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Abstract

The theory and design of a broadband array of sensors with a frequency invariant far-field beam pattern
over an arbitrarily wide design bandwidth is presented. The frequency invariant beam pattern property is
defined in terms of a continuously distributed sensor, and the problem of designing a practical sensor array
is then treated as an approximation to this continuous sensor using a discrete set of filtered broadband
omni-directional array elements. The design methodology is suitable for one, two, and three dimensional
sensor arrays; it imposes no restrictions on the desired aperture distribution (beam shape), and can cope
with arbitrarily wide bandwidths. An important consequence of our results is that the frequency response
of the filter applied to the output of each sensor can be factored into two components: one component is
related to a slice of the desired aperture distribution, and the other is sensor independent. The results
also indicate that the locations of the sensors are not a crucial design consideration, although we show
that nonuniform spacings simultaneously avoid spatial aliasing and minimize the number of sensors. An
example design which covers a 10:1 frequency range (which is suitable for speech acquisition using a
microphone array) illustrates the utility of our method. Finally, the theory is generalized to cover a
parameterized class of arrays in which the frequency dependence of the beam pattern can be controlled
in a continuous manner from a classical single frequency design to a frequency invariant design.

PACS numbers: 43.88.Ar, 43.88.Hz
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1 Introduction

The problem of designing a uniformly spaced ar-
ray of sensors for far-field operation at a single fre-
quency (or within a narrow band of frequencies) is
well understood from general array theory [1, 2].
However when it is desired to receive signals over
a wide band of frequencies the problem of broad-
banding a sensor array arises. We will now review
several approaches to solving this problem.

One approach to broadband design is to use a fre-
quency domain beamformer [3]. Since narrowband
beamforming is conceptually simpler than broad-
band beamforming, the beamformer is implemented
by a narrowband decomposition structure, whereby
the signal received at each sensor is transformed
into the frequency domain using a fast Fourier
transform, and each narrow band of frequencies is
treated as an independent narrowband beamformer.
This is very much a brute force approach which is
computationally excessive.

Adaptive beamformers, in which each sensor
feeds a transversal filter (tapped delay line) and
the filter outputs are summed to produce the over-
all output, can be used for broadband beamform-
ing (see references [4, 5, 6, 7] for a review). An
adaptive array with K sensors can produce K con-
straints on the beam pattern of the array at a single
frequency. If each sensor feeds an L-tap transver-
sal filter, then the same constraints can be applied
at L different frequencies. For example, a linearly
constrained algorithm has been reported [8] which
maintains the peak array response in the look di-
rection at L different frequencies, whilst minimizing
the non-look direction noise power. Although these
adaptive methods can keep the peak array response
relatively constant and produce nulls in given di-
rections at a finite number of frequencies, they are
unable to produce an identical beam pattern over a
continuous range of frequencies (without resorting
to a prohibitive number of sensors and taps).

Another approach to the design of broadband
sensor arrays is to treat the problem of determining
sensor gains and inter-sensor spacings as a multi-
dimensional optimization problem [9, 10]. These
methods do not use frequency dependent sensor
gains, but instead attempt to find optimal sensor
spacings and (fixed) gains by minimizing the ar-
ray power spectral density over a given frequency
band. Because the sensor gains are frequency inde-
pendent, the resulting array structure allows a very
simple implementation. However, it is impossible
to achieve a frequency invariant beam pattern us-
ing these optimization methods. In addition, these
methods are very computationally intensive. Note

that “optimum” array aperture designs (which opti-
mize the compromise between beam width and side-
lobe level [11, 12]) can be easily incorporated into
our broadband design method, since the aperture
distribution is totally arbitrary for our theory and
design methodology.

Yet another approach, typically used by re-
searchers interested in designing microphone ar-
rays for speech acquisition, is harmonic nesting
[13, 14, 15, 16], whereby the array is composed of
a set of nested equally spaced subarrays, each of
which is a single frequency design. The outputs
of the subarrays are then combined via appropri-
ate bandpass filtering. For example, if the sensor
spacing used at a frequency f is d, then at a fre-
quency f/2, the spacing used will be 2d, etc. This
produces an array which has an identical beam pat-
tern at frequencies f, f/2, f/4, etc, but which varies
at intermediate frequencies. The effect of harmonic
nesting is to reduce the extent of bandwidth vari-
ation to that which occurs within a single octave.
Frequency dependent sensor gains can be used to
interpolate to frequencies in between the subarray
design frequencies [17, 18], but this requires addi-
tional complicated filtering. Another problem with
arrays based upon harmonic nesting is that only a
very limited set of band ratios is possible, whereas
our method is applicable for any frequency design
band.

For the purposes of this paper, we will consider
broadband arrays in which there is little or no fre-
quency variation in the far-field array beam pat-
tern over an arbitrarily wide desired bandwidth. A
method has been proposed [19] in which the array
beam pattern has little or no frequency dependence.
The asymptotic theory of unequally spaced arrays
[20, 21] is used to derive relationships between
beam pattern properties (such as peak response,
main lobe width, plateau sidelobe level, and clean
sweep width) and array design. These relationships
are then used to translate beam pattern require-
ments into functional requirements on the sensor
spacings and weightings, thereby deriving a broad-
band design. This results in a space tapered ar-
ray with frequency dependent sensor weightings; at
each frequency in the design band the nonzero sen-
sor weights identify a subarray having total length
and largest spacing which are appropriate to that
frequency. Although this method provides a fre-
quency invariant beam pattern over a specified fre-
quency design band, it is based on a single-sided
uniform aperture distribution and a linear array.
No insight is given into the problem of designing
double-sided or higher dimensional arrays, or ar-
rays with arbitrary aperture distributions in both
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magnitude and phase (and thus arbitrary beam pat-
terns).

The purpose of this paper is to provide a very
general theory and design method for a truly broad-
banded array. Our approach to the broadbanding
problem is to develop a frequency invariant (FI)
beam pattern property for a theoretical continu-
ous sensor, and then to approximate this continuous
sensor by an array of discrete sensors. The problem
of designing a broadband array is then reduced to
one of providing an approximation to a theoretically
continuous sensor. We later show that FI arrays are
a subset of a more general class of arrays in which
the frequency variation of the beam pattern can be
controlled. An important consequence of our devel-
opment is that there are specific simple structural
properties that a FI array must have; such struc-
tural properties reduce the number of free variables
which have to be chosen in designing the array.

2 Theory

2.1 Background

Throughout this paper we are only concerned with
reception of planar waves and will no longer specifi-
cally state far-field operation. We define the notion
of a broadband FI array in terms of the array beam
pattern: the beam pattern must be frequency inde-
pendent. To obtain an identical beam pattern at
k different frequencies would require a compound
array of k subarrays. These k subarrays would be
identical if the spatial coordinate was expressed in
wavelengths. Thus, to produce an identical beam
pattern over a continuous range of frequencies re-
quires an infinite number of subarrays. We must
thus acknowledge that it is not possible to produce
a strictly frequency invariant beam pattern from a
finite number of discrete sensors (although we will
show in later sections how a frequency invariant
beam pattern can be approximated from a finite
array of discrete sensors). It is thus necessary to
initially consider the concept of a continuous sensor
to develop a FI broadband theory. From this van-
tage point we will see that a discrete array which ex-
hibits an approximate FI broadband character (that
can be made to arbitrarily closely approximate the
ideal frequency invariance uniformly over the design
bandwidth) is readily derived from the continuous
sensor theory.

2.2 One Dimensional Sensor

Let R and C denote the sets of real and complex
numbers respectively. Consider a one dimensional

(linear) continuous sensor aligned with the z axis.
The output of this continuous sensor is

Zi= [ S@hsesan 120 )

where S : R x Rt — C is the signal received at a
point z on the sensor due to a signal of frequency
f (and zero phase offset), and p : R x R — C de-
fines the sensitivity distribution or gain of the sensor
at a point x and for a frequency f. The function
p(x, f) can also be referred to as the aperture dis-
tribution, but we reserve this term for a slightly
different concept later. Here we assume that the
sensitivity distribution is absolutely integrable to
ensure that the integral in (1) exists for finite power
signals. It should be noted that we have indicated
the limits on the integral as doubly infinite, which
means that in the case of a practical finite-aperture
continuous sensor the function p(z, f) should have
finite support.

Consider the output of the sensor when subject
to plane waves arriving from an angle # measured
relative to broadside. In this case the signal received
at a point on the sensor is given by

S(w,f) — e—j27rc’1fxsint9

where ¢ is the speed of wave propagation. With
S(z, f) thus defined, the output of the sensor (1)
is implicitly a function of 6, lending its interpreta-
tion as the sensor beam pattern (at frequency f) as
follows:

by (0) = /O:o

Note that the sensor beam pattern will have both
magnitude and phase components, although often
only the magnitude is considered. In this work we
prefer to keep the phase information. We are now in
a position to formally define the notion of a broad-
band FI beam pattern.

Definition: A broadband frequency invariant
(FI) sensor is one in which the far-field beam pat-
tern is frequency invariant, i.e., bs(6) = b(8), Vf >
0.

We now come to our first result.

67]27rc_1frsin gp(ﬂf,f) dr.

(2)

Theorem 1 (Frequency Invariant Beam Pattern)

Suppose the sensitivity distribution of a one dimen-
stonal sensor, which is a function of distance x
along the sensor and frequency f, is given by

ple, f) = fG(=f), Vf>0 (3)

where G:R — C is an arbitrary absolutely integrable
complez function of a single real variable. Then the
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far-field beam pattern, bg(0), which is a function distribution, p(z, f), of a linear sensor which re-
of the angle 8 measured relative to broadside and alizes this beam pattern must satisfy the following

frequency f, will be frequency invariant, i.e.,

b (6) = b(9) — / e =m0 G (g) (.
Proof: Substituting p(z, f) = f G(zf) into the
expression for the sensor beam pattern (2), yields

bf(e)z/ e fesind ¢Qp £y dy, £ >0

— 00

— /OO 6—]2#071£si11 GG(f) df é b(e)

— 00

where we have changed variables £ =z f.

Comments

e The theorem provides a sufficient condition on
the sensitivity distribution to imply an infinite
bandwidth FI broadband beam pattern. The
result is trivially modified to cater for finite
bandwidths, e.g., for frequencies from fr to fy
(say), which is more relevant to practical de-
signs.

e The theorem expresses the known property
that the sensitivity distribution, p(z, f), scales
with wavelength or inversely with frequency
to attain the same beam shape (ignoring the
gain). Equivalently, apart from the gain, the
sensitivity distribution is a fixed function when
the spatial coordinate is expressed in wave-
lengths.

e The multiplicative f factor in (3) can be inter-
preted as normalizing the beam pattern. It has
no effect on the beam shape.

e The functions G(§) and b(#) form a Fourier
transform pair (modulo various constants and
the sin # distortion). This Fourier pair relation
is explicated in [12]. Hence it is straightfor-
ward to take any beam shape specification and
translate that to a specification on the aperture
distribution to achieve a broadband FI result.
These specifications can be expressed in both
the magnitude and phase.

The following theorem is a converse to Theorem 1.
(See Appendix A for the proof.)

Theorem 2 (Sensitivity Distribution) Let

b(#) be an arbitrary continuous square-integrable
frequency invariant far-field beam pattern, which is
specified for 8 € (—w/2,7/2). Then the sensitivity

conditions:
1. p(x, f) = fG(xf) for some function G.

2. G has a Fourier transform U satisfying
(a) I(s) = B(s) =
(=1/¢,1/c)
(b) I'(s) = A(s), s ¢ (=1/c,1/c)
where ¢ is the speed of wave propagation, and

A(%) is an arbitrary square integrable function
such that

A((-1)/e) =

b(sin '(sc)), s €

lim B(s)
(-1

s

fori=0,1.

Thus the only freedom in choosing p(z, f) for a
desired FI beam pattern is in the sufficiently high
“spatial frequency” behaviour of G. Apart from
that, b(f) for 8 € (—n/2,7/2) determines p(z, f)
uniquely.

2.3 Two and Three Dimensional
Sensors

Having demonstrated a sufficient property for a one
dimensional sensor to be FI, we will now consider
the same problem for two and three dimensional
continuous sensors. The results extend in a simple
manner.

The signal received by a continuous two dimen-
sional (planar) sensor is

S(X,f) — e*j27rcflf(zl sin 0 cos ¢p+w 2 sin 0 sin ¢)

where x = [z7 23] is a two dimensional vector de-
noting a point on the sensor, and 6 (elevation) and
¢ (azimuth) define the direction of arrival of the
plane waves as shown by Fig. 1.

The beam pattern produced by the sensor is given
by

* * 27c ! ind in 4 si
bf(0,¢) :/ / e~ 12mc f(z1 sin @ cos p+x2 sin 0 sin @)
—00 J —00
Xp(X, f) dxy dzs.

Let p(x, f) = f2G(z1f,z2f), Vf > 0, where G is
defined analogously to the one dimensional case (3).
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Source of planar waves

Sensor

Figure 1: Geometry for a two dimensional sensor
located in the x;z2 plane subject to planar waves
from direction (8, ¢).

The beam pattern can be written

o0 o0
— / / e*j27rc_1(fm1 sin @ cos ¢+ fz o sin 6 sin ¢)

x f°G(z1f, 22 f) dzy dos

/ / —j27\'C 51 sin 6 cos ¢p+£&2 sin 0 sin ¢)

xXG(&1,&) d& déa, & =a1f, & =a2f
200,¢), Vf>0

which implies a FI beam pattern.

Similarly, for a three dimensional sensor exposed
to planar waves arriving from the direction (6, ¢)
the signal received is

S(X, f) — e*j27rc_1f(m1 sin @ cos g+ sin 0 sin ¢p+x3 cos @)

where x = [z7 z2 z3] denotes a point on the sen-
sor. In an analogous fashion it is easily shown that

bs(0,0) = b6, ¢), Vf >0 if
p(X,f) = ng(-Tlf, $2f, .’,L‘3f),

Only the sufficient condition for a FI beam pat-
tern is considered for higher dimensional sensors,
and hence the higher dimensional equivalent of The-
orem 2 is not given.

Vf>0.

2.4 General Broadband Condition

Summarizing the results of the previous subsections
we state a general result using vector notation which
gives sufficient conditions on a D dimensional array
to exhibit a broadband FI beam pattern. The result
is of practical relevance for D € {1, 2, 3}.

Theorem 3 (General Broadband Condition)
Let the output of a D dimensional continuous sen-
sor be given by

Zi= [ Stxfootx. ) dx

where D € {1,2,3}, S : RY x R — C is the signal
received at a point X on the sensor for a frequency f,
and p : RP x RT — C is the sensitivity distribution.
The sensor has a frequency invariant far-field beam
pattern if

) = fPG(xf), (4)

where G : RP — C is an arbitrary absolutely inte-
grable complex valued function.

p(x Vf>0

2.5 Representations of the Sensitiv-
ity Distribution

As an aid to interpretation of the broadband con-
dition, we will express G(xf), which appears in the
expression for the sensitivity distribution function
(4), in two equivalent representations:

G(xf) = Af(x) = Hx(f), (5)

where Ay : RP — C defines the aperture dis-
tribution at a nominally fixed frequency, f, and
Hx : Rt — C defines the primary frequency re-
sponse or primary filter at a single point, x, on the
sensor. Note that from the expression for the broad-
band sensitivity distribution (4), and using (5), we
can express the total filtering required at a fixed
point x as

vx, f>0

p(x, f) = 7 Hx(f).

We refer to the P component as the secondary fil-
ter. Note that the secondary filter is independent
of the sensor spatial vector x and a function of the
sensor dimension D only. This sensor invariance
property of the secondary filter is of practical sig-
nificance as we will see later.

We now demonstrate an important result regard-
ing the aperture distribution and the primary filter
response as a consequence of (5). We briefly con-
sider the one dimensional case for motivation. Note
that in the scalar version of (5), G(zf) is a sym-
metric function of spatial variable z and of the fre-
quency variable f. This implies that f and z can
be interchanged without affecting the value of the
function. This can be interpreted as saying that
the G(zf) function, which appears in the sensitiv-
ity function (3), looks the same if we vary f whilst
holding z fixed or vary x whilst holding f fixed. In



J. Acoust. Soc. Am., vol. 97, pp. 1023-1034, Feb 1995 6

other words, the primary filter response takes the
same shape as the aperture distribution. Next, we
make this more precise and present a more general
result for the D dimensional sensor. Note that we
cannot freely interchange f € Rt and x € R” even
in the scalar case since f must be positive, so this
must be taken into account.

Define a unit vector in the direction of x as fol-
lows: X
X=—, xeRY

1]
where || - || denotes Euclidean distance. Then we
have the following result:

Theorem 4 (Filter Shape) If Hx(f) denotes
the frequency response of the primary filter at point
x and Ay(x) denotes the aperture distribution for a
gwen frequency f > 0, then for a frequency invari-
ant broadband D dimensional sensor

Hx(f) = Ajx|(fX), x€eR”, feR",

D e {1,2,3}.

Proof: The proof follows from the following
straightforward manipulation:

Hx(f) = G(xf)
=G(fx|x])
= Ajx) (f%).

Comments

e In words, this result says that the primary filter
response required at point x can be obtained
by taking a slice through the aperture distribu-
tion from the origin in the direction of x. The
aperture distribution can be determined from
the desired beam pattern and vice versa.

e The correspondence between aperture distri-
bution and primary filter response is for both
magnitude and phase.

e In the one dimensional case the result reduces
to

ifz>0
if z < 0.

Al‘(f);
A—x(_f):

Note that the subscript on the aperture func-
tion needs to be positive since it denotes the
frequency of interest.

. ={

The G(xf) function possesses an additional highly
desirable property:

Theorem 5 (Filter Dilation) All primary filter
responses in a D dimensional frequency invariant
broadband sensor for a given X are identical up to
a frequency dilation.

Proof: Let Hx(f) represent the filter response
at an arbitrary point x on a frequency invariant
broadband sensor and consider the filter response
at a point yx where v > 0, i.e.,

H’Yx(f)a

which lies on the radial line from the origin through

v >0,

x, and implies (yx) = X. Then

Hyx(f) = G(frx)
= Hx(7f),

which is a dilation property.

Comments

In the following comments we are referring always
to a broadband FI sensor.

e Not only do the primary filter responses relate
to the aperture distribution but they also relate
to each other by a frequency scaling whenever
the filters lie on a common radial line through
the origin.

e In the one dimensional case the sensor (and
hence each filter) always lies on a line through
the origin. So, for example, if H,, (f) rep-
resents the filter response at a point x; on
the sensor, and H,,(f) represents the filter
response at a point zs on the sensor, and
x1T2 > 0 then

Hy,(f) = G(z2f) = G(z132/21 f)

= Hy, (x2/x1 f), z122 > 0.

e In the one dimensional case, for the above ex-
ample, if 129 < 0 then the filter responses H,
and H;, need not be related via a dilation since
the final equality above is not valid. So there
are just two primary filter shapes to consider
depending on the sign of the x coordinate. An
example later will make this clearer.

3 Broadband Array Design

3.1 Overview

Having developed the theory of a broadband FI con-
tinuous sensor, we will now describe the implemen-
tation of a broadband FI array, where an array is
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defined as a practical structure that uses a finite set
of identical, discrete, omni-directional broadband
sensors. Without loss of generality we will initially
concentrate on single-sided one dimensional array
apertures with the first element located at x = 0,
since this will form a major component of a prac-
tical design. Implementation issues for higher di-
mensional and double-sided arrays will be discussed
later.

3.2 Approximation to a Continuous
Sensor

An array of sensors can only approximate the ideal
broadband continuous sensor. In our formulation
this reduces to a numerical approximation uni-
formly in f (using classical techniques) to the fol-
lowing integral representing the output of the ideal
continuous sensor for an arbitrary signal S(x, f):

zf:/_oo S(z, f) fG(zf) dz, f>0. (6)

To obtain an approximation, let {wi}i]igl denote a
finite set of N (possibly nonuniformly-spaced) dis-
crete sensor locations. To a large extent this set
is arbitrary, but sensibly it should satisfy certain
physical constraints described later. Further, be-
cause only a finite number of sensors is practical, we
limit the range of frequency to the interval [f,, fu]-

In approximating the family of integrals in (6),
parameterized by f, we can consider the following
simple class:

N-1

Zy =Y S, [)Gzif), Vf€lfr, ful
1=0
(7)

(In the next subsection we will show that a trape-
zoid numerical integration rule fits into this class.)
Note that S(z;, f) is the complex signal received at
a point z; on the sensor for a frequency f, G(z;f)
is the sampled value of G(zf) at x = z;, and ¢;
is a frequency independent weighting function to
compensate for the possibly nonuniform sensor lo-
cations. An important aspect of our broadband ar-
ray design is that the array design comes from ap-
proximating an integral describing a broadband FI
continuous sensor.

3.3 Trapezoid Rule

We will illustrate the use of (7) for a special case cor-
responding to the well-known trapezoid integration
method. Using (5) write the output of the primary
filter attached to the ith sensor as

yz(f):Hm,(f)S(xlaf)a ie{oala"'aN_l}'

Equivalently, because of Theorem 5, this can be
written

yl(f) = Hl‘l (wi/xl f) S(wiaf)a

which emphasizes that only one primary filter shape
is required in the numerical integration approxima-
tion. The trapezoid approximation to (6) can now
be written as

i€{0717"'7N_1}7

Zy = fy(f)'Tx
where
y(f) = wo(f), vi(f), -+, yn—1(F)],
X = [l’o, Ty, ", wal]la
and
[ —0.5 0.5 1
-0.5 0 0.5 O
-0.5 0
T =
-0.5 0.5
O 0 0.5
L —-0.5 0.5 |

In comparing the trapezoid rule above with the
more general form of integration approximation in
(7), the weighting functions g; can be seen to re-
late to Tx via an unilluminating formula. How-
ever, we do emphasize that the weighting functions
can be a function of one or more discrete sensor lo-
cations but (more importantly) are independent of
frequency. This means that we have the capabil-
ity to approximate the family of integrals for the
desired frequency range.

In the remainder of this paper we will assume
that the aperture distribution is a slowly varying
function with respect to  compared to the expo-
nential term in (2). If this is not the case, the array
can be more densely filled, a more complex integra-
tion method can be applied, or alternate methods of
sampling the continuous aperture [22] can be con-
sidered.

With the output of the single-sided one dimen-
sional broadband array thus defined we are led to a
particularly simple form of block diagram shown in
Fig. 2. This diagram shows a number of important
features that we have demonstrated: (i) the primary
filters are simple dilations of a single frequency re-
sponse, H(f) 2 H,, (f); (ii) implicitly, this primary
filter frequency response shape, H(f), is identical to
the sought after continuous aperture distribution
shape both in magnitude and phase; (iii) the pri-
mary filter outputs can be combined via frequency
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%

Figure 2: Block diagram of a general single-sided
one dimensional broadband FI array with the array
origin at x = 0. H(-) represent the primary filters
(which are dilations of a single frequency response,

H(f) 2 H,, (f)), and g; represent frequency inde-
pendent weights.

independent weights, g;, that depend only on the
sensor locations generating a scalar output; and fi-
nally (iv) all sensors share a common secondary fil-
tering response, f, to generate the final output.

The structure shown in Fig. 2 falls short of pro-
viding complete guidelines for a practical realiza-
tion. For example, the choice of discrete sensor lo-
cations needs addressing, along with the differences
which arise when two-sided or higher dimensional
arrays are employed. These and other points form
the subject of the following subsections.

3.4 Sensor Locations

In determining the sensor locations for the broad-
band array implementation, it is desirable to min-
imize the number of sensors required while main-
taining performance. The major factor determining
the minimum number of sensors possible is spatial
aliasing. We will develop the optimum sensor lo-
cations (with respect to minimizing the number of
sensors required) which will avoid spatial aliasing.
This sensor location function will be seen to be ex-
ponential (linearly increasing inter-sensor spacing)
except at the upper design frequency where it is
linear (constant inter-sensor spacing).

From the theory of linear uniformly-spaced ar-
rays [2, page 7] it is well known that grating lobes
(i.e., periodic repetitions of the main beam) are in-
troduced into the array beam pattern of a broadside
array if the spacing of array elements is greater than
the wavelength of operation, A. This is referred to
as spatial aliasing. If delay beam steering is to be

applied to the array, the constraint reduces to a
maximum spacing of A/2 [23]. It is straightforward
to see that delay beam steering can be used on a
broadband array of the type that we describe in
the same fashion that it can be employed for single
frequency array design (as long as true time delays
are used). Because of the applications we have in
mind, we will use the spacing based on A/2 in this
work.

Since the broadband aperture size scales with fre-
quency, we know that the aperture size is constant
if defined in terms of wavelength. We assume the
aperture size is finite and thereby define the aper-
ture size as being P half-wavelengths at all frequen-
cies, where, without loss of generality, we restrict P
to be an integer. This highlights two related points:
(1) since the aperture shape determines the primary
filter shape then this implies the primary filter must
be strictly bandlimited; and (ii) for all frequencies
except at the lowest design frequency some of the
sensors are not used. When the response of a sen-
sor is used, i.e., the frequency of the signal lies in
the primary filter passband, we will say the sensor
is active at that frequency. In the following discus-
sion we are referring only to active sensors. The
locations of inactive sensors for a given frequency,
despite the potential property that they violate a
A/2 spacing requirement, are completely irrelevant.

Assume the desired frequency range is [fr, fu]
where f1, is the lower design frequency and fy is the
upper design frequency. As before, the first sensor
is located at = 0. The finite aperture constraint
implies a sensor positioning constraint

l

.’L‘i:P2

where 4 is the index of the active sensor of greatest
distance from the origin, and \; is the wavelength
corresponding to the bandwidth of the ¢th primary
filter (or the highest frequency at which the ith sen-
sor remains active).

The condition for a maximum spacing of \/2 for
all active sensors defines a second sensor positioning
constraint:

xi:xi_l-l-%, forz >0
where i corresponds to the same condition as for
the first sensor positioning constraint.

Combining these two constraints gives

. — P .
I = P_1 Ti-1

whenever x;—; > 0, where, recall, P is the aper-
ture size measured in half-wavelengths. This con-

(8)
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straint must be maintained within the desired fre-
quency range to avoid spatial aliasing. Since spac-
ings less than Ay /2 will not cause spatial aliasing
at any frequency within the design band, it follows
that the spacing within the densest portion of the
array should be Ay /2 to minimize the number of
sensors. This densely packed portion of the array
should have a total size of PAy/2 and will contain
a minimum of P + 1 sensors. Hence, the maximum
spacing to avoid spatial aliasing can be summarized
as

(v /2)i, for 0<i <P
.
2 =4 P(\u/2) %) , for P<i<N-1
P(A\p/2), fori=N—1

(9)
where A\ and Ay are the wavelengths correspond-
ing to the lower and upper design frequencies re-
spectively, P is the aperture size measured in half-
wavelengths, and N is the number of array ele-
ments. The maximum allowable spacing to avoid
spatial aliasing, as defined by (9), is illustrated in
Fig. 3. In the sense of producing an approximate

Spacing

Gradient = P-1
P(P-1)

N

N\g’

p v
2

Figure 3: Maximum permissible spacing of a single-
sided one dimensional array to avoid spatial alias-
ing.

broadband array which avoids spatial aliasing, this
spacing relation represents the optimal sensor posi-
tioning function.

Using this optimal spacing relation, the minimum
number of sensors required to implement a broad-
band array over a desired frequency range is

log (%)
s (727)

where [-] denotes the ceiling function.
A similar spacing function was developed in [19],
although fewer sensors were required by allowing

N=(P+1)+ (10)

controlled grating lobes to appear in the array beam
pattern (by adding a constraint on the aperture dis-
tribution). By using slightly more elements, our
spacing function avoids any effects due to spatial
aliasing, does not add any constraint to the aper-
ture distribution, and provides only a maximum
constraint on the spacings.

A final set of remarks is in order. The same guide-
lines apply for our broadband design as in the case
of a single frequency array design: (i) P, the aper-
ture size in half-wavelengths, is chosen to be suf-
ficiently large to achieve the desired beam shape
properties usually expressed in terms of the main
beam width; and (ii) the aperture distribution or
sensitivity distribution is a slowly varying function
of distance along the array. This latter condition is
compatible with some assumptions we made earlier
regarding the use of numerical integration to ap-
proximate the ideal broadband continuous FI sensor
response.

3.5 Filter Implementation

The broadband theory we have developed has as-
sumed positive frequency only. Conventionally in
filter theory frequency is represented by both pos-
itive and negative frequencies. In this case, to im-
plement a filter with a real time domain impulse re-
sponse (i.e., a real filter) requires that the frequency
response of the filter be Hermitian symmetric. Let
the real filter frequency response used to implement
H,(f) be denoted by H,(f) and be defined by

for f >0

%Hz(f),
for f <0

LHe(=f), (11)

.- {

where INII :R— C, and H} denotes the complex
conjugate of H,. The relation between an example
single-sided aperture distribution and the required
real filter response is shown in Fig. 4.

3.6 Double-sided Aperture Distribu-
tions

A double-sided aperture distribution requires two
distinct primary filter responses as can be readily
gleaned from Theorem 5. The real filter responses
used to implement these primary filters are given by
applying (11). An example of a double sided aper-
ture distribution and the corresponding real filter
responses are shown in Fig. 5. Note that this aper-
ture will give the same beam pattern as the equiv-
alent single-sided aperture shown in Fig. 4. As can
be seen from this figure, although the choice of array
origin has no effect on the array beam pattern, the
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AK)

Figure 4: Single-sided aperture distribution A (z)
and corresponding real filter response H,(f). The
solid line is the magnitude, the dashed line indicates
the phase.

position of the origin can have a significant effect
on the complexity of filter implementation.

3.7 Implementation of a Two Dimen-
sional Array

Theorem 5 (the filter dilation theorem) gives no
guarantee that the primary filter responses for two
and three dimensional arrays will exhibit a dilation
property. This is not a restriction on being able to
build a broadband array, it simply restricts the ap-
pearance of self-similarities which may be exploited
to simplify the array design. Thus generally a two
dimensional array corresponds to approximating a
double integral in the spirit of (7) for the one dimen-
sional case. However, there are at least two special
cases which will produce primary filters which have
the same frequency response at more than one posi-
tion within the array. (These cases are discussed for
the two dimensional case and are easily extended to
the three dimensional case.) These special cases are
illustrated in Fig. 6.

Separable Aperture Distributions

If the aperture distribution is separable into the
product of two one dimensional aperture distribu-
tions, i.e.,

Ayp(@r,m2) = Af(21) Af (22)
then the primary filter responses are also separable
meaning that at any point [z1 5]

Hrl,rz (f) = H;l (f)Halvlz (f)

A

- IR0

Figure 5: Double-sided aperture distribution and
corresponding real filter responses. The solid line is
the magnitude, the dashed line indicates the phase.
H, 1 (f) is the real filter response for sensors located
at = >0, and H,_(f) is the real filter response for
sensors located at x < 0.

Hence at least two, and at most four, different filter
responses are required (depending on whether the
component one dimensional arrays are one or two
sided). Note that this class of aperture sensitivities
requires that

Gz f,22f) = G1(21 f)G2 (22 f).

Discrete Sensor Radial Pattern

If the array elements are arranged in radial pat-
terns from the origin, then each of these radial lines
is equivalent to a linear one dimensional array, and
thus each of the primary filters on the radial line
is given by a dilation of the same function. For
an array with N elements which is arranged into
k < (N —1) different radial lines, there will be only
k distinct filter responses, as opposed to (N — 1).
This is true for any arbitrary two dimensional aper-
ture distribution. In the sense that this does not
restrict the aperture distribution (and thus the de-
sired beam pattern) then this type of sensor location
pattern is recommended for any design. Naturally
if the desired aperture distribution further satisfies
a radially symmetric pattern the design is further
simplified and only a single filter shape is required
and the discrete sensors need not be restricted to
radial lines.

4 Design Example

As a demonstration of our broadband theory we will
introduce an example of a typical practical broad-
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A (%)

(b)

Figure 6: Examples of two dimensional apertures
which produce primary filters having the same re-
sponse at more than one location. a) Aperture is
separable into two one dimensional aperture dis-
tributions, i.e., Af(z1,22) = A} (z1)A%(z2). It re-
quires only two different filters and allows arbitrary
sensor locations. b) Sensors are positioned in radial
lines (denoted by dotted lines). It requires a dif-
ferent primary filter response for each radial line of
sensors. Any arbitrary aperture distribution func-
tion may be used.

band sensor array design. We will consider the de-
sign of an array with a single-sided uniform aper-
ture, although we stress that our design method
is not restricted to uniform apertures. The aper-
ture size is P = 5 half-wavelengths and the array
is intended to have a FI beam pattern over a 10:1
frequency range. It is not necessary to choose nu-
merical values for the frequency range, but rather,
we will introduce nondimensional variables by scal-
ing all array dimensions by Ay .

From (10) it follows that a minimum of N = 17
sensors are required to avoid spatial aliasing. The
maximum spacing relation (9) yields the sensor lo-
cations given in Table I. These sensor locations
have been made dimensionless by expressing them
in terms of A\y. (Using a bandwidth suitable for
speech with fr=300 Hz and fy=3000 Hz results in
an array that is approximately 2.7 metres long.)
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For a uniform aperture distribution, Theorem 3
implies the use of primary filters having ideal low-
pass filter characteristics. In order to demonstrate
a practical design we have chosen to implement
the primary filters with causal 8th order Butter-
worth low-pass filters (possessing both magnitude
and phase components). This will result in an
aperture distribution having the same Butterworth
shape. The magnitude and phase of the practical
aperture distribution are shown in Fig. 7 (solid
curves) along with the ideal zero-phase uniform
aperture distribution (dashed curves); the spatial
variable is expressed in terms of half wavelength.
Since a Butterworth low-pass filter is not strictly
bandlimited, it follows from Theorem 3 that the re-
sultant aperture distribution will not have strictly
finite support; the significance of this statement is
made apparent later.

Magnitude
o o
N9y
S

o

o
S]

3 4 5 6
X (half—wavelengths)

RN
|

T
7 8 9 10

Qo
=

©
T

—904

Phase (degrees)

-180

3 4 5 6
X (half—wavelengths)

Figure 7: Aperture distribution used in the example
FI array (solid curve) and an ideal uniform aperture
distribution (dashed curve). The spatial variable
has been normalized in terms of half-wavelength.

The array response produced by the given aper-
ture distribution is shown in Fig. 8 along with the
pattern that would be produced by an ideal uniform
aperture. The effect of the nonzero phase compo-
nent of the aperture distribution is apparent in this
diagram. The negative slope of the phase is equiv-
alent to delay steering, thus resulting in the main
beam being offset from # = 0°; this effect could be
nullified by use of appropriate delays across the ar-
ray. The asymmetric sidelobes are due to the phase
non-linearity.

Applying the trapezoidal approximation method
described in Section 3.3 results in the frequency in-
variant beam pattern shown in Fig. 9 in which the
array spatial response is displayed as a function of
frequency over the entire design frequency band.
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Table I: Sensor locations for example FI array (given in terms of the upper design wavelength Ay).
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Figure 8: Array responses produced by the aper-
ture distribution used in the example FI array (solid
curve) and an ideal uniform aperture distribution

(dashed curve). The patterns are calculated at

f=1fu.

Frequency has been expressed as multiples of f;.
The array beam pattern is remarkably close to be-
ing frequency independent with negligible variation
in main beam magnitude or beam width. Slight rip-
ple is evident in the sidelobes: it can be seen that
the peaks of the sidelobe ripple correspond to the
cutoff frequencies of the sensors given by

Pc

fi:_a

) 0,1,---,N —1}.
21.2_ ZE{:: ) }

The peak response of the array as a function of
frequency is shown in Fig. 10. The variation in
peak response at frequencies close to f, is due to
the primary filters not being strictly bandlimited,
thus not placing a finite support constraint on the
aperture distribution. Because of the finite size of
the array, a portion of the aperture distribution is
not realized. This effect is most pronounced at fre-
quencies close to fr where a significant portion of
the aperture distribution is discarded, resulting in a
slight difference in beam pattern in the lowest por-
tion of the design frequency band. There are several
methods which could be used to alleviate this incon-
sistency in the beam pattern at low frequencies.

e The primary filters could be made to be strictly

S
Y

= /""/;/;‘\//‘§
//‘«///l{///// NS
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<

[

My Resyee AR
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Figure 9: Array response of example FI array over
the entire design frequency range. Frequencies have
been normalized and are expressed in terms of f.

bandlimited, thus producing an aperture distri-
bution which has finite support. (This is not
physically realizable).

The cutoff frequencies of the primary filters
could be reduced so that a negligible portion
of the aperture distribution was discarded at
frequencies close to fi,. This is equivalent to
lengthening the array to produce the same re-
sult.

The secondary filter, which depends only on
frequency, could be modified such that the
peak main beam level was equalized. This
method attempts to compensate for the loss
of a portion of the aperture distribution at low
frequencies by weighting the remainder of the
aperture more strongly. This demonstrates an
important practical consideration of our design
method: a simple filter can be used for each of
the N primary filters, and any ripple on the
main beam level can then be removed by mod-
ification of the single secondary filter response.
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Figure 10: Peak array response of example FI array
as a function of frequency. Frequencies have been
normalized and are expressed in terms of f.

5 Frequency Variant Arrays

5.1

The theory for broadband arrays having frequency
invariant beam patterns has been developed. We
will now show that these arrays are only a subset of
a more general class of arrays which we shall refer
to as alpha arrays. The frequency variation of the
beam pattern of an alpha array can be controlled,
and the beam pattern is found to be a function of
ft=% where a € [0,1]. Thus, for @ = 0 the beam
pattern varies directly with frequency, correspond-
ing to a conventional single frequency array oper-
ated over a range of frequencies; for &« = 1 the beam
pattern is frequency invariant.

Theory

Theorem 6 (Alpha Array) Let the output of a
D dimensional continuous sensor be given by

Zi= [ Stx.folx. ) dx

where D € {1,2,3}, S : RP x Rt — C is the signal
received at a point X on the sensor for a frequency f,
and p : RP x Rt is the sensitivity distribution. The
far-field beam pattern of the sensor is a function of

e
px 1) = [PGx[?),

where a € [0,1] and G : RP — C is an arbitrary
absolutely integrable compler valued function.

Vf>0

This theorem can be easily proven using similar
arguments to those used in Sections 2.2 and 2.3.
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5.2 Properties of Alpha Arrays

Without loss of generality, properties of alpha ar-
rays will only be given for single-sided one dimen-
sional sensors with the array origin at z = 0.

1. Let L; be the length of the active array at fre-
quency fi, and similarly for Ly and f,. The
ratio of active array lengths is given by

L ()’
Lo fi)
2. Let the active aperture size be P; half-

wavelengths at frequency fi, and similarly for
P, and f>. The ratio of active aperture sizes is

given by
i _ <é>a—l
P, fi '

3. If we represent G(zf®) by A¢(x) and H,(f)
(as in the case of FI arrays), then Theorem 5
becomes

(12)

(13)

H,.(f)=H, ('71/af)

and a similar relation for the aperture distri-
bution is

(14)

Aypz) = Af(v ). (15)
Thus the filter responses (and aperture distri-
butions) are related by a dilation property (as
was the case for FI arrays), but the dilation
is not a linear function of the position of the
sensor when a # 1.

5.3 Design of Alpha Arrays

The method of approximating a continuous alpha
sensor is identical to that for a FI sensor (see Sec-
tions 3.2 and 3.3); only the spacing function requires
further comment. The sensor positioning function
for an alpha array with a single-sided aperture and
the origin at z = 0 is given by

Py

T = <Pi _ 1) Ti—1

) a—1
rera (7))

1-1/«
€Ty /
=11
Ti-1

(c.f. (8) for frequency invariant arrays).

It is difficult to solve the above equations analyt-
ically, so the following recursive procedure is used
to determine the sensor locations.

(16)

where
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1. Assume that the upper and lower design fre-
quencies (fy and f1,), «, and the aperture size
in half wavelengths at the upper design fre-
quency (Py) are given. The total array len
is given by

o PLC
2fL

where ¢ is the speed of wave propagation

Py, is the aperture size in half wavelength:

f1r (obtained from (13)).

TN

2. Repeat
c
B 2fin
(3
1
an )@
fi= <—> In
z;
: P
until z; < 2}’;

3. Divide the remainder of the array into Py ec
sections (with spacing 57-).

For o = 0 this procedure results in an equi-spaced
array designed for operation at frr, but used over
the frequency range fr, to fyy. Hence, the beam pat-
tern will spread out for frequencies less than fy, as
found when a conventional single frequency array is
operated at frequencies below the design frequency.
For a = 1 this procedure results in a FI array with
sensor locations similar to those given in (9). (The
slight difference in sensor locations occurs because
sensors are placed from the high frequency end of
the array in the FI design procedure, whereas sen-
sors are placed from the low frequency end in the
alpha array design procedure.)

The importance of the alpha array is that by al-
lowing controlled frequency variation into the beam
pattern, less sensors are required than for a corre-
sponding FI array. This is made apparent in the
following example.

5.4 Alpha Array Example

To demonstrate the use of alpha arrays, a sim-
ple design example is presented. The design is for
a = 0.75, covers a frequency range of 10:1, and
has an aperture size of Py = 5 half-wavelengths
at the upper design frequency. Again we are using
causal 8th order Butterworth filters to approximate
an ideal uniform aperture distribution. The beam
pattern of this design is shown in Fig. 11. This
figure should be compared with Fig. 9 which shows
the beam pattern of a FI array (i.e. a = 1) with
P =5, designed for the same frequency range. The
array with a = 0.75 has a total length of 14.1\y

14

and uses 12 elements, compared with the FI array
(with @ = 1) which has a total length of 25Ay and
uses 17 elements.

; ; | {*‘///"I ;
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Figure 11: Array response of example alpha array
(with @ = 0.75 and Py = 5) over the entire design
frequency range. Frequencies have been normalized
and are expressed in terms of f,.

6 Conclusion

We have presented the theory and design method-
ology for broadband sensor arrays in which the
far-field beam pattern is constant over a desired
frequency range. A continuously distributed sen-
sor was used to derive a FI beam pattern prop-
erty which is valid for one, two, and three dimen-
sional arrays. The array can then be formed by
approximating this continuous sensor with a finite
set of discrete sensors. The approximation method
is arbitrary, although a simple approximation cor-
responding to the trapezoidal integration method
was discussed.

It was shown that the frequency response of the
filter applied to the output of each sensor can be
factored into two components: (i) a primary filter
response which is related (both in magnitude and
phase) to a slice of the desired aperture distribution;
and (ii) a secondary filter which is independent of
the sensor and depends only on the dimension of
the array. These results imply that in the case of
a linear array (and for suitable sensor geometries
in two and three dimensional arrays) the primary
filters are related to each other by a frequency dila-
tion.

An example based on 8th order Butterworth fil-
ters was given to illustrate that these theoretical in-
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vestigations lead to practical and conceptually sim-
ple designs.

Finally, the theory for a more general class of
arrays in which the frequency dependence of the
beam pattern can be controlled was presented. This
theory served to show the relationship between our
broadband FI arrays and conventional single fre-
quency designs.
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Appendix A — Proof of Theo-
rem 2

Assume that a frequency invariant beam pattern
b(0),0 € (—m/2,7/2) is given. We can rewrite (2)
as

Consider a function H(f) specified ounly for f €
(—F, F). This has an inverse Fourier transform of

h(t) = hy(t) + ha(t)

where
_ H(f)7 fE(—F,F)
Fih(t)} = { 0, otherwise
and
_ 07 f € (_Fa F)
Flha(t)} = { A(f), otherwise

where A(-) is an arbitrary function. Hence, any
high frequency perturbation in the function h(¢) will
not produce any effect on the function H(f),f €

B(s) = /°° p <£:f> e 2y fldy s (—1/c, 1/ EF)-

oo \JS
(A1)
with the change of variables s = ¢~'sinf and y =
xf.
Since B(s) is frequency invariant, the integrand
must also be frequency invariant. Therefore de-
fine G(y) = ftp(y/f, f), for some function G(-).

Equation (A.1) can now be rewritten as
B(s) :/ Gly)e™?™Vdy = F{G(y)} (A2)

where F{-} represents the Fourier transform. It
is now necessary to find to what extent G(y) is
determined from B(s), which is only specified for
s€(=1/c,1/c).

By analogy, G(y) has a Fourier transform, I'(s),
satisfying

B(s), s€(—1/¢,1/c)
[(s) = F{GW)} = { A(s), otherwis/e. /
(A.3)
By Plancherel’s Theorem [24], the function G(-)
is uniquely determined from I'(:) if B(:) and A()

are both square-integrable functions, and

(5 =m0

c

fori =0,1.



