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Abstract

The theory and design of a broadband array of sensors with a frequency invariant far��eld beam pattern
over an arbitrarily wide design bandwidth is presented� The frequency invariant beam pattern property is
de�ned in terms of a continuously distributed sensor� and the problem of designing a practical sensor array
is then treated as an approximation to this continuous sensor using a discrete set of �ltered broadband
omni�directional array elements� The design methodology is suitable for one� two� and three dimensional
sensor arrays� it imposes no restrictions on the desired aperture distribution �beam shape�� and can cope
with arbitrarily wide bandwidths� An important consequence of our results is that the frequency response
of the �lter applied to the output of each sensor can be factored into two components� one component is
related to a slice of the desired aperture distribution� and the other is sensor independent� The results
also indicate that the locations of the sensors are not a crucial design consideration� although we show
that nonuniform spacings simultaneously avoid spatial aliasing and minimize the number of sensors� An
example design which covers a �	�� frequency range �which is suitable for speech acquisition using a
microphone array� illustrates the utility of our method� Finally� the theory is generalized to cover a
parameterized class of arrays in which the frequency dependence of the beam pattern can be controlled
in a continuous manner from a classical single frequency design to a frequency invariant design�
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� Introduction

The problem of designing a uniformly spaced ar�
ray of sensors for far��eld operation at a single fre�
quency �or within a narrow band of frequencies� is
well understood from general array theory ��� ���
However when it is desired to receive signals over
a wide band of frequencies the problem of broad�
banding a sensor array arises� We will now review
several approaches to solving this problem�

One approach to broadband design is to use a fre�
quency domain beamformer ���� Since narrowband
beamforming is conceptually simpler than broad�
band beamforming� the beamformer is implemented
by a narrowband decomposition structure� whereby
the signal received at each sensor is transformed
into the frequency domain using a fast Fourier
transform� and each narrow band of frequencies is
treated as an independent narrowband beamformer�
This is very much a brute force approach which is
computationally excessive�

Adaptive beamformers� in which each sensor
feeds a transversal �lter �tapped delay line� and
the �lter outputs are summed to produce the over�
all output� can be used for broadband beamform�
ing �see references �
� �� �� �� for a review�� An
adaptive array with K sensors can produce K con�
straints on the beam pattern of the array at a single
frequency� If each sensor feeds an L�tap transver�
sal �lter� then the same constraints can be applied
at L di�erent frequencies� For example� a linearly
constrained algorithm has been reported ��� which
maintains the peak array response in the look di�
rection at L di�erent frequencies� whilst minimizing
the non�look direction noise power� Although these
adaptive methods can keep the peak array response
relatively constant and produce nulls in given di�
rections at a �nite number of frequencies� they are
unable to produce an identical beam pattern over a
continuous range of frequencies �without resorting
to a prohibitive number of sensors and taps��

Another approach to the design of broadband
sensor arrays is to treat the problem of determining
sensor gains and inter�sensor spacings as a multi�
dimensional optimization problem �
� �	�� These
methods do not use frequency dependent sensor
gains� but instead attempt to �nd optimal sensor
spacings and ��xed� gains by minimizing the ar�
ray power spectral density over a given frequency
band� Because the sensor gains are frequency inde�
pendent� the resulting array structure allows a very
simple implementation� However� it is impossible
to achieve a frequency invariant beam pattern us�
ing these optimization methods� In addition� these
methods are very computationally intensive� Note

that �optimum� array aperture designs �which opti�
mize the compromise between beam width and side�
lobe level ���� ���� can be easily incorporated into
our broadband design method� since the aperture
distribution is totally arbitrary for our theory and
design methodology�

Yet another approach� typically used by re�
searchers interested in designing microphone ar�
rays for speech acquisition� is harmonic nesting
���� �
� ��� ���� whereby the array is composed of
a set of nested equally spaced subarrays� each of
which is a single frequency design� The outputs
of the subarrays are then combined via appropri�
ate bandpass �ltering� For example� if the sensor
spacing used at a frequency f is d� then at a fre�
quency f��� the spacing used will be �d� etc� This
produces an array which has an identical beam pat�
tern at frequencies f � f��� f�
� etc� but which varies
at intermediate frequencies� The e�ect of harmonic
nesting is to reduce the extent of bandwidth vari�
ation to that which occurs within a single octave�
Frequency dependent sensor gains can be used to
interpolate to frequencies in between the subarray
design frequencies ���� ���� but this requires addi�
tional complicated �ltering� Another problem with
arrays based upon harmonic nesting is that only a
very limited set of band ratios is possible� whereas
our method is applicable for any frequency design
band�

For the purposes of this paper� we will consider
broadband arrays in which there is little or no fre�
quency variation in the far��eld array beam pat�
tern over an arbitrarily wide desired bandwidth� A
method has been proposed ��
� in which the array
beam pattern has little or no frequency dependence�
The asymptotic theory of unequally spaced arrays
��	� ��� is used to derive relationships between
beam pattern properties �such as peak response�
main lobe width� plateau sidelobe level� and clean
sweep width� and array design� These relationships
are then used to translate beam pattern require�
ments into functional requirements on the sensor
spacings and weightings� thereby deriving a broad�
band design� This results in a space tapered ar�
ray with frequency dependent sensor weightings� at
each frequency in the design band the nonzero sen�
sor weights identify a subarray having total length
and largest spacing which are appropriate to that
frequency� Although this method provides a fre�
quency invariant beam pattern over a speci�ed fre�
quency design band� it is based on a single�sided
uniform aperture distribution and a linear array�
No insight is given into the problem of designing
double�sided or higher dimensional arrays� or ar�
rays with arbitrary aperture distributions in both
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magnitude and phase �and thus arbitrary beam pat�
terns��
The purpose of this paper is to provide a very

general theory and design method for a truly broad�
banded array� Our approach to the broadbanding
problem is to develop a frequency invariant �FI�
beam pattern property for a theoretical continu�
ous sensor� and then to approximate this continuous
sensor by an array of discrete sensors� The problem
of designing a broadband array is then reduced to
one of providing an approximation to a theoretically
continuous sensor� We later show that FI arrays are
a subset of a more general class of arrays in which
the frequency variation of the beam pattern can be
controlled� An important consequence of our devel�
opment is that there are speci�c simple structural
properties that a FI array must have� such struc�
tural properties reduce the number of free variables
which have to be chosen in designing the array�

� Theory

��� Background

Throughout this paper we are only concerned with
reception of planar waves and will no longer speci��
cally state far��eld operation� We de�ne the notion
of a broadband FI array in terms of the array beam
pattern� the beam pattern must be frequency inde�
pendent� To obtain an identical beam pattern at
k di�erent frequencies would require a compound
array of k subarrays� These k subarrays would be
identical if the spatial coordinate was expressed in
wavelengths� Thus� to produce an identical beam
pattern over a continuous range of frequencies re�
quires an in�nite number of subarrays� We must
thus acknowledge that it is not possible to produce
a strictly frequency invariant beam pattern from a
�nite number of discrete sensors �although we will
show in later sections how a frequency invariant
beam pattern can be approximated from a �nite
array of discrete sensors�� It is thus necessary to
initially consider the concept of a continuous sensor
to develop a FI broadband theory� From this van�
tage point we will see that a discrete array which ex�
hibits an approximate FI broadband character �that
can be made to arbitrarily closely approximate the
ideal frequency invariance uniformly over the design
bandwidth� is readily derived from the continuous
sensor theory�

��� One Dimensional Sensor

Let R and C denote the sets of real and complex
numbers respectively� Consider a one dimensional

�linear� continuous sensor aligned with the x axis�
The output of this continuous sensor is

Zf �

Z �

��

S�x� f� ��x� f� dx� f � 	 ���

where S � R � R� � C is the signal received at a
point x on the sensor due to a signal of frequency
f �and zero phase o�set�� and � � R � R� � C de�
�nes the sensitivity distribution or gain of the sensor
at a point x and for a frequency f � The function
��x� f� can also be referred to as the aperture dis�
tribution� but we reserve this term for a slightly
di�erent concept later� Here we assume that the
sensitivity distribution is absolutely integrable to
ensure that the integral in ��� exists for �nite power
signals� It should be noted that we have indicated
the limits on the integral as doubly in�nite� which
means that in the case of a practical �nite�aperture
continuous sensor the function ��x� f� should have
�nite support�
Consider the output of the sensor when subject

to plane waves arriving from an angle � measured
relative to broadside� In this case the signal received
at a point on the sensor is given by

S�x� f� � e����c
��fx sin �

where c is the speed of wave propagation� With
S�x� f� thus de�ned� the output of the sensor ���
is implicitly a function of �� lending its interpreta�
tion as the sensor beam pattern �at frequency f� as
follows�

bf ��� �

Z �

��

e����c
��fx sin ���x� f� dx� ���

Note that the sensor beam pattern will have both
magnitude and phase components� although often
only the magnitude is considered� In this work we
prefer to keep the phase information� We are now in
a position to formally de�ne the notion of a broad�
band FI beam pattern�
De�nition� A broadband frequency invariant

�FI� sensor is one in which the far��eld beam pat�
tern is frequency invariant� i�e�� bf ��� � b���� �f �
	�
We now come to our �rst result�

Theorem � �Frequency Invariant Beam Pattern�
Suppose the sensitivity distribution of a one dimen�
sional sensor� which is a function of distance x
along the sensor and frequency f � is given by

��x� f� � f G�xf�� �f � 	 ���

where G�R � C is an arbitrary absolutely integrable
complex function of a single real variable� Then the
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far��eld beam pattern� bf ���� which is a function
of the angle � measured relative to broadside and
frequency f � will be frequency invariant� i�e��

bf ��� � b��� �

Z �

��

e����c
��� sin �G��� d��

Proof� Substituting ��x� f� � f G�xf� into the
expression for the sensor beam pattern ���� yields

bf ��� �

Z �

��

e����c
��fx sin �fG�xf� dx� f � 	

�

Z �

��

e����c
��� sin �G��� d�

�
� b���

where we have changed variables � � xf �

Comments

� The theorem provides a su�cient condition on
the sensitivity distribution to imply an in�nite
bandwidth FI broadband beam pattern� The
result is trivially modi�ed to cater for �nite
bandwidths� e�g�� for frequencies from fL to fU
�say�� which is more relevant to practical de�
signs�

� The theorem expresses the known property
that the sensitivity distribution� ��x� f�� scales
with wavelength or inversely with frequency
to attain the same beam shape �ignoring the
gain�� Equivalently� apart from the gain� the
sensitivity distribution is a �xed function when
the spatial coordinate is expressed in wave�
lengths�

� The multiplicative f factor in ��� can be inter�
preted as normalizing the beam pattern� It has
no e�ect on the beam shape�

� The functions G��� and b��� form a Fourier
transform pair �modulo various constants and
the sin � distortion�� This Fourier pair relation
is explicated in ����� Hence it is straightfor�
ward to take any beam shape speci�cation and
translate that to a speci�cation on the aperture
distribution to achieve a broadband FI result�
These speci�cations can be expressed in both
the magnitude and phase�

The following theorem is a converse to Theorem ��
�See Appendix A for the proof��

Theorem � �Sensitivity Distribution� Let
b��� be an arbitrary continuous square�integrable
frequency invariant far��eld beam pattern� which is
speci�ed for � � ������ ����� Then the sensitivity

distribution� ��x� f�� of a linear sensor which re�
alizes this beam pattern must satisfy the following
conditions�

�� ��x� f� � fG�xf� for some function G�

�� G has a Fourier transform � satisfying

�a� ��s� � B�s� � b
�
sin���sc�

�
� s �

����c� ��c�

�b� ��s� � A�s�� s �� ����c� ��c�

where c is the speed of wave propagation� and
A��� is an arbitrary square integrable function
such that

A
�
����i�c

�
� lim

s�
����i

c

B�s�

for i � 	� ��

Thus the only freedom in choosing ��x� f� for a
desired FI beam pattern is in the su�ciently high
�spatial frequency� behaviour of G� Apart from
that� b��� for � � ������ ���� determines ��x� f�
uniquely�

��� Two and Three Dimensional

Sensors

Having demonstrated a su�cient property for a one
dimensional sensor to be FI� we will now consider
the same problem for two and three dimensional
continuous sensors� The results extend in a simple
manner�

The signal received by a continuous two dimen�
sional �planar� sensor is

S�x� f� � e����c
��f�x� sin � cos��x� sin � sin��

where x � �x� x�� is a two dimensional vector de�
noting a point on the sensor� and � �elevation� and
� �azimuth� de�ne the direction of arrival of the
plane waves as shown by Fig� ��

The beam pattern produced by the sensor is given
by

bf ��� �� �

Z �

��

Z �

��

e����c
��f�x� sin � cos��x� sin � sin��

���x� f� dx� dx��

Let ��x� f� � f�G�x�f� x�f�� �f � 	� where G is
de�ned analogously to the one dimensional case ����
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Figure �� Geometry for a two dimensional sensor
located in the x�x� plane subject to planar waves
from direction ��� ���

The beam pattern can be written

bf ��� �� �

Z �

��

Z �

��

e����c
���fx� sin � cos��fx� sin � sin��

�f�G�x�f� x�f� dx� dx�

�

Z �

��

Z �

��

e����c
����� sin � cos���� sin � sin��

�G���� ��� d�� d��� �� � x�f� �� � x�f
�
� b��� ��� �f � 	

which implies a FI beam pattern�
Similarly� for a three dimensional sensor exposed

to planar waves arriving from the direction ��� ��
the signal received is

S�x� f� � e����c
��f�x� sin � cos��x� sin � sin��x� cos��

where x � �x� x� x�� denotes a point on the sen�
sor� In an analogous fashion it is easily shown that
bf ��� �� � b��� ��� �f � 	 if

��x� f� � f�G�x�f� x�f� x�f�� �f � 	�

Only the su�cient condition for a FI beam pat�
tern is considered for higher dimensional sensors�
and hence the higher dimensional equivalent of The�
orem � is not given�

��� General Broadband Condition

Summarizing the results of the previous subsections
we state a general result using vector notation which
gives su�cient conditions on a D dimensional array
to exhibit a broadband FI beam pattern� The result
is of practical relevance for D � f�� �� �g�

Theorem � �General Broadband Condition�
Let the output of a D dimensional continuous sen�
sor be given by

Zf �

Z
RD

S�x� f���x� f� dx

where D � f�� �� �g� S � RD �R� � C is the signal
received at a point x on the sensor for a frequency f �
and � � RD �R� � C is the sensitivity distribution�
The sensor has a frequency invariant far��eld beam
pattern if

��x� f� � fDG�xf�� �f � 	 �
�

where G � RD � C is an arbitrary absolutely inte�
grable complex valued function�

��� Representations of the Sensitiv�

ity Distribution

As an aid to interpretation of the broadband con�
dition� we will express G�xf�� which appears in the
expression for the sensitivity distribution function
�
�� in two equivalent representations�

G�xf� � Af �x� � Hx�f�� �x� f � 	 ���

where Af � RD � C de�nes the aperture dis�
tribution at a nominally �xed frequency� f � and
Hx � R� � C de�nes the primary frequency re�
sponse or primary �lter at a single point� x� on the
sensor� Note that from the expression for the broad�
band sensitivity distribution �
�� and using ���� we
can express the total �ltering required at a �xed
point x as

��x� f� � fDHx�f��

We refer to the fD component as the secondary �l�
ter� Note that the secondary �lter is independent
of the sensor spatial vector x and a function of the
sensor dimension D only� This sensor invariance
property of the secondary �lter is of practical sig�
ni�cance as we will see later�
We now demonstrate an important result regard�

ing the aperture distribution and the primary �lter
response as a consequence of ���� We brie�y con�
sider the one dimensional case for motivation� Note
that in the scalar version of ���� G�xf� is a sym�
metric function of spatial variable x and of the fre�
quency variable f � This implies that f and x can
be interchanged without a�ecting the value of the
function� This can be interpreted as saying that
the G�xf� function� which appears in the sensitiv�
ity function ���� looks the same if we vary f whilst
holding x �xed or vary x whilst holding f �xed� In
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other words� the primary �lter response takes the
same shape as the aperture distribution� Next� we
make this more precise and present a more general
result for the D dimensional sensor� Note that we
cannot freely interchange f � R� and x � RD even
in the scalar case since f must be positive� so this
must be taken into account�
De�ne a unit vector in the direction of x as fol�

lows� bx �
x

kxk
� x � R

D

where k � k denotes Euclidean distance� Then we
have the following result�

Theorem � �Filter Shape� If Hx�f� denotes
the frequency response of the primary �lter at point
x and Af �x� denotes the aperture distribution for a
given frequency f � 	� then for a frequency invari�
ant broadband D dimensional sensor

Hx�f� � Akxk�fbx�� x � R
D � f � R

� �

D � f�� �� �g�

Proof� The proof follows from the following
straightforward manipulation�

Hx�f� � G�xf�

� G�f bx kxk�
� Akxk�f bx��

Comments

� In words� this result says that the primary �lter
response required at point x can be obtained
by taking a slice through the aperture distribu�
tion from the origin in the direction of x� The
aperture distribution can be determined from
the desired beam pattern and vice versa�

� The correspondence between aperture distri�
bution and primary �lter response is for both
magnitude and phase�

� In the one dimensional case the result reduces
to

Hx�f� �

�
Ax�f�� if x � 	
A�x��f�� if x 	 	�

Note that the subscript on the aperture func�
tion needs to be positive since it denotes the
frequency of interest�

The G�xf� function possesses an additional highly
desirable property�

Theorem � �Filter Dilation� All primary �lter
responses in a D dimensional frequency invariant
broadband sensor for a given bx are identical up to
a frequency dilation�

Proof� Let Hx�f� represent the �lter response
at an arbitrary point x on a frequency invariant
broadband sensor and consider the �lter response
at a point 
x where 
 � 	� i�e��

H�x�f�� 
 � 	�

which lies on the radial line from the origin through

x� and implies d�
x� � bx� Then
H�x�f� � G�f
x�

� Hx�
f��

which is a dilation property�

Comments

In the following comments we are referring always
to a broadband FI sensor�

� Not only do the primary �lter responses relate
to the aperture distribution but they also relate
to each other by a frequency scaling whenever
the �lters lie on a common radial line through
the origin�

� In the one dimensional case the sensor �and
hence each �lter� always lies on a line through
the origin� So� for example� if Hx��f� rep�
resents the �lter response at a point x� on
the sensor� and Hx��f� represents the �lter
response at a point x� on the sensor� and
x�x� � 	 then

Hx��f� � G�x�f� � G�x�x��x� f�

� Hx��x��x� f�� x�x� � 	�

� In the one dimensional case� for the above ex�
ample� if x�x� 	 	 then the �lter responsesHx�

andHx� need not be related via a dilation since
the �nal equality above is not valid� So there
are just two primary �lter shapes to consider
depending on the sign of the x coordinate� An
example later will make this clearer�

� Broadband Array Design

��� Overview

Having developed the theory of a broadband FI con�
tinuous sensor� we will now describe the implemen�
tation of a broadband FI array� where an array is
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de�ned as a practical structure that uses a �nite set
of identical� discrete� omni�directional broadband
sensors� Without loss of generality we will initially
concentrate on single�sided one dimensional array
apertures with the �rst element located at x � 	�
since this will form a major component of a prac�
tical design� Implementation issues for higher di�
mensional and double�sided arrays will be discussed
later�

��� Approximation to a Continuous

Sensor

An array of sensors can only approximate the ideal
broadband continuous sensor� In our formulation
this reduces to a numerical approximation uni�
formly in f �using classical techniques� to the fol�
lowing integral representing the output of the ideal
continuous sensor for an arbitrary signal S�x� f��

Zf �

Z �

��

S�x� f� fG�xf� dx� f � 	� ���

To obtain an approximation� let fxig
N��
i�� denote a

�nite set of N �possibly nonuniformly�spaced� dis�
crete sensor locations� To a large extent this set
is arbitrary� but sensibly it should satisfy certain
physical constraints described later� Further� be�
cause only a �nite number of sensors is practical� we
limit the range of frequency to the interval �fL� fU ��
In approximating the family of integrals in ����

parameterized by f � we can consider the following
simple class�

eZf � f

N��X
i��

gi S�xi� f�G�xif�� �f � �fL� fU ��

���
�In the next subsection we will show that a trape�
zoid numerical integration rule �ts into this class��
Note that S�xi� f� is the complex signal received at
a point xi on the sensor for a frequency f � G�xif�
is the sampled value of G�xf� at x � xi� and gi
is a frequency independent weighting function to
compensate for the possibly nonuniform sensor lo�
cations� An important aspect of our broadband ar�
ray design is that the array design comes from ap�
proximating an integral describing a broadband FI
continuous sensor�

��� Trapezoid Rule

We will illustrate the use of ��� for a special case cor�
responding to the well�known trapezoid integration
method� Using ��� write the output of the primary
�lter attached to the ith sensor as

yi�f� � Hxi�f�S�xi� f�� i � f	� �� � � � � N � �g�

Equivalently� because of Theorem �� this can be
written

yi�f� � Hx��xi�x� f�S�xi� f�� i � f	� �� � � � � N��g�

which emphasizes that only one primary �lter shape
is required in the numerical integration approxima�
tion� The trapezoid approximation to ��� can now
be written as

eZf � f y�f��Tx

where

y�f� � �y��f�� y��f�� � � � � yN���f��
��

x � �x�� x�� � � � � xN���
��

and

T �

�
����������

�	�� 	��
�	�� 	 	�� �

�	�� 	
� � �

�	��
� � � 	��

�
� � � 	 	��

�	�� 	��

�
����������
�

In comparing the trapezoid rule above with the
more general form of integration approximation in
���� the weighting functions gi can be seen to re�
late to Tx via an unilluminating formula� How�
ever� we do emphasize that the weighting functions
can be a function of one or more discrete sensor lo�
cations but �more importantly� are independent of
frequency� This means that we have the capabil�
ity to approximate the family of integrals for the
desired frequency range�
In the remainder of this paper we will assume

that the aperture distribution is a slowly varying
function with respect to x compared to the expo�
nential term in ���� If this is not the case� the array
can be more densely �lled� a more complex integra�
tion method can be applied� or alternate methods of
sampling the continuous aperture ���� can be con�
sidered�
With the output of the single�sided one dimen�

sional broadband array thus de�ned we are led to a
particularly simple form of block diagram shown in
Fig� �� This diagram shows a number of important
features that we have demonstrated� �i� the primary
�lters are simple dilations of a single frequency re�

sponse� H�f�
�
� Hx��f�� �ii� implicitly� this primary

�lter frequency response shape� H�f�� is identical to
the sought after continuous aperture distribution
shape both in magnitude and phase� �iii� the pri�
mary �lter outputs can be combined via frequency
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Figure �� Block diagram of a general single�sided
one dimensional broadband FI array with the array
origin at x � 	� H��� represent the primary �lters
�which are dilations of a single frequency response�

H�f�
�
� Hx��f��� and gi represent frequency inde�

pendent weights�

independent weights� gi� that depend only on the
sensor locations generating a scalar output� and ��
nally �iv� all sensors share a common secondary �l�
tering response� f � to generate the �nal output�

The structure shown in Fig� � falls short of pro�
viding complete guidelines for a practical realiza�
tion� For example� the choice of discrete sensor lo�
cations needs addressing� along with the di�erences
which arise when two�sided or higher dimensional
arrays are employed� These and other points form
the subject of the following subsections�

��� Sensor Locations

In determining the sensor locations for the broad�
band array implementation� it is desirable to min�
imize the number of sensors required while main�
taining performance� The major factor determining
the minimum number of sensors possible is spatial
aliasing� We will develop the optimum sensor lo�
cations �with respect to minimizing the number of
sensors required� which will avoid spatial aliasing�
This sensor location function will be seen to be ex�
ponential �linearly increasing inter�sensor spacing�
except at the upper design frequency where it is
linear �constant inter�sensor spacing��

From the theory of linear uniformly�spaced ar�
rays ��� page �� it is well known that grating lobes
�i�e�� periodic repetitions of the main beam� are in�
troduced into the array beam pattern of a broadside
array if the spacing of array elements is greater than
the wavelength of operation� �� This is referred to
as spatial aliasing� If delay beam steering is to be

applied to the array� the constraint reduces to a
maximum spacing of ��� ����� It is straightforward
to see that delay beam steering can be used on a
broadband array of the type that we describe in
the same fashion that it can be employed for single
frequency array design �as long as true time delays
are used�� Because of the applications we have in
mind� we will use the spacing based on ��� in this
work�
Since the broadband aperture size scales with fre�

quency� we know that the aperture size is constant
if de�ned in terms of wavelength� We assume the
aperture size is �nite and thereby de�ne the aper�
ture size as being P half�wavelengths at all frequen�
cies� where� without loss of generality� we restrict P
to be an integer� This highlights two related points�
�i� since the aperture shape determines the primary
�lter shape then this implies the primary �lter must
be strictly bandlimited� and �ii� for all frequencies
except at the lowest design frequency some of the
sensors are not used� When the response of a sen�
sor is used� i�e�� the frequency of the signal lies in
the primary �lter passband� we will say the sensor
is active at that frequency� In the following discus�
sion we are referring only to active sensors� The
locations of inactive sensors for a given frequency�
despite the potential property that they violate a
��� spacing requirement� are completely irrelevant�
Assume the desired frequency range is �fL� fU �

where fL is the lower design frequency and fU is the
upper design frequency� As before� the �rst sensor
is located at x � 	� The �nite aperture constraint
implies a sensor positioning constraint

xi � P
�i
�

where i is the index of the active sensor of greatest
distance from the origin� and �i is the wavelength
corresponding to the bandwidth of the ith primary
�lter �or the highest frequency at which the ith sen�
sor remains active��
The condition for a maximum spacing of ��� for

all active sensors de�nes a second sensor positioning
constraint�

xi � xi�� �
�i
�
� for i � 	

where i corresponds to the same condition as for
the �rst sensor positioning constraint�
Combining these two constraints gives

xi �

	
P

P � �



xi�� ���

whenever xi�� � 	� where� recall� P is the aper�
ture size measured in half�wavelengths� This con�
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straint must be maintained within the desired fre�
quency range to avoid spatial aliasing� Since spac�
ings less than �U�� will not cause spatial aliasing
at any frequency within the design band� it follows
that the spacing within the densest portion of the
array should be �U�� to minimize the number of
sensors� This densely packed portion of the array
should have a total size of P�U�� and will contain
a minimum of P �� sensors� Hence� the maximum
spacing to avoid spatial aliasing can be summarized
as

xi �

��

��

��U���i� for 	 � i � P

P ��U���
�

P
P��

�i�P
� for P 	 i 	 N � �

P ��L���� for i � N � �
�
�

where �L and �U are the wavelengths correspond�
ing to the lower and upper design frequencies re�
spectively� P is the aperture size measured in half�
wavelengths� and N is the number of array ele�
ments� The maximum allowable spacing to avoid
spatial aliasing� as de�ned by �
�� is illustrated in
Fig� �� In the sense of producing an approximate

λU

2
P

λU

2

P(P-1)
2P - 1

x

Gradient =

Spacing

Figure �� Maximum permissible spacing of a single�
sided one dimensional array to avoid spatial alias�
ing�

broadband array which avoids spatial aliasing� this
spacing relation represents the optimal sensor posi�
tioning function�
Using this optimal spacing relation� the minimum

number of sensors required to implement a broad�
band array over a desired frequency range is

N � �P � �� �

�
���

log
�
fU
fL

�
log
�

P
P��

�
�
��� ��	�

where d�e denotes the ceiling function�
A similar spacing function was developed in ��
��

although fewer sensors were required by allowing

controlled grating lobes to appear in the array beam
pattern �by adding a constraint on the aperture dis�
tribution�� By using slightly more elements� our
spacing function avoids any e�ects due to spatial
aliasing� does not add any constraint to the aper�
ture distribution� and provides only a maximum
constraint on the spacings�
A �nal set of remarks is in order� The same guide�

lines apply for our broadband design as in the case
of a single frequency array design� �i� P � the aper�
ture size in half�wavelengths� is chosen to be suf�
�ciently large to achieve the desired beam shape
properties usually expressed in terms of the main
beam width� and �ii� the aperture distribution or
sensitivity distribution is a slowly varying function
of distance along the array� This latter condition is
compatible with some assumptions we made earlier
regarding the use of numerical integration to ap�
proximate the ideal broadband continuous FI sensor
response�

��� Filter Implementation

The broadband theory we have developed has as�
sumed positive frequency only� Conventionally in
�lter theory frequency is represented by both pos�
itive and negative frequencies� In this case� to im�
plement a �lter with a real time domain impulse re�
sponse �i�e�� a real �lter� requires that the frequency
response of the �lter be Hermitian symmetric� Let
the real �lter frequency response used to implement
Hx�f� be denoted by eHx�f� and be de�ned by

eHx�f� �

�
�
� Hx�f�� for f � 	
�
� H

�
x��f�� for f 	 	

����

where eHx � R � C � and H�
x denotes the complex

conjugate of Hx� The relation between an example
single�sided aperture distribution and the required
real �lter response is shown in Fig� 
�

��� Double�sided Aperture Distribu�

tions

A double�sided aperture distribution requires two
distinct primary �lter responses as can be readily
gleaned from Theorem �� The real �lter responses
used to implement these primary �lters are given by
applying ����� An example of a double sided aper�
ture distribution and the corresponding real �lter
responses are shown in Fig� �� Note that this aper�
ture will give the same beam pattern as the equiv�
alent single�sided aperture shown in Fig� 
� As can
be seen from this �gure� although the choice of array
origin has no e�ect on the array beam pattern� the
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A (x)
f

H (f)
x

~

x

f

Figure 
� Single�sided aperture distribution Af �x�

and corresponding real �lter response eHx�f�� The
solid line is the magnitude� the dashed line indicates
the phase�

position of the origin can have a signi�cant e�ect
on the complexity of �lter implementation�

��� Implementation of a Two Dimen�

sional Array

Theorem � �the �lter dilation theorem� gives no
guarantee that the primary �lter responses for two
and three dimensional arrays will exhibit a dilation
property� This is not a restriction on being able to
build a broadband array� it simply restricts the ap�
pearance of self�similarities which may be exploited
to simplify the array design� Thus generally a two
dimensional array corresponds to approximating a
double integral in the spirit of ��� for the one dimen�
sional case� However� there are at least two special
cases which will produce primary �lters which have
the same frequency response at more than one posi�
tion within the array� �These cases are discussed for
the two dimensional case and are easily extended to
the three dimensional case�� These special cases are
illustrated in Fig� ��

Separable Aperture Distributions

If the aperture distribution is separable into the
product of two one dimensional aperture distribu�
tions� i�e��

Af �x�� x�� � A�f �x��A
��
f �x��

then the primary �lter responses are also separable
meaning that at any point �x� x��

Hx��x��f� � H �
x��f�H

��
x��f��

fA  (x)

x-
H   (f)
~ x+

H   (f)
~

x

ff

Figure �� Double�sided aperture distribution and
corresponding real �lter responses� The solid line is
the magnitude� the dashed line indicates the phase�eHx��f� is the real �lter response for sensors located

at x � 	� and eHx��f� is the real �lter response for
sensors located at x 	 	�

Hence at least two� and at most four� di�erent �lter
responses are required �depending on whether the
component one dimensional arrays are one or two
sided�� Note that this class of aperture sensitivities
requires that

G�x�f� x�f� � G��x�f�G��x�f��

Discrete Sensor Radial Pattern

If the array elements are arranged in radial pat�
terns from the origin� then each of these radial lines
is equivalent to a linear one dimensional array� and
thus each of the primary �lters on the radial line
is given by a dilation of the same function� For
an array with N elements which is arranged into
k 	 �N � �� di�erent radial lines� there will be only
k distinct �lter responses� as opposed to �N � ���
This is true for any arbitrary two dimensional aper�
ture distribution� In the sense that this does not
restrict the aperture distribution �and thus the de�
sired beam pattern� then this type of sensor location
pattern is recommended for any design� Naturally
if the desired aperture distribution further satis�es
a radially symmetric pattern the design is further
simpli�ed and only a single �lter shape is required
and the discrete sensors need not be restricted to
radial lines�

� Design Example

As a demonstration of our broadband theory we will
introduce an example of a typical practical broad�
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Figure �� Examples of two dimensional apertures
which produce primary �lters having the same re�
sponse at more than one location� a� Aperture is
separable into two one dimensional aperture dis�
tributions� i�e�� Af �x�� x�� � A�f �x��A

��
f �x��� It re�

quires only two di�erent �lters and allows arbitrary
sensor locations� b� Sensors are positioned in radial
lines �denoted by dotted lines�� It requires a dif�
ferent primary �lter response for each radial line of
sensors� Any arbitrary aperture distribution func�
tion may be used�

band sensor array design� We will consider the de�
sign of an array with a single�sided uniform aper�
ture� although we stress that our design method
is not restricted to uniform apertures� The aper�
ture size is P � � half�wavelengths and the array
is intended to have a FI beam pattern over a �	��
frequency range� It is not necessary to choose nu�
merical values for the frequency range� but rather�
we will introduce nondimensional variables by scal�
ing all array dimensions by �U �

From ��	� it follows that a minimum of N � ��
sensors are required to avoid spatial aliasing� The
maximum spacing relation �
� yields the sensor lo�
cations given in Table I� These sensor locations
have been made dimensionless by expressing them
in terms of �U � �Using a bandwidth suitable for
speech with fL��		 Hz and fU��			 Hz results in
an array that is approximately ��� metres long��

For a uniform aperture distribution� Theorem �
implies the use of primary �lters having ideal low�
pass �lter characteristics� In order to demonstrate
a practical design we have chosen to implement
the primary �lters with causal �th order Butter�
worth low�pass �lters �possessing both magnitude
and phase components�� This will result in an
aperture distribution having the same Butterworth
shape� The magnitude and phase of the practical
aperture distribution are shown in Fig� � �solid
curves� along with the ideal zero�phase uniform
aperture distribution �dashed curves�� the spatial
variable is expressed in terms of half wavelength�
Since a Butterworth low�pass �lter is not strictly
bandlimited� it follows from Theorem � that the re�
sultant aperture distribution will not have strictly
�nite support� the signi�cance of this statement is
made apparent later�

Figure �� Aperture distribution used in the example
FI array �solid curve� and an ideal uniform aperture
distribution �dashed curve�� The spatial variable
has been normalized in terms of half�wavelength�

The array response produced by the given aper�
ture distribution is shown in Fig� � along with the
pattern that would be produced by an ideal uniform
aperture� The e�ect of the nonzero phase compo�
nent of the aperture distribution is apparent in this
diagram� The negative slope of the phase is equiv�
alent to delay steering� thus resulting in the main
beam being o�set from � � 	�� this e�ect could be
nulli�ed by use of appropriate delays across the ar�
ray� The asymmetric sidelobes are due to the phase
non�linearity�
Applying the trapezoidal approximation method

described in Section ��� results in the frequency in�
variant beam pattern shown in Fig� 
 in which the
array spatial response is displayed as a function of
frequency over the entire design frequency band�
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i � � � � � � � � � 	 �� �� �� �� �� �� ��

xi��U � �
� � �
� � �
� �
� �
	 �
	 �
� �
� 	
� ��
	 ��
	 ��
� ��
� ��

Table I� Sensor locations for example FI array �given in terms of the upper design wavelength �U ��

Figure �� Array responses produced by the aper�
ture distribution used in the example FI array �solid
curve� and an ideal uniform aperture distribution
�dashed curve�� The patterns are calculated at
f � fU �

Frequency has been expressed as multiples of fL�
The array beam pattern is remarkably close to be�
ing frequency independent with negligible variation
in main beam magnitude or beam width� Slight rip�
ple is evident in the sidelobes� it can be seen that
the peaks of the sidelobe ripple correspond to the
cuto� frequencies of the sensors given by

fi �
Pc

�xi
� i � f	� �� � � � � N � �g�

The peak response of the array as a function of
frequency is shown in Fig� �	� The variation in
peak response at frequencies close to fL is due to
the primary �lters not being strictly bandlimited�
thus not placing a �nite support constraint on the
aperture distribution� Because of the �nite size of
the array� a portion of the aperture distribution is
not realized� This e�ect is most pronounced at fre�
quencies close to fL where a signi�cant portion of
the aperture distribution is discarded� resulting in a
slight di�erence in beam pattern in the lowest por�
tion of the design frequency band� There are several
methods which could be used to alleviate this incon�
sistency in the beam pattern at low frequencies�

� The primary �lters could be made to be strictly

Figure 
� Array response of example FI array over
the entire design frequency range� Frequencies have
been normalized and are expressed in terms of fL�

bandlimited� thus producing an aperture distri�
bution which has �nite support� �This is not
physically realizable��

� The cuto� frequencies of the primary �lters
could be reduced so that a negligible portion
of the aperture distribution was discarded at
frequencies close to fL� This is equivalent to
lengthening the array to produce the same re�
sult�

� The secondary �lter� which depends only on
frequency� could be modi�ed such that the
peak main beam level was equalized� This
method attempts to compensate for the loss
of a portion of the aperture distribution at low
frequencies by weighting the remainder of the
aperture more strongly� This demonstrates an
important practical consideration of our design
method� a simple �lter can be used for each of
the N primary �lters� and any ripple on the
main beam level can then be removed by mod�
i�cation of the single secondary �lter response�
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Figure �	� Peak array response of example FI array
as a function of frequency� Frequencies have been
normalized and are expressed in terms of fL�

� Frequency Variant Arrays

��� Theory

The theory for broadband arrays having frequency
invariant beam patterns has been developed� We
will now show that these arrays are only a subset of
a more general class of arrays which we shall refer
to as alpha arrays� The frequency variation of the
beam pattern of an alpha array can be controlled�
and the beam pattern is found to be a function of
f���� where � � �	� ��� Thus� for � � 	 the beam
pattern varies directly with frequency� correspond�
ing to a conventional single frequency array oper�
ated over a range of frequencies� for � � � the beam
pattern is frequency invariant�

Theorem 	 �Alpha Array� Let the output of a
D dimensional continuous sensor be given by

Zf �

Z
RD

S�x� f���x� f� dx

where D � f�� �� �g� S � RD �R� � C is the signal
received at a point x on the sensor for a frequency f �
and � � RD �R� is the sensitivity distribution� The
far��eld beam pattern of the sensor is a function of
f��� if

��x� f� � fD�G�xf��� �f � 	

where � � �	� �� and G � RD � C is an arbitrary
absolutely integrable complex valued function�

This theorem can be easily proven using similar
arguments to those used in Sections ��� and ����

��� Properties of Alpha Arrays

Without loss of generality� properties of alpha ar�
rays will only be given for single�sided one dimen�
sional sensors with the array origin at x � 	�

�� Let L� be the length of the active array at fre�
quency f�� and similarly for L� and f�� The
ratio of active array lengths is given by

L�

L�
�

	
f�
f�


�

� ����

�� Let the active aperture size be P� half�
wavelengths at frequency f�� and similarly for
P� and f�� The ratio of active aperture sizes is
given by

P�
P�

�

	
f�
f�


���

� ����

�� If we represent G�xf�� by Af �x� and Hx�f�
�as in the case of FI arrays�� then Theorem �
becomes

H�x�f� � Hx�

���f� ��
�

and a similar relation for the aperture distri�
bution is

A�f �x� � Af �

�x�� ����

Thus the �lter responses �and aperture distri�
butions� are related by a dilation property �as
was the case for FI arrays�� but the dilation
is not a linear function of the position of the
sensor when � 	� ��

��� Design of Alpha Arrays

The method of approximating a continuous alpha
sensor is identical to that for a FI sensor �see Sec�
tions ��� and ����� only the spacing function requires
further comment� The sensor positioning function
for an alpha array with a single�sided aperture and
the origin at x � 	 is given by

xi �

	
Pi

Pi � �



xi�� ����

where

Pi � Pi��

	
fi��
fi


���

� Pi��

	
xi
xi��


�����

�c�f� ��� for frequency invariant arrays��
It is di�cult to solve the above equations analyt�

ically� so the following recursive procedure is used
to determine the sensor locations�
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�� Assume that the upper and lower design fre�
quencies �fU and fL�� �� and the aperture size
in half wavelengths at the upper design fre�
quency �PU � are given� The total array length
is given by

xN �
PLc

�fL

where c is the speed of wave propagation and
PL is the aperture size in half wavelengths at
fL �obtained from ������

�� Repeat

xi � xi�� �
c

� fi��

fi �

	
xN
xi


 �
�

fN

until xi �
PUc
�fU

�

�� Divide the remainder of the array into PU equal
sections �with spacing c

�fU
��

For � � 	 this procedure results in an equi�spaced
array designed for operation at fU � but used over
the frequency range fL to fU � Hence� the beam pat�
tern will spread out for frequencies less than fU � as
found when a conventional single frequency array is
operated at frequencies below the design frequency�
For � � � this procedure results in a FI array with
sensor locations similar to those given in �
�� �The
slight di�erence in sensor locations occurs because
sensors are placed from the high frequency end of
the array in the FI design procedure� whereas sen�
sors are placed from the low frequency end in the
alpha array design procedure��
The importance of the alpha array is that by al�

lowing controlled frequency variation into the beam
pattern� less sensors are required than for a corre�
sponding FI array� This is made apparent in the
following example�

��� Alpha Array Example

To demonstrate the use of alpha arrays� a sim�
ple design example is presented� The design is for
� � 	���� covers a frequency range of �	��� and
has an aperture size of PU � � half�wavelengths
at the upper design frequency� Again we are using
causal �th order Butterworth �lters to approximate
an ideal uniform aperture distribution� The beam
pattern of this design is shown in Fig� ��� This
�gure should be compared with Fig� 
 which shows
the beam pattern of a FI array �i�e� � � �� with
P � �� designed for the same frequency range� The
array with � � 	��� has a total length of �
���U

and uses �� elements� compared with the FI array
�with � � �� which has a total length of ���U and
uses �� elements�

Figure ��� Array response of example alpha array
�with � � 	��� and PU � �� over the entire design
frequency range� Frequencies have been normalized
and are expressed in terms of fL�

� Conclusion

We have presented the theory and design method�
ology for broadband sensor arrays in which the
far��eld beam pattern is constant over a desired
frequency range� A continuously distributed sen�
sor was used to derive a FI beam pattern prop�
erty which is valid for one� two� and three dimen�
sional arrays� The array can then be formed by
approximating this continuous sensor with a �nite
set of discrete sensors� The approximation method
is arbitrary� although a simple approximation cor�
responding to the trapezoidal integration method
was discussed�
It was shown that the frequency response of the

�lter applied to the output of each sensor can be
factored into two components� �i� a primary �lter
response which is related �both in magnitude and
phase� to a slice of the desired aperture distribution�
and �ii� a secondary �lter which is independent of
the sensor and depends only on the dimension of
the array� These results imply that in the case of
a linear array �and for suitable sensor geometries
in two and three dimensional arrays� the primary
�lters are related to each other by a frequency dila�
tion�
An example based on �th order Butterworth �l�

ters was given to illustrate that these theoretical in�
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vestigations lead to practical and conceptually sim�
ple designs�
Finally� the theory for a more general class of

arrays in which the frequency dependence of the
beam pattern can be controlled was presented� This
theory served to show the relationship between our
broadband FI arrays and conventional single fre�
quency designs�
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Appendix A � Proof of Theo�

rem �

Assume that a frequency invariant beam pattern
b���� � � ������ ���� is given� We can rewrite ���
as

B�s� �

Z �

��

�

	
y

f
� f



e����sy f��dy� s � ����c� ��c�

�A���
with the change of variables s � c�� sin � and y �
xf �
Since B�s� is frequency invariant� the integrand

must also be frequency invariant� Therefore de�
�ne G�y� � f����y�f� f�� for some function G����
Equation �A��� can now be rewritten as

B�s� �

Z �

��

G�y�e����sydy � FfG�y�g �A���

where Ff�g represents the Fourier transform� It
is now necessary to �nd to what extent G�y� is
determined from B�s�� which is only speci�ed for
s � ����c� ��c��

Consider a function H�f� speci�ed only for f �
��F� F �� This has an inverse Fourier transform of

h�t� � h��t� � h��t�

where

Ffh��t�g �

�
H�f�� f � ��F� F �
	� otherwise

and

Ffh��t�g �

�
	� f � ��F� F �
A�f�� otherwise

where A��� is an arbitrary function� Hence� any
high frequency perturbation in the function h�t� will
not produce any e�ect on the function H�f�� f �
��F� F ��
By analogy� G�y� has a Fourier transform� ��s��

satisfying

��s� � FfG�y�g �

�
B�s�� s � ����c� ��c�
A�s�� otherwise�

�A���
By Plancherel�s Theorem ��
�� the function G���

is uniquely determined from ���� if B��� and A���
are both square�integrable functions� and

A

	
����i

c



� lim

s�
����i

c

B�s�

for i � 	� ��


