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The problem of parametrizing single hidden layer scalar neural net�

works with continuous activation functions is investigated� A connection

is drawn between realization theory for linear dynamical systems� ratio�

nal functions and neural networks that appears to be new� A result of

this connection is a general parametrization of such neural networks in

terms of strictly proper rational functions� Some existence and unique�

ness results are derived� Jordan decompositions are developed which

show how the general form can be expressed in terms of a sum of canon�

ical second order sections� The parametrization may be useful for study�

ing learning algorithms�

� Introduction

Nonlinearly parametrized representations of functions � � R � R of the form

��x� �
nX
i��

ci��x� ai� x � R������

have attracted considerable attention recently in the neural network literature� Here

� � R � R is typically a sigmoidal function such as

��x� �
�

� � e�x
����	�

�



but other choices than ���	� are possible and of interest� Sometimes more complex

representations such as

��x� �
nX
i��

ci��bix� ai����
�

or even compositions of these are considered� Yet more generally� functions � � Rm �
R are also studied�

Di�erent choices of the �activation function
 � � R � R correspond to di�erent

representation problems� For example� if ��x� � x�� then ����� amounts to �nding

the partial fraction decomposition of a rational function ��x�� The coe�cients ai and

ci arising in ����� here have the interpretation of the poles and residues respectively

of ��x�� In this example it is obvious also that complex coe�cients ai� ci � C arise

naturally� as a real rational function � � R � R may well have complex poles and

residues�

Another case of interest is where ��x� � xd� d � N � is a monomial� Then �����

is equivalent to �nding a decomposition of a polynomial ��x� of degree � d as a

weighted sum of d�th powers of linear polynomials x�ai� This is usually referred to

as Waring�s problem for binary forms� with early results going back to Sylvester �	��

and Gundel�nger ������� There is also an interesting connection with Hilbert�s ��th

problem� asking whether a positive polynomial � � Rm � R can be represented as a

sum of squares of polynomials �or rational functions�� In fact if the coe�cients ci in

����� are all positive and the degree d of � is even� then ����� is such a representation

of a polynomial as a sum of squares of polynomials�

If � � R � R is a sigmoidal function such as ���	�� then functions of the form �����

are described by one �hidden layer
 neural networks with n hidden layer thresholds

ai and output weights ci� but with no input weights� The task then is to �nd� or

to �learn
� an exact or approximate representation ����� of some function� There

are now a number of results available describing the �universal approximation prop�

erties
 of such classes of feedforward neural networks� Nearly all of these ��� �� ���

are in the form of denseness results� saying that if one takes enough nodes� one can

make an arbitrarily good approximation�

Motivated by analogies with model reduction of linear control systems we became

interested in �nding best approximations of functions by neural network representa�

tions ������ with an upper bound on the number n of such nodes� Such questions are

important in order to estimate the approximation theoretic capabilities of learning

algorithms for ������ For the special sigmoid function ���	� an analysis has been pre�



sented in �	��� where the problem has been shown to be deeply related to classical

rational approximation theory� In order to approach such neural network approx�

imation tasks� possibly valid for a large class of activation functions � � R � R� it

becomes important to study the parametrization problem for the class of functions

described by ������

It has been shown in �	�� that there often exists no best approximation of a

function �� R � R by functions of the type ������ Thus the class of functions

����� is not rich enough to guarantee the convergence of general learning algorithms�

Also� the di�erent parametrizations of the class ����� may well have an impact on

the transient behaviour of learning algorithms and are thus worth being studied in

more detail� �See ��� for some examples of the e�ect of di�erent parametrizations

on some very simple learning problems��

��� What this paper is about

The purpose of this paper is to explore such parametrization issues regarding �����

�and to a lesser extent ���
��� and in particular to show the close connection these

representations have with the standard system�theoretic realization theory for ratio�

nal functions� The main result of this paper is theorem ���� We �rstly show how to

de�ne a generalization of ����� parametrized by �A� b� c�� where A is a matrix over a

�eld� and b and c are vectors� �This is made more precise below�� The parametriza�

tion involves �A� b� c� being used to de�ne a rational function� The generalized ��

representations are then de�ned in terms of the rational function� Representations

����� correspond to the case where A is diagonalizable� In that case� the thresholds

ai and the output weights ci are interpreted as the poles and residues of the asso�

ciated rational �transfer function
 c�xI � A���b� This connection allows us to use

results available for rational functions in the study of neural�network representations

such as ������ It will also lead to an understanding of the geometry of the space of

functions�

That there is indeed a close connection between representations of the form �����

and rational functions was shown in �	�� �and previously used in �	
��� There it was

shown that ����� can be written as exr�ex� when ���� is given by ���	�� The function

r��� is a strictly proper rational function� and the coe�cients ai in ����� correspond

to the logarithm of the poles of r���� and the ci coe�cients correspond to the residues

of r�z� at z � eai �

In the following section we shall show that representations of the form ����� in



general can be parametrized by rational functions in a single variable �� Further�

more� the more general representations ���
� are shown to be parametrized by ratio�

nal functions in two variables� They correspond to so�called separable 	�D systems�

arising in two dimensional image processing� Then� by using ideas originally from

the theory of state�space realizations of linear dynamical systems� we give conditions

under which a representation ����� exists for a given function ����� More generally�

the existence and uniqueness properties of representations ��x� � c��xI � A�b are

investigated� where A is an n�n matrix� b is a n�vector and c is a n�covector� Such

representations naturally extend representations ����� where A � diag�a�� � � � � an� is

diagonal�

� Realizations Relative to a Function

In this section we explore the relationship between sigmoidal representations ���	� of

real analytic functions � � I� R de�ned on an interval I� R� real rational functions

de�ned on the complex plane C � and the well established realization theory for linear

dynamical systems

�x�t� � Ax�t� � bu�t�

y�t� � cx�t� � du�t��

For standard textbooks on systems theory and realization theory we refer to ���� ���

		��

Let K denote either the �eld R of real numbers or the �eld C of complex numbers�

Let � � C be an open and simply connected subset of the complex plane� containing

I� and let � � �� C be an analytic function de�ned on �� For example� � may be

obtained by an analytic continuation of some sigmoidal function � � R � R into the

domain of holomorphy of the complex plane�

Let T � V � V be a linear operator on a �nite�dimensional K �vector space V such

that T has all its eigenvalues in �� Let � � � be a simple closed curve� oriented

in the counter�clockwise direction� enclosing all the eigenvalues of T in its interior�

More generally� � may consist of a �nite number of simple closed curves �k with

interiors ��
k such that the union of the domains ��

k contains all the eigenvalues of

T �

De�nition ��� The matrix valued function ��T � is de�ned as the contour integral



���� p����

��T � ��
�

	�i

Z
�
��z� �zI � T ��� dz��	���

Note that for each linear operator T � V � V� ��T � � V � V is again a linear

operator on V that is independent of the choice of ��

If we now make the substitution T �� xI �A for x � C and A � V � V K �linear�

then

��xI � A� �
�

	�i

Z
�
��z� ��z � x�I � A��� dz

becomes a function of the complex variable x� at least as long as � contains all the

eigenvalues of xI � A� Using the change of variables � �� z � x we obtain

��xI � A� �
�

	�i

Z
��
��x � �� ��I � A��� d��	�	�

where �� � �� x � � encircles all the eigenvalues of A�

Given an arbitrary vector b � V and a linear functional c � V � K we then

achieve the representation

c��xI � A�b �
�

	�i

Z
�
��x � �� c��I � A���b d��

�	�
�

Note that in �	�
� the simple closed curve � � C is arbitrary� as long as it satis�es

the two conditions

� encircles all the eigenvalues of A�	���

x� � � fx � �j � � �g � ���	���

We will take �	�
� to be the de�nition of c��xI � A�b�

Let � � I� R be a real analytic function in a single variable x � I� de�ned on

an interval I� R�

De�nition ��� A quadruple �A� b� c� d� is called a �nite�dimensional ��realization

of � � I� R over a �eld of constants K if for all x � I

��x� � c��xI � A�b � d�	���

holds� where the right hand side is given by 	
��� and � is assumed to satisfy the



conditions 	
���
	
���� Here d � K � b � V� and A � V � V� c � V � K are K �linear

maps and V is a �nite dimensional K �vector space� If d � �� we will sometimes just

write of a ��realization �A� b� c��

De�nition ��� The dimension 	or degree� of a ��realization is dimK V� The ��

degree of �� denoted ������ is the minimal dimension of all ��realizations of �� A

minimal ��realization is a ��realization of minimal dimension ������

The above de�nition of a ��realization is a rather straightforward extension of

the familiar system�theoretic notion of a realization of a transfer function� In this

paper we will address the following speci�c questions concerning ��realizations�

Q� What are the existence and uniqueness properties of ��realizations�

Q� How can one characterize minimal ��realizations�

Q� How can one compute ������

Q� Given �� when does there exist a ��realization �A� b� c� d� with A diagonalizable

over K � and what is the minimal dimension of such a realization�

Examples of ����

Important examples of activation functions � � R � R are�

�� ��x� � x��

In this case ��realizations are just the standard realizations of analytic func�

tions or formal power series in systems theory� Kalman�s realization theorem

���� solves questions ��
 for rational functions and� in fact� for arbitrary formal

power series ��x��

	� ��x� � xd� d � N

This is known as Waring�s problem for binary forms �being a generalization

of the number theoretic question bearing that name ��	��� A function ��x�

admits a ��realization �A� b� c� if and only if it is a polynomial of degree � d�

Over C and over R with d even� the problem has been solved by Helmke ��
��


� ��x� � �� � e�x���

We refer to this as the standard sigmoid case� This function ��x� is widely

used in feedforward neural networks� Other cases of interest include bump

functions such as e�g� ��x� � e�x
�

�



Remarks

�� K is usually either the �eld R of real numbers or the �eld C of complex

numbers� Even if ��x� and ��x� are considered to be real valued functions�

complex realizations may be of interest� i�e� where V is a C �vector space� b � V

and A � V � V� c � V � C are C �linear maps� This topic will be of importance�

for example� if realizations are sought where A is a diagonal matrix �see section

��� below�� In fact� if A is diagonalizable with complex eigenvalues then the

diagonalization of A leads a �nite sum sigmoidal representation of ��x�� Such

complex realizations may thus yield �nite sum representations using complex

coe�cients� even in cases where exact �nite sum representations with real

coe�cients do not exist� This is one reason why complex realizations may

prove to be important�

	� The standard realizations arising in systems theory have ��x� � x��� In this

case� a function ��x� has a �nite dimensional ��realization if and only if ��x�

is rational with ���� 	�� �����

��� Generalizations� Realizations Related to
nX

i��

ci�	bix� ai


In �	�
�� the strictly proper �transfer function


g��� �� c��I � A���b

can be extended to an arbitrary rational function �and thus in particular to a poly�

nomial�� To see this we consider the integral transformation

��x� �
�

	�i

Z
�
��x� �� g��� d�

�	���

for an arbitrary rational function g��� � p����q��� � K ���� Clearly �	��� makes

sense for any simple closed integration path � which encircles the poles of g��� such

that x� � � � for all x � I� Moreover� by the residue theorem�

�

	�i

Z
�
��x� �� g��� d� �

X
g�z���

res
��z

���x� �� g���� ��	���

When all the poles of g��� are distinct� �	��� is just a weighted sum of residues�

where the sum is over all �nite poles of g���� We note in passing that formula �	���



is reminiscent of Gaussian quadrature formulae� see� e�g� � � 	���

More generally one can consider ��realizations �E�A� b� c� d�� where E�A � V � V�

c � V � K are K �linear maps satisfying det�xE � A� 	� �� b � V� d � K such that

��x� � c��xE � A�b� d�	� �

holds for all x � I� Here we de�ne

c��xE � A�b ��
�

	�i

Z
�
���� c��I � xE � A���b d�

�	����

where� for x � I �xed� � encircles all the roots � of det��I � xE �A� � � such that

x�� � � for all x � I� Note that the �transfer function
 g�x� �� � c��I�xE�A���b
is a rational function in two variables ��� x�� While such rational functions arise

naturally in applications� such as two dimensional image processing� the system

theoretic interpretation of such transfer functions in the context of neural networks

is left as an open question�

Of course commuting ��realizations �E�A� b� c� d� with

EA � AE�	����

are of obvious interest�

Lemma ��� �� Let S � V � V be an invertible K �linear map� Then �E�A� b� c� d�

is a ��realization of � if and only if

�SES��� SAS��� SB� cS��� d�

is a ��realization of �� In particular� for E � In 	the n � n identity�� if

�A� b� c� d� is a ��realization of � then �SAS��� Sb� cS��� d� is a ��realization

of � for all invertible transformations S � V � V�


� If A � diag���� � � � � �n� is diagonal� then for each x�

��xI � A� � diag���x � ���� � � � � ��x� �n����	��	�

Proof The proof is an immediate consequence of de�nition �	�
�� once it is noticed

that

cS����xSES�� � SAS���Sb � c��xE � A�b



holds for all x � I�

Remark In the case ��x� � �� � e�x��� it is of interest to compare the repre�

sentation �	��� with the representation used in �	��� namely ��x� � exr�ex�� where

r��� is a strictly proper rational function with all its poles in C � ������ �Such a

representation was also used in �	
��� It is easily veri�ed �see �	�� for details�� that

a representation ����� is equivalent to ��x� � exr�ex�� with

r�z� �
nX
i��

ci
z � eai

�

Let g��� be a strictly proper rational function and � an arc encircling the poles of

g���� Equating the two representations we have

exr�ex� �
�

	�i

Z
�
��z � x� g�z� dz

�
�

	�i

Z
�

ex

ex � e�z
g�z� dz�

Let y � ex and so x � log y� Then

r�y� �
�

	�i

Z
�

�

y � e�z
g�z� dz�

Let zk� k � �� � � � � n� denote the poles of g�z�� Then by the residue theorem�

r�y� �
nX

k��

res
z�zk

g�z�

y � e�z
�

Thus if g�z� has a pole at z � 	� r�z� has a pole at z � �e��� Speci�cally� if

g�z� � c�zI � A���b� then

r�z� � c�zI � e�A���b��	��
�

� Existence of ��realizations

We now consider the question of existence of ��realizations� To set the stage� we

consider the systems theory case ��x� � x�� �rst� Assume we are given a formal



power series

��x� �
NX
i��

�i
i!
xi� N � ���
���

and that �A� b� c� is a ��realization in the sense of de�nition 	�	� The Taylor expan�

sion of c�xI � A���b at � is �for A nonsingular�

c�xI � A���b �
�X
i��

����icA��i���bxi��
�	�

Thus

�i
i!

� ����icA��i���b� i � �� � � � � N��
�
�

if and only if the expansions of �
��� and �
�	� coincide up to order N � Observe ����

that

��x� � c�xI � A���b and dimV 
�

�

��x� is rational with ���� � ��

The possibility of solving �
�
� is now easily seen as follows� Let V � RN�� �

Map�f�� � � � � Ng�R� be the �nite or in�nite �N � ���fold product space of R� �Here

Map�X� Y � denotes the set of all maps from X to Y �� If N is �nite let

A�� � �

�
�������

� � � � � �

� � � � � �
� � �

���
���

� � � � � �

�
�������
� R

�N�����N��� ��
���

b � �� � � � � ��T � V� c �

�
�N
N !

� ��� ���
��
	!
� � � � �

�N��
�N � ��!

�
�

For N � � we may take� by an abuse of notation� A�� � RN � RN as the shift

operator

A�� � RN � R
N

A�� � �x�� x�� � � �� �� ���� x�� x�� � � ���
���

and b � ��� �� � � ��� c � ��� ��� ���
��
	!
� � � ���



Note that there may be �nite�dimensional realizations as well�

We will now consider more general ����� We then have

De�nition ��� Let ��x� be a meromorphic function and let

��x� �
NX
i��

�i
i!
xi� N � �

be a� possibly �nite� formal power series in the variable x� A triple �A� b� c� is called

an N �th order ��realization of ��x� if the following conditions are satis�ed�

	a� ��x� is analytic on a neighborhood of the spectrum of A in C �

	b� The power series expansions of ��x� and c��xI � A�b at x � � coincide up to

order N �

By condition �a� the i�th derivative of the function x �� ��xI�A� at x � � exists

and is equal to ��i��A�� where ��i��x� denotes the i�th derivative of the function ��x��

Therefore condition �b� is equivalent to

�i � c��i��A�b for i � �� � � � � N��
���

Observe that condition �a� is satis�ed for ��x� � x�� if and only if A is invertible�

Moreover� since the standard sigmoid ��z� � ���e�z��� is analytic for any complex

variable z � C with j
zj 
 �� condition �a� is satis�ed for the standard sigmoid if

A has all its eigenvalues in fz � C � j
zj 
 	�g�
If ��x� � x��� and A � C

n�n is invertible� then ��i���A� � i!�A���i��� Conse�

quently� in this case� a triple �A� b� c� is an N �th order ��realization if and only if

the partial realization condition �
�
� is satis�ed� Using the terminology of linear

systems theory we may thus say that �A� b� c�� with A invertible� is an N �th order

��realization for ��x� � x�� if and only if �F� g� h� � � ��A��� A��b� c� is a partial

realization of ���� ��� � � � �
�N
N �

�� i�e� if and only if

�i
i!

� hF ig

holds for i � �� � � � � N �

The existence part of the realization question Q� can now be restated as

Q� Given a meromorphic function ��x� and a sequence of real numbers ���� � � � � �N��



does there exist an N �th order ��realization �A� b� c� with

�i � c��i��A�b� i � �� � � � � N��
���

Thus the realization question Q� is essentially an interpolation question �Loewner

interpolation �	� ���� which extends the partial realization task from linear system

theory� where ��x� � x�� to more general sigmoid functions ��x��

Let �� � cA�b� � � N� � and let

F �

�
�������

�� �� �� � � �
�� �� �	 � � �
�� �	 �
 � � �
���

���
���

� � �

�
�������
� ��i�j�

�

i�j����
���

Write

��� �

�
����������

��

��

���	!

�	�
!
���

�
����������
� and ��� �

�
�������

��

��

��
���

�
�������
��
� �

Then �
��� �for N ��� can formally be written as

��� � F � �����
����

Of course� any meaningful interpretation of �
���� requires that the in�nite sumsP
�

j��
�i�j
j�

�j� i � N� � exist� This happens� for example� if
P
�

j�� �
�
i�j 
�� i � N� andP

�

j��

�
�j
j�

	�

 � exist� We have already seen that every �nite or in�nite sequence

��� has a realization �A� b� c�� Thus we obtain

Corollary ��� Suppose that the in�nite sums
P
�

j��
�i�j
j�

�j� i � N� � exist� A function

��x� admits a ��realization if and only if ��� � image�F ��

Corollary ��� Suppose that the in�nite sums
P
�

j��
�i�j
j�

�j� i � N� � exist� Let

H � ��i�j�
�

i�j�� ��
����

There exists a �nite dimensional ��realization of ��x� if and only if ��� � F ��� with



rankH 
�� In this case ����� � rankH�

Proof This follows immediately from Kronecker�s theorem and systems realization

theory� see ���� ����

Remark It would be desirable to have an explicit characterization of when F

is invertible or surjective via Hankel operator theory for analytic functions� Also

it would be nice to know how to compute the inverse of F � i�e� ��� � F������

Furthermore� how can one characterize pairs of analytic functions ��� �� such that

��i�j�
�

i�j�� has �nite rank� When rankH 
 �� then
P
�

i�� �ix
�i�� is rational and

thus �i � cAib� i � N� for �A� b� c� is �nite dimensional�

� Uniqueness

In this section we consider the uniqueness of the representation �	�
�� We require

several de�nitions �rst�

De�nition ��� A system fg�� � � � � gng of continuous functions gi � I� R� de�ned

on an interval I� R� is said to be linearly independent� if for every c�� � � � � cn � R

with
Pn

i�� cigi�x� � � for all x � I� then c� � � � � � cn � ��

Remark The linear independency condition is implied by the stronger condition

that

det

�
����
g��x�� � � � g��xn�

���
���

gn�x�� � � � gn�xn�

�
���� 	� �

for all distinct �xi�
n
i�� in I� Equivalently� if

Pn
i�� cigi�x� has n distinct roots in I�

then c� � � � � � cn � ��

De�nition ��� A subset A of C is called self�conjugate if a � A implies a � A�

Let � � R � R be a continuous function and de�ne ��j�zi
�x� �� ��j��x � zi�� Let


 �� �
�� � � � � 
m� where
mX
j��


j � n� 
j � N � 
j � �� j � �� � � � � m



denote a combination of n of size m� For a given combination 
 � �
�� � � � � 
m� of

n� let I �� f�� � � � � mg and let Ji �� f�� � � � � 
ig� Let Zm �� fz�� � � � � zmg and let

��
� Zm� �� f��j���zi
� i � I� j � Jig������

De�nition ��� If for all m � n� for all combinations 
 � �
�� � � � � 
m� of n of

size m� and for any self�conjugate set Zm of distinct points� the class of functions

��
� Zm� are linearly independent� then � is said to be l�i� �linearly independent�

generating of order n�

A condition similar to this was de�ned in ���� They considered a uniqueness condition

on ���� for representations of the form
Pn

i�� ci��bix � ai� �IP� and
Pn

i�� ci��bix�

�WIP��

Theorem ��� �Uniqueness� Let � � R � R be l�i� generating of order at least 	n

on I and let �A� b� c� and � "A�"b� "c� be minimal ��realizations of order n of functions

� and "� respectively� Then the following equivalence holds

c��xI � A�b � "c��xI � "A�"b �x � I


����	�

c��I � A���b � "c��I � "A���"b �� � R�

Conversely� if 	��
� holds for almost all order n triples �A� b� c�� � "A�"b� "c�� then

� � R � R is l�i� generating on I of order � n�

Proof

�Equivalence� By hypothesis �A� b� c� and � "A�"b� "c� are minimal realizations of �

and "� �of order n�� If � � "�� then

c��xI � A�b � "c��xI � "A�"b�

Thus for

g��� �� c��I � A���b

and

"g��� �� "c��I � "A���"b



we have

�

	�i

Z
�
��x� ��h��� d� � � �x � I���
�

with h��� �� g��� � "g���� having degree � 	n� By the residue theorem� condition

���
� is equivalent to

X
h�zi���

res
z�zi

���x � z�h�z�� � �������

where the sum is over all distinct poles fz�� � � � � zmg of h�z� �m � 	n�� Write the

partial fraction expansion of h�z� as

h�z� �
mX
i��

�iX
j��

hij
�z � zi�j

�
mX
i��


i � 	n������

�It is always of the form ����� since h�z� is the di�erence of two strictly proper

rational functions and hence is itself strictly proper�� Recall the general formula for

residues of a product of an analytic and a meromorphic function� For the case of

one pole �possibly of multiplicity greater than one� we have�

res
z�z�

�
�f�z�



� kX
j��

aj
�z � z��j

�
A
�
� �

kX
j��

aj
�j � ��!

f �j����z��

�see for example �	���� Thus we can express ����� as

X
i�I

X
j�Ji

hij
�j � ��!

��j����x� zi� � �������

Since � is l�i� generating of order at least 	n� ����� implies that hij � �� i � I� j � Ji�

Hence h�z� � � and so g�z� � "g�z� as required�

�Converse� Assume � is not l�i� generating of order at least n� That is� for some

m � n there is a combination 
 � �
�� � � � � 
m� of n of size m and a self�conjugate

set of points Zm � fz�� � � � � zmg of size m such that for some l � I � f�� � � � � mg�
and some jl � Jl � f�� � � � � 
lg there is a sequence of coe�cients ��ij� such that

��jl����x� zl� �
XX
�i�j��I�l�

�ij

�j � ��!
��j����x� zi������



where

I�l� �� f�i� j� � �i � I � flg� j � Ji� or �i � l� j � Jl � fjlg�g�
Now

c��xI � A�b �
X

g�zi���

res
z�zi

���x� z�g�z��

�
X
i�I

X
j�Ji

gij�
�j����x� zi�

�j � ��!
�����

where gij are the coe�cients of the partial fraction expansion of g�z��

g�z� �
X
i�I

X
j�Ji

gij
�z � zi�j

���� �

By ����� and ����� we can then write

c��xI � A�b �
XX
�i�j��I�l�

gij�
�j����x � zi�

�j � ��!
�

gl�jl�
�jl����x � zl�

�jl � ��!

�
XX
�i�j��I�l�

gij�
�j����x � zi�

�j � ��!
�

XX
�i�j��I�l�

gl�jl�ij�
�j����x � zi�

�j � ��!

�
XX
�i�j��I�l�

�ij�
�j����x � zi�

where

�ij ��
gij � gl�jl�ij

�j � ��!
� �i� j� � I�l��������

Now jI�l�j � n� � but there are n independent parameters gij� i � I� j � Ji� Thus

given �ij and �ij� gl�jl can be chosen arbitrarily �with the gij given by ������� such

that �ij remains invariant� Hence c��xI�A�b is unchanged� �In fact gl�jl generates a

linear subspace�� But g��� changes and� for di�erent choices of gl�jl� is not necessarily

equal to "g����

The following result gives examples of activation functions � � R � R which are

l�i� generating�

Lemma ��� Let d � N� � Then

�� The function ��x� � x�d is l�i� generating of arbitrary order�


� The monomial ��x� � xd is l�i� generating of order d� ��



�� The function e�x
�

is l�i� generating of arbitrary order�

Proof For ��x� � x�d we have ��j��x� � ����j Qj��
l�� �d�l�x�d�j� Let z�� � � � � zm � C

be distinct complex numbers and let 
 � �
�� � � � � 
m� be a combination of n of

size m� Then
mX
i��

�i��X
j��

cij�
�j��x � zi� �

mX
i��

�i��X
j��

cij
"cij

�x � zi�d�j
�

with "cij � ����jcij Qj��
l�� �d� l�x�d�j� is a strictly proper rational function of degree

� n �m�d � ��� Therefore it vanishes identically on a nontrivial interval I if and

only if the coe�cients cij are all zero� This proves ���

To prove 	� let us assume for simplicity that �
�� � � � � 
m� � ��� � � � � ��� m � d���

The general case is treated analogously� Thus suppose there are c�� � � � � cd�� � R and

d � � distinct complex numbers z�� � � � � zd�� given with
Pd��

i�� ci��x � zi� identically

zero on the interval I� R� Thus for all x � I

� �
nX
i��

ci��x � zi� �
d��X
i��

ci�x� zi�
d �

dX
j��

�
d��X
i��

ci

�
d

j

�
zd�ji

�
xj�

Thus for l � �� � � � � d�
Pd��

i�� ciz
l
i � �� Equivalently�

�
�������

� � � � �

z� � � � zd��

���
���

zd� � � � zdd��

�
�������

�
����

c�
���

cd��

�
���� � ��

Since the Vandermonde matrix is invertible �by assumption that the z�� � � � � zd�� are

distinct� it follows that c� � � � � � cd�� � �� Thus xd is l�i� generating of order d���

To prove 
� assume there are c�� � � � � cn such that for distinct complex numbers

z�� � � � � zn we have

nX
i��

cie
��x�zi�

�

� e�x
�

nX
i��

cie
�z�i e��zix � �

for all x � I� Then by the identity theorem for analytic functions�

nX
i��

"cie
��zix � �������



for all x � R with "ci � cie
�z�

i � By di�erentiating ������ n� � times and evaluating

at x � � we obtain

nX
i��

"ci��	zi�l � �� l � �� � � � � n� ��

Thus� using the invertibility of the Vandermonde matrix�

�
�������

� � � � �

z� � � � zn
���

���

zn��� � � � zn��n

�
�������

�
����

"c�
���

"cn

�
���� � �

implies that "c� � � � � � "cn � � and hence c� � � � � � cn � �� Thus e�x
�

is l�i� gen�

erating of order n� Since n is arbitrary� the result follows� The general case can be

proved using a residue type argument similar to the proof of theorem � in ����

Remark A simple example of a � which is not l�i� generating of order � 	 is

��x� � ex� In fact� in this case ��x � zj� � cj��x � zi� for cj � ezj�zi� j � 	� � � � � n�

Remark Similarly� the standard sigmoid function ��x� � ���e�x��� is not l�i� gen�

erating of any order � 	� In fact� by the periodicity of the complex exponential

function we have ��x�	�i� � ��x�	�i�� i �
p��� for all x� Thus the l�i� condition

fails for Z� � f	�i��	�ig�
In particular� the above uniqueness result fails for the standard sigmoid case� In

order to cover this case we need a further de�nition�

De�nition ��	 Let # � # � C be a self�conjugate subset of C � A function � � R �
R is said to be l�i� generating of order n on #� if for all m � n� for all combinations


 � �
�� � � � � 
m� of n of size m� and for any self�conjugate subset Zm � # of distinct

points of #� ��
� Zm� consists of linearly independent functions�

Of course for # � C � this de�nition coincides with de�nition ��
� We have the

following extension of theorem ���� The proof is completely analogous to that of

theorem ��� and is thus omitted�



Theorem ��
 �Local Uniqueness� Let � � R � R be analytic and let # � C be

a self�conjugate subset contained in the domain of holomorphy of �� Let I be a

nontrivial subinterval of # � R� Suppose � � R � R is l�i� generating on # of order

at least 	n� n � N� Then for any two minimal ��realizations �A� b� c� and � "A�"b� "c�

of orders at most n the following equivalence holds�

c��xI � A�b � "c��xI � "A�"b �x � I


�����	�

c��I � A���b � "c��I � "A���"b �� � R�

The next result shows that the standard sigmoid function is l�i� generating on a

suitable subset #�

Lemma ��� Let # �� fz � C � j
zj 
 �g� Then the standard sigmoid function

��x� � �� � e�x��� is l�i� generating on # of arbitrary order�

Proof Let distinct points z�� � � � � zn � # and c�� � � � � cn � R be given such thatPn
i�� ci��x � zi� � �� The general case is treated similarly� using the fact that

���x� � ��x������x��� so that all higher order derivatives of ��x� can be expressed

as polynomials in ��x�� Thus for all x � I� #

� �
nX
i��

ci��x � zi� �
nX
i��

cie
x

ex � e�zi
� exr�ex�

with r�z� �
Pn

i��
ci

z�e�zi
� Thus r�z� � � vanishes identically� As z�� � � � � zn � # are

pairwise distinct and as z �� ez is injective on #� the poles �e�zi � i � �� � � � � n� of

r�z� are pairwise distinct� Thus r�z� is of degree n and identically zero� Therefore

c� � � � � � cn � � and the result follows�

Albertini et al ��� showed ��x� � �
��e�x

satis�ed their uniqueness condition IP

using both a residue argument �as above� and directly using Cauchy�s formula for

det� �
ai�bj

�i�j �see ��� lemma ���
�����

� Main Result

As a consequence of the uniqueness theorems ��� and ��� we can now state our main

result on the existence of minimal ��realizations of a function ��x�� It extends a



parallel result for standard transfer function realizations� where ��x� � x���

Theorem ��� �Realization� Let # � C be a self�conjugate subset� contained in

the domain of holomorphy of a real meromorphic function � � R � R� Suppose � is

l�i� generating on # of order at least 	n and assume ��x� has a finite dimensional

realization �A� b� c� of dimension at most n such that A has all its eigenvalues in #�

�� There exists a minimal ��realization �A�� b�� c�� of ��x� of degree ����� �
dim�A� b� c�� Furthermore� there exists an invertible matrix S such that

SAS�� �

�
� A� A�

� A	

�
� � Sb �

�
� b�

�

�
� � cS�� � �c�� c�������

holds�


� If �A�� b�� c�� and �A�
�� b

�
�� c

�
�� are minimal ��realizations of ��x� such that the

eigenvalues of A� and A�
� are contained in #� then there exists a unique in�

vertible matrix S such that

�A�

�� b
�

�� c
�

�� � �SA�S
��� Sb�� c�S

������	�

holds�

�� A ��realization �A� b� c� is minimal if and only if �A� b� c� is controllable and

observable� i�e� if and only if �A� b� c� satis�es the generic rank conditions

rank�b� Ab� � � � � An��b� � n

rank

�
�������

c

cA
���

cAn��

�
�������
� n

for A � K n�n � b � K n � cT � K n �

Proof The existence of minimal ��realizations with ����� � dim�A� b� c� is trivial�

just pick any ��realization �A�� b�� c��� with eigenvalues of A� contained in #� from

the set of all ��realizations of ��x� with smallest possible dimension � dim�A� b� c��



Let �A�� b�� c�� be a minimal ��realization of ��x� with eigenvalues of A� con�

tained in #� By the uniqueness theorem ����

c���I � A��
��b� � c��I � A���b for all ��

Thus ����� follows from the Kalman decomposition� see ����� Moreover� statements

	 and 
 follow immediately from Kalman�s realization theorem for strictly proper

rational transfer functions �����

Remark The use of the terms �observable
 and �controllable
 is solely for formal

correspondence with standard systems theory� There are no dynamical systems

actually under consideration here�

Remark For any ��realization �A� b� c� of the form

A �

�
� A�� A��

� A��

�
� � b �

�
� b�

�

�
� � c � �c�� c���

we have

��A� �

�
� ��A��� �

� ��A���

�
�

and thus c��xI � A�b � c���xI � A���b�� Thus transformations of the above kind

always reduce the dimension of a ��realization�

The following results are immediate consequences of theorem ��� and lemma ����

Corollary ��� Let ��x� � g�k��x� be a k�th derivative of a rational function g�x��

Then

�� ��x� � c�xI � A��k��b for �A� b� c� � K n�n � K n � K ��n �


� If �A� b� c� and � "A�"b� "c� are minimal realizations such that for all x � I

��x� � c�xI � A��k��b � "c�xI � "A��k��"b

then there exists a unique invertible matrix S such that

� "A�"b� "c� � �SAS��� Sb� cS����



�� A realization �A� b� c� � K n�n � K n � K ��n satisfying ��x� � c�xI � A��k��b

is of minimal size n if and only if �A� b� c� is controllable and observable�

Proof By lemma ��� the function ��x� � x�k is l�i� generating of all orders�

Applying theorem ��� to ��x� � x�k and # � C � f�g completes the proof�

The next result is a special case of a more general result appearing in ��
��

Corollary ��� Let ��x� be a polynomial of degree � 	n� Suppose

��x� �
sX

i��

ci�x� ai�
�n

�
sX

i��

c�i�x� a�i�
�n

are two sums of 	nth power representations of ��x� of minimal length s satisfying

s 
 n� Then

�a�i� c
�

i� � �a��i�� c��i��� i � �� � � � � s

for a permutation � � f�� � � � � sg � f�� � � � � sg�

Proof By lemma ��� the function ��x� � x�n is l�i� generating of order 	n � ��

Then �A� b� c� and �A�� b�� c�� de�ned by

A � diag�a�� � � � � as�� b �

�
����
�
���

�

�
���� � c � �c�� � � � � cs�

A� � diag�a��� � � � � a
�

s�� b� �

�
����
�
���

�

�
���� � c� � �c��� � � � � c

�

s�

are ��realizations of ��x� of order s 
 n� By minimality of s� �A� b� c� and �A�� b�� c��

are controllable and observable� Applying theorem ��� to ��x� � x�n� # � C � yields

�A�� b�� c�� � �SAS��� Sb� cS���

for a unique invertible matrix S� Since SAS�� � A� and both A and A� are diagonal�

S must be a permutation matrix� The result follows�



As a �nal consequence we obtain another proof of the following result �c�f� �	��which

contains a more general result�

Corollary ��� Let ��x� � �� � e�x��� and

��x� �
nX
i��

ci��x� ai� �
nX
i��

c�i��x� a�i�

be two minimal length ��representations with

j
aij 
 �� j
a�ij 
 �� i � �� � � � � n�

Then

�a�i� c
�

i� � �a��i�� c��i��

for a unique permutation � � f�� � � � � ng � f�� � � � � ng� In particular� minimal length

representations 	���� with real coe�cients ai and ci are unique up to a permutation

of the summands�

Proof By lemma ���� ��x� � ���e�x��� is l�i� generating on # � fz � C � j
zj 
 �g
of arbitrary order� By minimality of the representations ai 	� aj and a�i 	� a�j for

i 	� j� Let �A� b� c� and �A�� b�� c�� be de�ned by

A � diag�� log a�� � � � �� log an�� b �

�
����
�
���

�

�
���� � c � �c�� � � � � cn��

A� � diag�� log a��� � � � �� log a�n�� b� �

�
����
�
���

�

�
���� � c� � �c��� � � � � c

�

n��

using the standard branch of the complex logarithm function� Then �A� b� c� and

�A�� b�� c�� are controllable and observable ��realizations of ��x�� By theorem ���

applied to ��x� � �� � e�x��� and # � fz � C � j
zj 
 �g the result follows as in

the previous proof�



� Jordan Canonical Forms

We now explore the connection between the Jordan canonical form for minimal

realizations �A� b� c� and ��realizations� Consider the partial fraction decomposition

of a transfer function g��� � c��I � A���b�

g��� �
mX
i��

�iX
j��

cij
�� � zi�j

������

Then

��x� �
�

	�i

Z
�
��x � ��g��� d�

�
mX
i��

�iX
j��

cij res
��zi

�
��x� ��

�� � zi�j

�

�
mX
i��

�iX
j��

cij
�j � ��!

��j����x� zi����	�

By the realization theorem� any minimal ��realization �A� b� c� of ��x� satisfying

�	��� is a controllable and observable realization of the transfer function g���� Thus

by the Jordan control canonical form ����� �A� b� c� is similar to �AJ � bJ � cJ� �

�SAS��� Sb� cS��� with

AJ � diag�z�I �N�� � � � � zmI �Nm�����
�

Ni �

�
�������

� � � � � �
���

� � � � � �
���

� � � � � �

� � � � � �

�
�������
� R

�i��i� i � �� � � � � m������

bJ �

�
�������

e��
e��
���

e�m

�
�������
� ei �

�
�������

�
���

�

�

�
�������
� R

�i ������

cJ � �c��� � � � � c���� � � � � cm�� � � � � cm�m � � K
n ������

where 
i are the multiplicities of the poles zi of g���� and cij are the coe�cients

from the partial fraction expansion ������ Thus for a ��realization �A� b� c� of ��x�



in Jordan control canonical form ���
��������

c��xI � A�b �
mX
i��

�iX
j��

cij
�j � ��!

��j����x� zi��

�����

In particular� in the generic case where �A� b� c� has distinct possibly complex poles�

then

c��xI � A�b �
nX
i��

ci��x � zi��

Remark When � is real� the poles and residues always appear in complex conju�

gate pairs� Thus� by analogy with the systems theory case� it is always possible �in

the generic case of no repeated poles� to write

c��xI � A�b �
X
zi�R

ci��x � zi� �
X
zi 	�R

��cRi � c
I
i � z

R
i � z

I
i � x�

where zi � spectA� cRi � c
I
i � z

R
i � z

I
i are the real and imaginary parts of the residues

and poles of c��I � A���b� and

��cR� cI � zR� zI � x� �� �cR � icI���x� �zR � izI�� � �cR � icI���x� �zR � izI��

is the canonical second�order building block� Thus it is simple to cope with complex

poles in ��realizations using only real parameters�

As an example� consider ��x� � ���e�x���� For simplicity write � � cR� 	 � cI�

� � zR and � � zI � We then obtain

���� 	� �� �� x� �
	�� 	� e�x�� cos���� 	 	 e�x�� sin���

� � 	 e�x�� cos��� � e�� x�� �

The non�uniqueness of the parametrization �due to the periodicity of ez� is apparent

explicitly in the cos��� and sin��� terms�

Another example is ��x� � e�x
�

� In this case�

���� 	� �� �� x� � 	 e�x
���x�����
��� cos�	 x � � 	 � �� � 	 sin�	 x � � 	 � ����

Remark Complex parametrizations for standard neural networks have been dis�

cussed in ���� � �� The motivation there was to be able to use neural networks with

complex inputs�



��� Diagonalizable ��Realizations

A ��realization �A� b� c� of ��x� is called K �diagonalizable if the operator A � V �
V is diagonalizable over K � Since the set of degree n rational functions r�x� �
C �x� with distinct poles is dense in the set of all rational functions of degree n�

C �diagonalizability of a ��realization �A� b� c� is generic property�

Over R� a necessary and su�cient condition for diagonalizable ��realizations is

that the poles of the associated rational function c�xI � A���b are on the real axis

and simple� Certainly this is not a generic property� Note that a su�cient condition

for a real rational function g�x� �
P
�

i�� gix
�i of degree n to have a R�diagonalizable

realization is that the n�n�Hankel �gi�j���
n
i�j�� is positive de�nite� In this case also

the residues of the partial fraction decomposition of g�x� are positive� The following

result provides an answer to question ��

Theorem 	�� Let � � R � R be analytic� possibly only on an interval I� R� and

let # � I be a self�conjugate subset of C contained in the domain of holomorphy of

�� Assume that � is l�i� generating on # of order at least 	n� The set of functions

� � R � R with ��degree ����� � n and which admit a diagonalizable ��realization

over R of length n has the structure of an analytic manifold of dimension 	n� It

has exactly 	n connected components� Each such ��x� with ��degree ����� has a

decomposition

��x� �
nX
i��

ci��x� ai�������

with real numbers ci 	� �� ai � #� ai 	� aj for i 	� j� The di�erent connected

components are characterized by a� 
 � � � 
 an� and sign�ci� � �i� �i � f��� �g�
i � �� � � � � n� Moreover� the decomposition 	���� is unique in the sense that for real

numbers a�� � � � � an � #� c�� � � � � cn and a��� � � � � a
�
n � #� c��� � � � � c

�
n satisfying 	�����

then

a�i � a��i�� c
�

i � c��i�� i � �� � � � � n�

for a permutation � � f�� � � � � ng � f�� � � � � ng�

Proof Let �n � #n � Rn denote the open subset of R�n de�ned by

�n �� f�a�� � � � � an� c�� � � � � cn� � #n��R�f�g�n � a� 
 � � � 
 an� ai � #�R� ci 	� �g�



For any �a� c� � �n let gac�x� be the rational function de�ned by

gac�x� ��
nX
i��

ci
x� ai

�

Let �ac�x� be de�ned by

�ac�x� ��
�

	�i

Z
�
��x � ��gac�x� d��

where � is a su�ciently large arc containing all the poles of gac�x�� �a� c� � �n� Then

the map

�a� c� �� �ac�x�

is� by theorem ���� an injective map on �n� The image Mn is exactly the class of

functions described by ������ �n is a smooth analytic manifold of dimension 	n with

	n connected components characterized by sign�ci� � �i� �i � f��� �g� i � �� � � � � n�

EndowMn with the unique structure of an analytic manifold such that �a� c� �� �ac

is an analytic di�eomorphism� This completes the proof�

� Conclusions and Related work

We have drawn a connection between the realization theory for linear dynamical

systems and neural network representations� This is an exciting connection because

it opens the way for the application of some of the machinery of realization theory to

neural networks� A number of new open problems arise also� For example there is the

problem of partial realizations ���� ���� We are currently exploring the application

of the theory of Pad$e approximants and continued fractions to the neural networks

considered here�

After this paper was substantially completed the authors became aware of the

work of Barrar and Loeb �
�� They have considered parametrizations like �	��� for

general nonlinear families� We have considered a slightly more speci�c case� and we

have obtained results not obtainable in their setup�

Finally let us point out that the ability to parametrize general neural network

representations in di�erent ways could have a profound e�ect on learning algorithms�

simply by performing gradient descent in the di�erent parameter spaces is expected

to o�er di�erent behaviour�
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