� The contribution to the total MSE� E��� � ��jA�� is then
simply the Cramer�Rao bound on the frequency estimation error variance for the

multiharmonic problem given by �see �	
�

��e �linear�
�
� E��� � ��jA�� � 	���

N�N� � 	�T �
Pm

k�� k
�b�k

� ����



�For high SNR�s� this contribution completely dominates the expression for the

overall MSE� i�e�� Pr�A� � 	� Pr�B� � � and Pr�C� � ���
The contribution due to a rational harmonic outlier at �rh� �with associated bin

frequency index j � R� is approximated as follows�

��e ���
�
� E���� � ���

�jBj
 � ����	 � ��� � ����

The above expression is an approximation� since the rational harmonic outlier will

not always fall exactly on the frequency ���� but in a small neighbourhood about

it� However� the distance j�� � ���j will be much greater than the size of the small
random �uctuations about ���� and hence will be the dominant contributor to the

MSE due to the rational harmonic outlier�

The �nal contribution to ���� is that due to the occurrence of an outlier caused

by the measurement noise alone� �i�e�� event C�� Since the measurement noise is

assumed white� it is equally likely that such an outlier can fall at any point within the

interval ��� �s��m
� In other words� we assume that the noise outliers are uniformly

distributed on that interval� ignoring the presence therein of a �nite number of

rational harmonic frequencies� The MSE contribution is then easily calculated as

follows�

��e �noise�
�
� E��� � ��jC��

�
�m

�s

Z �s��m���

���
x�dx

�
��s
	�m�

� ���s
�m

� ���� ����

The expression in ���� may now be fully evaluated to yield

��e
�
� E��� � ���

� �
�
� Y
����m�

�	 � q��� qnoise

�
� 	���

N�N� � 	�T �
Pm

k�� k
�b�k

����
X

����m�

q��	� ���

�qnoise
�

��s
	�m�

� ���s
�m

� ���

�
����



where

"L�!�m�N��m� 	� � qnoise � "L�N � ��m�� 	�� ����

"L��� �
Z �

x��

�
	�

�

�m��x�

#�m�

����
x

�

�m��
�

� exp ������ x�
 Im�����
p
�x�dx� ����


��� �� is the incomplete Gamma function de�ned in ����� Ik is the modi�ed Bessel
function of the �rst kind� of order k� and

� �
N

���
��	a�

� �
mX
i��

b�i � ��	b�

Also� from �����

q� �
Z �

x��

#�lr� �x�

#�lr�
�

�
x

��

� ls��
�

exp ������ � x�
 Ils�����
q
��x�dx� ����

where � � N
���
� lr �  Hr

� � ls �  H
s
�� �� �

P
k�Hs

�
b�k�

Remark� As foreshadowed in Section 
�	� the question as to whether the use of

estimates of the various probabilities in ���� �as shown in ����� leads to the over or

underestimation of ��e is di�cult to answer� It is probably desirable for there to be

an overestimation of ��e since this would give a �factor of safety� with respect to the

threshold point� However� without an understanding of the interaction between the

various estimates involved� we can draw no conclusion about the conservativeness

or otherwise of the estimate of ��e in ����� The Monte Carlo simulations presented

next give some guidance here�

� Calculations and Simulations

In this section some example calculations using the above equations are presented�

and these are compared with Monte�Carlo simulation results� The calculations were

performed with the software package Maple �	�
� An adaptive Newton�Coates

algorithm was used to compute the key integral "L of �

�� a task of some numerical



di�culty because of the very small numbers involved�

In the examples which follow� three cases of interest have been chosen�

�i� Firstly� to aid comparison to previous work ��
� performance curves for the case

of estimating the frequency of a single�tone in noise are generated�

�ii� Secondly� to show how knowledge of the presence of one harmonic component

alters the performance� we examine estimation of the fundamental frequency

of a two�component multiharmonic signal�

�iii� Finally� to test the sensitivity of the multiharmonic frequency estimator to

model inaccuracy� the presence of a third harmonic is falsely assumed when

the signal of interest is truly a two�compnent signal�

In the theoretical calculations and simulations which follow� the true signal power

��	b� is held constant� If the e
ective signal power of �
�� was held constant� the

single�tone and multiharmonic RMSE performance curves would coincide for small

noise levels�

In all cases presented� the assumed sampling frequency is ����Hz� for consistency

with ��
�

��� Root Mean Square Error Performance Curves

The root mean square error curves plotted in Figure �� are calculated from ���� and

demonstrate three cases�

Case �i� with b� � �����

Case �ii� with b� � � and b� � �� and

Case �iii� with b� � �� b� � � and b� � ��

Each signal has the same true power� namely � � ���

For case �i�� the three solid curves plotted relate to whether the initial coarse

search has been conducted over ��� �s
 �curve A�� ��� �s��
 �curve B� and ��� �s�
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Comparison of theoretical values for RMSE versus SNR for Cases (i), ( ii) and (iii).

Figure �� Plot of root mean square frequency estimation
error versus SNR in dB for three di�erent situa�
tions� �i� b � ����� �ii� b � ��� �
� and �iii� b �
��� �� �
� In all cases� N � ���



�curve C�� The main e�ect of these di�erent coarse search regions is to change the

root MSE in the high�noise regions� see ����� In cases �ii� and �iii� the lower bound

on qnoise given by �
�� has been used�

For each curve� the SNRs at threshold are clear� thresholding occurs at �
dB for

�i�� �dB for �ii� and 
dB for �iii��

The main points to note are�

� The presence of an extra harmonic improves the performance in the high SNR
region�

� The performances of the MLE in relation to the two and three harmonic signals
are identical at high SNR� This is simply because the e�ective signal powers

of the signals� as de�ned by $ �
P

k k
�bk� and therefore the CR bound �see

������ are identical� �Recall that the performance of the MLE meets the CR

bound at high SNR��

� The threshold performance is severely degraded �thresholding at least �dB
earlier that the single�tone case��

� When the third harmonic is incorrectly assumed to be present performance is
further degraded� the estimator assuming only two harmonics performs better�

Comparison with Monte�Carlo Simulation Results

Figure � plots the results obtained by generating approximately 
��� realisations

per SNR value of signals �i�� �ii� and �iii� to which the multi�harmonic maximum

likelihood estimator of frequency is then applied� The theoretical curves are also

plotted� using both the lower and upper bounds of �
���

Note the close agreement between the theoretically calculated curves and those

observed by simulation�
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A. Comparison of simulations and theoretical RMSE versus SNR curves for case (ii)
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Case (iii) b = [4 2 0]

B. Comparison of simulations and theoretical RMSE versus SNR curves for case (iii)

Figure �� Plots of root mean square frequency estimation
error versus SNR in dB displaying

% the theoretical performance of the single�
tone case

� � � � � theoretical bounds �both upper and lower�
on the multiharmonic MLE performance
calculated from ���� and subsequent equa�
tions and

x simulation results�

Graph A is case �ii� and graph B case �iii��



��� Outlier Probability Simulations

Comparison of the curves for signals �i� and �ii� in Figure � prompts the following

interesting question� Suppose that �as previously discussed� an additional level

of algorithm was incorporated into the MLE that was designed to detect rational

harmonic outliers and derive accurate frequency estimates in their stead� Would

this tend to equalise the respective threshold points in relation to �i� and �ii�& In

other words� we are asking whether or not rational harmonic outliers are largely

responsible for the higher SNR at threshold of �ii� in comparison with �i��

To compare our theoretically derived probability expressions with simulation

results� we proceeded as follows�

For each e�ective SNR �
�� from �	�dB to 	�dB in increments of 	dB� a number

of realisations �	������� of signal �ii� of length N � �� with fundamental frequency

� � 
��	� were generated� and the likelihood functions� L��� calculated� From the

results of a coarse search of these functions over the Fourier frequencies �k�
�� k �

�� 	� � � � � N � 	� the number of events B �any rational harmonic outlier� and C �an
outlier due to noise alone� were separately noted� These were then used to estimate

Pr�B� and Pr�C�� In order to save computing time� the full maximum likelihood

estimator was not applied�

The resulting probability curves are plotted in Figure ��

In Figure �� the results of a similar procedure are displayed for case �iii�� except

that the number of realisations was 	�������

For this m � 
 case �but the amplitude of the third harmonic is not necessarily

zero�� the set of rational harmonic outlier bins R splits into three disjoint subsets�

R� �
�
	

�
r�
	



r
�
� R� �

�
�



r� �r

�
� R� �

�



�
r� 
r

�

where r is the frequency bin corresponding to the true frequency� so that R �

R� �R� �R�� The probability of an outlier occurring at the bins in Rl �l � 	� � or


� depends only on harmonic l �and the associated noise�only bins��

Due to this splitting of R� we can assume that if j � Rl with l � 	� � or 
 and



-15 -10 -5 0 5 10
10

-6

10
-4

10
-2

10
0

A. Theoretical and Simulated Probability of a Rational Harmonic Outli er    (m=2)

True SNR (dB)

E
rr

or
 P

ro
ba

bi
lit

y

-15 -10 -5 0 5 10
10

-6

10
-4

10
-2

10
0

C. Theoretical and Simulated Probability of Any Outlier                    (m=2)

True SNR (dB)

E
rr

or
 P

ro
ba

bi
lit

y

-15 -10 -5 0 5 10
10

-6

10
-4

10
-2

10
0

B. Theoretical and Simulated Probability of a Noise Outlier                (m=2)

True SNR (dB)

E
rr

or
 P

ro
ba

bi
lit

y
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lated probability��



k � R n Rl then

Pr�Dj 
 Dk� � ��

This means� for example� the probability of an outlier occurring for � � �
�
if there

is one for � � � is small� With this assumption� it is then trivial to show that if we

now take j � Rl and k � Rl n fjg then

Pr�Dj 
 max
i�Rnfjg

Di� � Pr�Dj 
 Dk� � ��� �

We substitute this value into ��	� to generate plots A� and C� in Figure ��

For both case �ii� and case �iii�� comparison of the top two graphs �A� and B�� in

Figures � and � clearly show that it is the occurrence of rational harmonic outliers�

rather than noise outliers� that is the major cause of thresholding at intermediate

SNR�s� �Observe that the probability of an outlier occurring at the threshold SNR

is in fact very small� This is why it is advantageous to be able to calculate those

probabilities rather than having to rely on very extensive simulations��

Thus� the answer to our question is that a rational harmonic outlier detector

would indeed equalise the threshold point of �i� with the thresholds of �ii� and �iii��

� Conclusions

This paper has presented� in detail� the results of an analysis of the occurrence of

outliers in the operation of the multiharmonic MLE� The major result of the paper

is an approximate expression for the mean square frequency error that is applicable

both above threshold and below� The signi�cance of the result is that it enables

the drawing of performance curves showing threshold� and studies of the e�ects of

changing problem parameters by doing calculations� which although complicated�

are nevertheless simpler and less time consuming than Monte Carlo simulation�

�This can be paraphrased by saying that the result permits the threshold e�ect

to be established theoretically as opposed to experimentally� via simulation�� We

should point out that while the results of the internal analysis permit� in principle�

the calculation of performance over the entire range of SNR� the nature of the
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approximations used in this paper mean that performance may be calculated� with

accuracy� only down to moderately low SNR�s within the threshold region� This is�

however� more than su�cient for establishing the existence of a threshold point� and

calculating performance in its vicinity�

Some of the problems of the analysis include the fact that it does not provide

insight into key quantities that might govern threshold� and that special numerical

issues arise in the performance calculations due to the very small numbers involved

in the evaluation of "L �see the remarks at the beginning of Section ��� A di�erent

approach to threshold determination is pursued in �		
 and �	�
 where insights into

key quantities governing threshold are presented�

The issue of rational harmonic outliers was also raised� and it was noted that their

inclusion in the measure of performance of the MLE is in some ways inappropriate�

A means of recognizing these outliers is practically of great importance�
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	 Appendix A
 Proof of Lemma ���

Let ��m�
L � fk� k � ��m� and k � 	g and so ��m� � fk� �

k
� k � ��m�

L g and  ��m� �

� �
�m�
L � Now observe that �

�m�
L � �

�m���
L � f k

m
� gcd�k�m� � 	g� Hence we have

 �
�m�
L �  �

�m���
L � 	�m�

and the lemma follows by iteration of this relationship�

� Appendix B
 Proof of Lemma ���

In order to determine bounds on FG�x� we use the following results from �	

�

De�nition 	�� The random variables T�� � � � � Tn are associated if

cov�f�T�� � � � � Tn�� g�T�� � � � � Tn�
 � �

for all functions f and g which are non
decreasing in each place� and for which

Ef�T�� � � � � Tn�� Eg�T�� � � � � Tn� and Ef�T�� � � � � Tn�g�T�� � � � � Tn� exist�

The following two theorems are proven in �	

�

Theorem 	��

�� Any subset of associated random variables is associated�

�� If two sets of associated random variables are independent of each other� then

their union is a set of associated random variables�


� The set consisting of a single random variable is associated�

�� Non
decreasing functions of associated random variables are associated�

�� Independent random variables are associated�



Theorem 	�� Let T�� � � � � Tn be associated random variables� Vi
�
� fi�T�� � � � � Tn��

and fi non
decreasing �i � 	� � � � � k�� Then

Pr�V� � s�� � � � � Vk � sk
 �
kY
i��

Pr�Vi � si
 ��
�

for all s�� � � � � sk�

Lower �upper� bound on FG�x� �FG�x��

The random variables de�ned by jA���k�j� and jA���l�j� are independent for k �� l �see

�	�
� where it is shown that N samples of a length N DFT of white gaussian noise

are independent�� The elements of the set fjA���k�j� � 	 � k � Ng are therefore
associated random variables by point � of Theorem ��	� From the de�nitions of Dk

and L��� in ���� and �	��� there holds

Dk �
mX
i��

jA�i��k�j� � ����

The set fDk � 	 � k � Ng therefore de�nes a set of nondecreasing functions of the
associated random variables jA���j�� which by point � of Theorem ��	 are themselves
associated� It follows trivially from point 	 of Theorem ��	 that fDk � k � Ng
de�nes a set of associated random variables� This fact� and Theorem ���� enables

determination of a lower bound on FG�x� as follows�

From the de�nition of FG�x� there holds

FG�x� � Pr�max
k�N

Dk � x� � ����

Application of Theorem ��� to the RHS of ���� gives

Pr�max
k�N

Dk � x� � Y
k�N

Pr�Dk � x�

� �FDk
�x�
N���m��� ����

�since the Dk are identically distributed for k � N ��



Therefore�

�FDk
�x�
N���m��� � FG�x� ����

and

FG�x� � 	� �FDk
�x�
N���m��� � ����

Upper �lower� bound on FG�x� �FG�x��

Suppose that we �nd the largest K � N with the property that the elements of the

set fDk � k � Kg are all mutually independent� Let df�X� denote the c�d�f� of the
random variable X� Suppose X and Y are independent random variables� then �see

�	�
�

df�max�X�Y �
 � df�X�df�Y � � ����

Therefore�

df�max
k�K

Dk� �
Y
k�K

FDk
�x� � �FDk

�x�
�K ����

since� by de�nition� the elements of fDk � k � Kg are all independent�
Given the de�nition of G in ���� there holds

G � max�X�Y � ��	�

where

X
�
� max

k�K
Dk ���a�

Y
�
� max

k�NnK
Dk� ���b�

We may then write

FG�x� � Pr�G � x� � Pr�X � x� Y � x� � FXY �x� x� ��
�

where FXY �x� x� is the joint c�d�f� of X and Y � It is easy to see that for any random

variables X� Y � there holds

FXY �x� x� � FX�x� ����



where FX�x� is the c�d�f� of X� Therefore� for our particular X and Y �

FG�x� � FXY �x� x� � FX�x�� ����

where from ����

FX�x� � �FDk
�x�
�K � ����

with the result that

FG�x� � �FDk
�x�
�K � ����

We now need to calculate the cardinality of K�  K� The following result helps
us to �nd the cardinality of a large K � N with the property that the elements of

the set fDk � k � Kg are all independent� by �rst de�ning a certain set K��

Lemma 	�� LetK� �
� fp�� � � � � pvg be the set of all primes pi such thatm � pi � N �

Then the set D� �
� fDk� k � K�g contains only Dk which are mutually independent�

Furthermore�  D� � !�m�N�
�
� �N�� � �m where �n is the standard number

theoretic function denoting the number of primes not exceeding n�

Proof We need to show that for all pj � pl � K�� there does not exist any i� k �
f	� � � � �mg� i �� k such that

ipj � kpl�

This can be seen to be true since pj � pl � m for all j� l� Let !�m�N� denote the

number of primes p greater than or equal to m and less than N � Clearly !�m�N� �

 K� and !�m�N� � �N����m where �n is the number of primes not greater than

n�

Note that while there is no simple formula for �n it can be calculated via enumeration

for moderate n� and asymptotically using the prime number theorem �see ��
� ��n �



n
logn
�� A table of !�m�N� for m � � is given below�

N 
� �� 	�� ��� �	� 	��� ���� ���� �	�� 	�
�� ��
��

!��� N� � 	� �� �� �� 	�� 
�� ��� 	��� 	��� ����

We will assume that m� N and r have been chosen so that the rational harmonic

frequencies all coincide with bin frequencies� �See the comment after Lemma 
�	��

If we de�ne

Rsub
�
� f�r � � � �subg ����

where �sub is� as previously de�ned� the set f� � � � 	�k � � � k � mg� then it
is easy to see �from the de�nition of ��m�� that the elements of R n Rsub are not

prime �note that Rsub � R�� Thus there can be at most  Rsub � m� 	 elements of
K� that belong to R and which therefore do not belong to N � Those elements are
simply the subharmonic frequency indices that are prime� One way to derive a large

set K � N with the desired property� is simply to remove from K� those indices

that do not belong to N � Those indices can only be prime subharmonic indices� of
which there are at most m� 	� Therefore de�ne

K �
� K� n Rsub� ����

There then holds

 K � !�m�N��m� 	 � ����

We remark that some further work might be able to establish just how many

elements of Rsub� given m� r and N � are prime� We feel that this e�ort is hardly

justi�ed in view of the observed insensitivity of calculations based on the above

results with respect to small changes in the bound in �����

Combination of ���� and ���� gives

FG�x� � �FDk
�x�
��m�N��m
� ��	�



and

FG�x� � 	� �FDk
�x�
��m�N��m
� � ����

This concludes the proof of Lemma �
����

�
 Appendix C
 Derivation of FDk
� k �� r� and fDr

The c�d�f� of Dk� k �� r

First consider Dk� We have

Dk �
mX
i��

jA�i�k�j� �
mX
i��

C�
k

where Ck is a quantity used by Rife and Boorstyn ��
� They give the p�d�f� of Ck as�

fCk
�x� �

Nx

��
exp

��Nx�

���

�
��
�

for x � � and zero otherwise� We require fC�
k
�x�� Given a random variable X� with

p�d�f� fX� then the p�d�f� of Y � X� is given by �	�


fY �y� �
	

�
p
y
�fX�

p
y� � fX��py�� � ����

Combining ��
� and ���� gives

fC�
k
�x� �

	

�
p
x
fCk
�
p
x�

�
N

���
exp

��Nx

���

�
�

Now observe that the p�d�f� of a �� random variable with � degrees of freedom is

f���x� �
	

����#�����
exp

��x
�

�
x

�
����

We can thus see that
�
NC�

k

��

�
is �� with � degrees of freedom�



Since Dk �
Pm

j�� C
�
j � and all the Cj are i�i�d��

�
NDk

��

�
is �� with �m degrees of

freedom� Thus

fDk
�x� �

N

��
	

�m#�m�
exp

��Nx

���

��
Nx

��

�m��
x � �� ����

The cumulative distribution of a �� random variable with � degrees of freedom is

F �y� �
Z y

�

	

����#�����
exp

��t
�

�
t
�
���dt

�
	

#�����

�
�

�
�
y

�
��

and 
��� �� is the incomplete gamma function


�a� x� �
Z x

�
e�tta��dt� ����

Thus we can write the distribution function of Dk as

FDk
�x� �

	

#�m�

�m�

Nx

���
� ����

The p�d�f� of Dr

We determine the distribution of Dr in terms of quantities de�ned by Rife and

Boorstyn� We have

Dr �
mX
i��

C�
r�i

and Cr�i is distributed identically to Rife and Boorstyn�s Cr �see equation ����� ��
��

They give the p�d�f� of Cr �a Rician random variable� as�

fCr �x� �
Nx

��
exp

��N�x� � b���

���

�
I�

�
Nb�x

��

�
�

where b� is the amplitude of the single tone and Ik is the modi�ed Bessel function

of the �rst kind� of order k� Again using the Y � X� transformation we obtain

fC�
r
�y� �

N

���
exp

��N�y � b���

���

�
I�

�
Nb�

p
y

��

�
�



This can be seen to be of the same form as a non�central �� distribution� The p�d�f�

of a non�central �� random variable with � degrees of freedom and non�centrality

parameter � is �see �	�
��

f�x� �
	

�

�
x

�

��
� �����

exp
��	
�
��� x�

�
I �
�
������

p
�x�� ����

Comparison of these densities shows that
�
NC�

r

��

�
is non�central �� with � degrees of

freedom and non�centrality parameter � � b��� Hence using the convolution proper�

ties of the non�central �� distribution �from �	�
� and the fact that all the Cr�i are

i�i�d�� we can conclude that
�
NDr

��

�
is non�central �� with �m degrees of freedom and

non�centrality parameter � �
Pm

i�� b
�
i � Thus the p�d�f� of Dr is

fDr�x� �
N

���

�
x

�

�m��
�

exp
��N
���

�� � x�
�
Im���

N

��

p
�x� ����

where � �
Pm

i�� b
�
i �


