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The problem of parametrizing single hidden layer scalar neural net-
works with continuous activation functions is investigated. A connection
is drawn between realization theory for linear dynamical systems, ratio-
nal functions and neural networks that appears to be new. A result of
this connection is a general parametrization of such neural networks in
terms of strictly proper rational functions. Some existence and unique-
ness results are derived. Jordan decompositions are developed which
show how the general form can be expressed in terms of a sum of canon-
ical second order sections. The parametrization may be useful for study-

ing learning algorithms.

1 Introduction
Nonlinearly parametrized representations of functions ¢: R — R of the form
(1.1) p(x) =D colr—a;) z€ER,

i=1

have attracted considerable attention recently in the neural network literature. Here

o: R — R is typically a sigmoidal function such as

(1.2) o(z) = :



but other choices than (1.2) are possible and of interest. Sometimes more complex

representations such as
(1.3) o(x) = cio(biz — a;)
i=1

or even compositions of these are considered. Yet more generally, functions ¢: R™ —

R are also studied.

Different choices of the “activation function” o: R — R correspond to different
representation problems. For example, if o(z) = 27! then (1.1) amounts to finding
the partial fraction decomposition of a rational function ¢(x). The coefficients a; and
¢; arising in (1.1) here have the interpretation of the poles and residues respectively
of ¢(x). In this example it is obvious also that complex coefficients a;, ¢; € C arise
naturally, as a real rational function ¢: R — R may well have complex poles and
residues.

Another case of interest is where o(z) = z¢, d € N, is a monomial. Then (1.1)
is equivalent to finding a decomposition of a polynomial ¢(x) of degree < d as a
weighted sum of d-th powers of linear polynomials « — a;. This is usually referred to
as Waring’s problem for binary forms, with early results going back to Sylvester [25]
and Gundelfinger (1886). There is also an interesting connection with Hilbert’s 17th
problem, asking whether a positive polynomial ¢: R™ — R can be represented as a
sum of squares of polynomials (or rational functions). In fact if the coefficients ¢; in
(1.1) are all positive and the degree d of ¢ is even, then (1.1) is such a representation

of a polynomial as a sum of squares of polynomials.

If o: R — Ris asigmoidal function such as (1.2), then functions of the form (1.1)
are described by one “hidden layer” neural networks with n hidden layer thresholds
a; and output weights ¢;, but with no input weights. The task then is to find, or
to “learn”, an exact or approximate representation (1.1) of some function. There
are now a number of results available describing the “universal approximation prop-
erties” of such classes of feedforward neural networks. Nearly all of these [5,8, 14]
are in the form of denseness results, saying that if one takes enough nodes, one can

make an arbitrarily good approximation.

Motivated by analogies with model reduction of linear control systems we became
interested in finding best approximations of functions by neural network representa-
tions (1.1), with an upper bound on the number n of such nodes. Such questions are
important in order to estimate the approximation theoretic capabilities of learning

algorithms for (1.1). For the special sigmoid function (1.2) an analysis has been pre-



sented in [26], where the problem has been shown to be deeply related to classical
rational approximation theory. In order to approach such neural network approx-
imation tasks, possibly valid for a large class of activation functions o: R — R, it

becomes important to study the parametrization problem for the class of functions
described by (1.1).

It has been shown in [26] that there often exists no best approximation of a
function ®: R — R by functions of the type (1.1). Thus the class of functions
(1.1) is not rich enough to guarantee the convergence of general learning algorithms.
Also, the different parametrizations of the class (1.1) may well have an impact on
the transient behaviour of learning algorithms and are thus worth being studied in
more detail. (See [4] for some examples of the effect of different parametrizations

on some very simple learning problems.)

1.1 What this paper is about

The purpose of this paper is to explore such parametrization issues regarding (1.1)
(and to a lesser extent (1.3)), and in particular to show the close connection these
representations have with the standard system-theoretic realization theory for ratio-
nal functions. The main result of this paper is theorem 5.1. We firstly show how to
define a generalization of (1.1) parametrized by (A, b, ¢), where A is a matrix over a
field, and b and ¢ are vectors. (This is made more precise below). The parametriza-
tion involves (A, b, c) being used to define a rational function. The generalized o-
representations are then defined in terms of the rational function. Representations
(1.1) correspond to the case where A is diagonalizable. In that case, the thresholds
a; and the output weights ¢; are interpreted as the poles and residues of the asso-
ciated rational “transfer function” c¢(xzI — A)~'b. This connection allows us to use
results available for rational functions in the study of neural-network representations
such as (1.1). It will also lead to an understanding of the geometry of the space of

functions.

That there is indeed a close connection between representations of the form (1.1)
and rational functions was shown in [26] (and previously used in [23]). There it was
shown that (1.1) can be written as e”r(e”) when o(-) is given by (1.2). The function
r(-) is a strictly proper rational function, and the coefficients a; in (1.1) correspond
to the logarithm of the poles of r(+), and the ¢; coefficients correspond to the residues

of r(z) at z = e™.

In the following section we shall show that representations of the form (1.1) in



general can be parametrized by rational functions in a single variable &. Further-
more, the more general representations (1.3) are shown to be parametrized by ratio-
nal functions in two variables. They correspond to so-called separable 2-D systems,
arising in two dimensional image processing. Then, by using ideas originally from
the theory of state-space realizations of linear dynamical systems, we give conditions
under which a representation (1.1) exists for a given function ¢(-). More generally,
the existence and uniqueness properties of representations ¢(x) = co(xl + A)b are
investigated, where A is an n x n matrix, b is a n-vector and c is a n-covector. Such
representations naturally extend representations (1.1) where A = diag(ay, ..., a,) is

diagonal.

2 Realizations Relative to a Function

In this section we explore the relationship between sigmoidal representations (1.2) of
real analytic functions ¢: I — R defined on an interval I C R, real rational functions
defined on the complex plane C, and the well established realization theory for linear

dynamical systems

w(t) = Ax(t) + bu(t)
y(t) = cx(t) + du(t).

For standard textbooks on systems theory and realization theory we refer to [15, 17,
22].

Let K denote either the field R of real numbers or the field C of complex numbers.
Let A C C be an open and simply connected subset of the complex plane, containing
I, and let 0: A — C be an analytic function defined on A. For example, o may be
obtained by an analytic continuation of some sigmoidal function o: R — R into the

domain of holomorphy of the complex plane.

Let T': V — V be a linear operator on a finite-dimensional K-vector space V such
that T" has all its eigenvalues in A. Let I' C A be a simple closed curve, oriented
in the counter-clockwise direction, enclosing all the eigenvalues of T in its interior.
More generally, I' may consist of a finite number of simple closed curves ['y with
interiors A}, such that the union of the domains A} contains all the eigenvalues of
T.

Definition 2.1 The matriz valued function o(T) is defined as the contour integral



[18, p.44]

(2.1) o(T) = — [ o) (eI =T) .

T 2mi
Note that for each linear operator T: V — V, ¢(T): V — V is again a linear
operator on V that is independent of the choice of T'.

If we now make the substitution 7" := xl + A for x € C and A: V — V K-linear,
then

ozl +A) = % /F o(2)((z—x) — A)~dz

becomes a function of the complex variable x, at least as long as I' contains all the

eigenvalues of x1 + A. Using the change of variables £ := 2z — x we obtain

(2.2) ool + A) = %/Fla(ijf) (€] — ) de

where [V =T — & C A encircles all the eigenvalues of A.

Given an arbitrary vector b € V and a linear functional ¢: V — K we then

achieve the representation

T
co(al +A)b = 5 /F o(z + ) e(€] — A)~lbde.

(2.3)

Note that in (2.3) the simple closed curve I' C C is arbitrary, as long as it satisfies

the two conditions

(2.4) I" encircles all the eigenvalues of A

(2.5) v+ ={z+& el} CA.

We will take (2.3) to be the definition of co(xI + A)b.

Let ¢: I — R be a real analytic function in a single variable = € I, defined on

an interval I C R.

Definition 2.2 A quadruple (A, b, c,d) is called a finite-dimensional o-realization
of : I — R over a field of constants K of for all v € 1

(2.6) ¢(x) =co(zl + A)b+d

holds, where the right hand side is given by (2.8) and T is assumed to satisfy the



conditions (2.4)-(2.5). Hered € K, b€V, and A: V-V, ¢: V- K are K-linear

maps and V 1s a finite dimensional K-vector space. If d =0, we will sometimes just

write of a o-realization (A, b, c).

Definition 2.3 The dimension (or degree) of a o-realization is dimg V. The o-

degree of ¢, denoted 6,(¢), is the minimal dimension of all o-realizations of ¢. A

minimal o-realization is a o-realization of minimal dimension 0, ().

The above definition of a o-realization is a rather straightforward extension of

the familiar system-theoretic notion of a realization of a transfer function. In this

paper we will address the following specific questions concerning o-realizations.

Q1 What are the existence and uniqueness properties of o-realizations?

Q2 How can one characterize minimal o-realizations?

Q3 How can one compute 0, (¢)?

Q4 Given ¢, when does there exist a o-realization (A4, b, ¢,d) with A diagonalizable

over K, and what is the minimal dimension of such a realization?

Examples of o(-)

Important examples of activation functions o: R — R are:

1.

o(x)=a"!

In this case o-realizations are just the standard realizations of analytic func-
tions or formal power series in systems theory. Kalman’s realization theorem
[17] solves questions 1-3 for rational functions and, in fact, for arbitrary formal

power series ¢(x).

o(r)=2z% deN
This is known as Waring’s problem for binary forms (being a generalization

of the number theoretic question bearing that name [12]). A function ¢(z)
admits a o-realization (A, b, ¢) if and only if it is a polynomial of degree < d.
Over C and over R with d even, the problem has been solved by Helmke [13].

o(w) = (1+e )"
We refer to this as the standard sigmoid case. This function o(z) is widely

used in feedforward neural networks. Other cases of interest include bump

. _m2
functions such as e.g. o(x) = e .



Remarks

1. K is usually either the field R of real numbers or the field C of complex
numbers. Even if o(z) and ¢(x) are considered to be real valued functions,
complex realizations may be of interest; i.e. where V is a C-vector space, b € V
and A: V—YV, c: V— C are Clinear maps. This topic will be of importance,
for example, if realizations are sought where A is a diagonal matrix (see section
6.1 below). In fact, if A is diagonalizable with complex eigenvalues then the
diagonalization of A leads a finite sum sigmoidal representation of ¢(x). Such
complex realizations may thus yield finite sum representations using complex
coefficients, even in cases where exact finite sum representations with real
coefficients do not exist. This is one reason why complex realizations may

prove to be important.

2. The standard realizations arising in systems theory have o(z) = z~'. In this
case, a function ¢(z) has a finite dimensional o-realization if and only if ¢(x)
is rational with ¢(co0) # oo [17].

n

2.1 Generalizations: Realizations Related to )_ cio(biz — a;)
i=1

In (2.3), the strictly proper “transfer function”

g(§) = (el — A)"b

can be extended to an arbitrary rational function (and thus in particular to a poly-

nomial). To see this we consider the integral transformation

$a) = 5 [ oo+ g(€) dg
(2.7) i Jr

for an arbitrary rational function ¢(&) = p(§)/q(¢) € K(€). Clearly (2.7) makes
sense for any simple closed integration path I' which encircles the poles of g(£) such
that x + ' C A for all x € I. Moreover, by the residue theorem,

1
(2.9 [ 0@ = Y reslole+ 6 a(E).
L Jr g()=00 §=z
When all the poles of g(£) are distinct, (2.8) is just a weighted sum of residues,

where the sum is over all finite poles of g(£). We note in passing that formula (2.8)



is reminiscent of Gaussian quadrature formulae; see, e.g. [9,20].

More generally one can consider o-realizations (E, A, b, ¢,d), where E,A: V— V,
¢: V— K are K-linear maps satisfying det(zE — A) £ 0, b € V, d € K such that

(2.9) ¢(x) =co(xE+ A)b+d

holds for all z € I. Here we define

1
co(rE+ Ab:=— [ o(&) c(él —xE — A) 'bd¢

where, for x € I fixed, I" encircles all the roots £ of det(£1 — xF — A) = 0 such that
z+[ C A forall z € I. Note that the “transfer function” g(z,&) = c(I—xE—A) b
is a rational function in two variables (£, ). While such rational functions arise
naturally in applications, such as two dimensional image processing, the system
theoretic interpretation of such transfer functions in the context of neural networks

is left as an open question.

Of course commuting o-realizations (E, A, b, ¢,d) with
(2.11) FA=AE
are of obvious interest.

Lemma 2.4 1. Let S: V — V be an invertible K-linear map. Then (E, A, b, c,d)

1s a o-realization of ¢ if and only if
(SES™', SAS™', SB,cS™,d)

is a o-realization of ¢. In particular, for E = I, (the n x n identity), if
(A, b,c,d) 1s a o-realization of ¢ then (SAS™', Sb,cS™1,d) is a o-realization
of ¢ for all invertible transformations S: V — V.

2. If A=diag(Ay,...,\n) ts diagonal, then for each x,

(2.12) ozl +A) =diag(o(x + A\1),...,0(x+ A\y)).

Proof The proof is an immediate consequence of definition (2.3), once it is noticed
that
cS to(xSES '+ SAS 1)Sb = co(xE + A)b



holds for all z € I. [ |

Remark In the case o(z) = (1 4+ e %)"! it is of interest to compare the repre-
sentation (2.7) with the representation used in [26], namely ¢(z) = e®r(e”), where
r(-) is a strictly proper rational function with all its poles in C — [0,00). (Such a
representation was also used in [23].) It is easily verified (see [26] for details), that

a representation (1.1) is equivalent to ¢(z) = e*r(e*), with

Ci
r(z) = E .
Let g(-) be a strictly proper rational function and I' an arc encircling the poles of

g(+). Equating the two representations we have

1
e“r(e”) = 57 Fa(z—i—:r)g(z)dz

S /Fig(z)dz.

2w er +e?

Let y = €” and so x = logy. Then

) = 5 [ gl)d=

T omi y+e”?
Let 2z, k =1,...,n, denote the poles of g(z). Then by the residue theorem,

r(y) = res 9(2) :
Ty e’

Thus if g(z) has a pole at z = 3, r(z) has a pole at z = —e?. Specifically, if
g(z) = c(zI — A)~b, then

(2.13) r(z) = c(zl + ™).

3 Existence of o-realizations

We now consider the question of existence of o-realizations. To set the stage, we

consider the systems theory case o(x) = x~! first. Assume we are given a formal



power series
Ny
(3.1) ZU —! N < oo,

and that (A, b, c) is a o-realization in the sense of definition 2.2. The Taylor expan-
sion of ¢(zI + A)~'b at 0 is (for A nonsingular)

o0

(3.2) c(xl + A= (=1)'cA"Hpy!
i=0
Thus
bi i A—(i+1) .
(3.3) — =(-1)cA b, i=0,...,N.

2!
if and only if the expansions of (3.1) and (3.2) coincide up to order N. Observe [17]
that

¢(z) = c(xl + A) b and dimV < oo

¢(x) is rational with ¢(oc0) = 0.

The possibility of solving (3.3) is now easily seen as follows. Let V = RV*! =
Map({0, ..., N},R) be the finite or infinite (N + 1)-fold product space of R. (Here
Map(X,Y’) denotes the set of all maps from X to Y.) If N is finite let

0
Gay at = —| 00D egeeey
0O --- 1 0
_ T _ (¢~ 02 Pt
b = (100) ev, C—<N!;¢07¢17 2|7""m>'

For N = oo we may take, by an abuse of notation, A~': RY — RN as the shift

operator

AL RY -5 RY
(3.5) AN (wg, 20,0 = —(0, 20, 21, . )

and b:(l,O,), C:(O,gbo,gbl,%,..

).



Note that there may be finite-dimensional realizations as well.

We will now consider more general o(-). We then have

Definition 3.1 Let o(x) be a meromorphic function and let
o(z) = Z_—:ml, N < o0
i—o v

be a, possibly finite, formal power series in the variable x. A triple (A,b,c) is called

an N-th order o-realization of ¢(x) if the following conditions are satisfied:
(a) o(x) is analytic on a neighborhood of the spectrum of A in C.

(b) The power series expansions of ¢(x) and co(xl + A)b at x = 0 coincide up to
order N.

By condition (a) the i-th derivative of the function x — o(xI+ A) at © = 0 exists
and is equal to ¢(? (A), where 0 (z) denotes the i-th derivative of the function o(z).

Therefore condition (b) is equivalent to

(3.6) ¢i = coD(A)b fori=0,...,N.

Observe that condition (a) is satisfied for o(x) = 27" if and only if A is invertible.
Moreover, since the standard sigmoid o(z) = (1+€7%)7! is analytic for any complex
variable z € C with |Qz| < m, condition (a) is satisfied for the standard sigmoid if
A has all its eigenvalues in {z € C : |3z| < 27}.

If o(z) = 27!, and A € C™" is invertible, then ¢V (—A) = i!(A~')"*!. Conse-
quently, in this case, a triple (A,b,¢) is an N-th order o-realization if and only if
the partial realization condition (3.3) is satisfied. Using the terminology of linear
systems theory we may thus say that (A, b, c), with A invertible, is an N-th order
o-realization for o(x) = z7! if and only if (F,g,h): = (—A71, A71b, ¢) is a partial

realization of (¢, ¢1, - . -, %), i.e. if and only if

holds for ¢t =0,..., N.

The existence part of the realization question Q1 can now be restated as

Q5 Given a meromorphic function o(x) and a sequence of real numbers (¢y, . .., ¢n),



does there exist an N-th order o-realization (A, b, ¢) with

(3.7) ¢i = coD(A)b, i=0,...,N?

Thus the realization question Q1 is essentially an interpolation question (Loewner
interpolation [2,7]), which extends the partial realization task from linear system

theory, where o(z) = z! to more general sigmoid functions o (z).

Let v, = cA%, ¢ € Ny, and let

Op 01 O3

0'1 0'2 0'3 . .. oo
(3.8) F= Oy O3 O --- —(Ui+j)z',j:0-
Write

y

’ B0

71
(3.9) = %2/2t ], and [¢]=

’)’3/3 .

Then (3.6) (for N = 00) can formally be written as

(3.10) [¢] = F - [y].

Of course, any meaningful interpretation of (3.10) requires that the infinite sums

>3 U]TJ 7j, i € Ny, exist. This happens, for example, if 322 07, ; < 00, i € Ny and

N2
720 (%) < oo exist. We have already seen that every finite or infinite sequence

[7] has a realization (A, b, ¢). Thus we obtain

Corollary 3.2 Suppose that the infinite sums 3222, U;.J!rj v, @ € Ny, exist. A function
é(x) admits a o-realization if and only if [$] € image(F).

Corollary 3.3 Suppose that the infinite sums 3272, %%, 1 € Ny, ewist. Let

(3.11) H = (3515) sy

There exists a finite dimensional o-realization of ¢(x) if and only if [¢] = F[y] with



rank H < co. In this case 6,(¢) = rank H.

Proof This follows immediately from Kronecker’s theorem and systems realization
theory; see [15,17]. | |

Remark It would be desirable to have an explicit characterization of when F
is invertible or surjective via Hankel operator theory for analytic functions. Also
it would be nice to know how to compute the inverse of F; ie. [y] = F~'[¢].
Furthermore, how can one characterize pairs of analytic functions (o, ¢) such that
(Yit4); o has finite rank? When rank /' < oo, then Y72, vz~ 1 is rational and
thus 7; = cA', i € Ny for (A, b, ¢) is finite dimensional.

4 Uniqueness

In this section we consider the uniqueness of the representation (2.3). We require

several definitions first.

Definition 4.1 A system {g1,...,g.} of continuous functions g;: I — R, defined
on an interval I C R, is said to be linearly independent, if for every c¢q,...,c, € R
with Y1 cigi(x) =0 for all v € I, then ¢y = -+ = ¢, = 0.

Remark The linear independency condition is implied by the stronger condition

that
91(951) gl(ﬂvn)
det : : # 0

for all distinct (x;)?_, in I. Equivalently, if >7 , ¢;g;(z) has n distinct roots in I,

then¢g =---=¢, =0.
Definition 4.2 A subset A of C is called self-conjugate if a € A implies @ € A.

Let o: R — R be a continuous function and define o) (z) := 0\ (z + z). Let

m
k= (Ki,...,kn) where > k;j=mn, k; €N, k; >1, j=1,...,m
i=1



denote a combination of n of size m. For a given combination k = (k1,..., k) of
n,let I:={1,...,m} and let J; :={1,...,K;}. Let Z,, ;== {21,..., 2} and let
(4.1) 0(Ky Z) == {0(371): iel, jeJi}.

z

Definition 4.3 If for all m < n, for all combinations k = (Ky,...,6m) of n of
size m, and for any self-conjugate set Z,, of distinct points, the class of functions
o(k, Zy,) are linearly independent, then o is said to be li. (linearly independent)

generating of order n.

A condition similar to this was defined in [1]. They considered a uniqueness condition
on o(+) for representations of the form Y-! ; ¢;o(bxz — a;) (IP) and 37 ¢;o(bix)
(WIP).

Theorem 4.4 (Uniqueness) Let 0: R — R be Li. generating of order at least 2n
on I and let (A,b,¢) and (A, b, ¢) be minimal o-realizations of order n of functions

¢ and gz~5 respectively. Then the following equivalence holds

co(xl + Ao = éo(xl + A)b Vr el
(4.2) =
(6l —A) o=l - A VEeR

Conversely, if (4.2) holds for almost all order n triples (A,b,c), (A,b,¢), then
o: R — R s l.i. generating on 1 of order > n.

Proof

(Equivalence) By hypothesis (A4, b, ¢) and (A, b, ¢) are minimal realizations of ¢
and ¢ (of order n). If ¢ = ¢, then

co(zl + A)b = éo(xI + A)b.
Thus for

g(§) = (&l = A)"b

and

G(&) =e(el — A) b



we have

(4.3) L / o(z+OME)AE=0 Vael

2wy Jr

with A(€) = g(§) — g(&), having degree < 2n. By the residue theorem, condition
(4.3) is equivalent to

(4.4) > zes [o(z + 2)h(2)] = 0,
h(z;)=00 -
where the sum is over all distinct poles {z1,...,2,} of h(z) (m < 2n). Write the

partial fraction expansion of h(z) as

m K

m
(4.5) —, Ki = 2n.
(It is always of the form (4.5) since h(z) is the difference of two strictly proper
rational functions and hence is itself strictly proper.) Recall the general formula for
residues of a product of an analytic and a meromorphic function. For the case of

one pole (possibly of multiplicity greater than one) we have:

s |1 ( 7)1 ’“ :
z—zotf() Z(z—zg) J Z )( 0)

j=1 g:l

(see for example [21]). Thus we can express (4.4) as

el yEJ

Since o is L.i. generating of order at least 2n, (4.6) implies that h;; =0,i € I, j € J;.
Hence h(z) = 0 and so g(z) = g(z) as required.

(Converse) Assume o is not L.i. generating of order at least n. That is, for some

m < n there is a combination k = (k1,..., k) of n of size m and a self-conjugate
set of points Z,, = {z1,...,2m} of size m such that for some [ € I = {1,...,m},
and some j; € J; = {1,..., Kk} there is a sequence of coefficients («;;) such that

(4.7) o=V + z) ZZ 1)_ (@ + 2)

(4,7)€Z(l)



where
Z() ={(,j): iel-={l},jeJ)or(i=1je i —{i}}

Now

co(zl +A)b = > reslo(xz+2)g(2)]

z=z;

g(zi)=o00

(4.8) _ oy oy et )

el jeJ; (J - 1)

where g;; are the coefficients of the partial fraction expansion of g(z):

(19) =YY

el ]EJZ

By (4.7) and (4.8) we can then write

- si—1)
co(xI+Ap = SN A () 4 G (37'+ 2)
(4,5)€Z(l) (] - 1) (51— 1)!
= ZZQU . x?—Z‘ + 3y 91310V i(f'f—l-Zz)
(1,5)€Z(1) ‘7 ) (i,§)€Z(1) (] )

= 2> AoV Ve + )

(5,5)€Z(l)
where

9ij + gu,5,%ij
G-

Now |Z(l)| = n — 1 but there are n independent parameters g;;, i € I, j € J;. Thus

given \;; and «;;, g5, can be chosen arbitrarily (with the g;; given by (4.10)) such
that \;; remains invariant. Hence co(xI+ A)b is unchanged. (In fact g; ; generates a
linear subspace.) But g(§) changes and, for different choices of g ;, is not necessarily
equal to g(&). [ |

The following result gives examples of activation functions o: R — R which are

L.i. generating.
Lemma 4.5 Let d € Ny. Then

1) The function o(z) =z~ is Li. generating of arbitrary order.

2) The monomial o(x) = x? is l.i. generating of order d + 1.



3) The function e is Li. generating of arbitrary order.

Proof For o(z) = 2% we have o) (z) = (=1)7 [[)=; (d+1)xz~% 7. Let zy,..., 2, € C

be distinct complex numbers and let k = (k1,..., k) be a combination of n of
size m. Then
m ki—1 m K;—1 6ij
cijo (x4 z;) = 7.

with é; = (=1)7¢;; [T_g (d + 1)z~%7 is a strictly proper rational function of degree
< n+m(d—1). Therefore it vanishes identically on a nontrivial interval I if and

only if the coefficients ¢;; are all zero. This proves 1).

To prove 2) let us assume for simplicity that (k1,..., k) = (1,...,1), m =d+1.
The general case is treated analogously. Thus suppose there are cy,...,cqr1 € R and
d + 1 distinct complex numbers z1,..., 2441 given with Z‘”f c;io(x + z;) identically
zero on the interval I C R. Thus for all z € 1

Zn: oz +2) = dfci(:r + 2)¢ = Zd: (dfcl (j)zf‘j> 2.

=1 i=1 7=0

Thus for [ =0,...,d, Zd ! ¢;zt = 0. Equivalently,

1 .. 1
C1
Zl - . Zd 1
" = 0.
: : .
T d+l
Since the Vandermonde matrix is invertible (by assumption that the zy, ..., z4.; are
distinct) it follows that ¢; = --- = ¢441 = 0. Thus 2 is Li. generating of order d + 1.
To prove 3) assume there are ¢y, ..., ¢, such that for distinct complex numbers
21, ...,%, We have
n 2 2 n 2
Z cief(atfzi) —e 7 Z cie’zi 6727:1-1: -0
i=1 i=1

for all x € 1. Then by the identity theorem for analytic functions,

(4.11) > e
=1



for all x € R with ¢ = ¢;e”%. By differentiating (4.11) n — 1 times and evaluating

at £ = 0 we obtain

1 ... 1 .
C1
21 zn . 0
' @
P 1 . ZZ'_I n
implies that ¢ = --- = ¢, = 0 and hence ¢, = --- = ¢, = 0. Thus e is Li. gen-

erating of order n. Since n is arbitrary, the result follows. The general case can be

proved using a residue type argument similar to the proof of theorem 1 in [1]. [ |

Remark A simple example of a o which is not li. generating of order > 2 is

o(z) = e”. In fact, in this case o(z + z;) = cjo(x + z;) for ¢; = e %, j=2,... n.

Remark Similarly, the standard sigmoid function o(z) = (1+e )1 is not L.i. gen-
erating of any order > 2. In fact, by the periodicity of the complex exponential
function we have o (z +2mi) = o(x —2mi), i = v/—1, for all . Thus the Li. condition
fails for Zy = {2mi, —2mi}.

In particular, the above uniqueness result fails for the standard sigmoid case. In

order to cover this case we need a further definition.

Definition 4.6 Let Q = Q C C be a self-conjugate subset of C. A function o: R —
R is said to be l.i. generating of order n on €2, if for all m < n, for all combinations
k= (Ki,...,K&m) of n of size m, and for any self-conjugate subset Z,, C Q of distinct

points of Q, o(k, Z,) consists of linearly independent functions.

Of course for €2 = C, this definition coincides with definition 4.3. We have the
following extension of theorem 4.4. The proof is completely analogous to that of

theorem 4.4 and is thus omitted.



Theorem 4.7 (Local Uniqueness) Let 0: R — R be analytic and let Q@ C C be
a self-conjugate subset contained in the domain of holomorphy of o. Let I be a
nontrivial subinterval of X N R. Suppose o: R — R s L.e. generating on () of order
at least 2n, n € N. Then for any two minimal o-realizations (A,b,¢) and (A, b,¢)

of orders at most n the following equivalence holds:

co(xl + Ao = éo(xl + A)b Vr el
(4.12) =
(I —A)h=¢El—A) % VeEeR

The next result shows that the standard sigmoid function is l.i. generating on a
suitable subset €.

Lemma 4.8 Let Q2 := {z € C: |Qz| < w}. Then the standard sigmoid function

o(z) = (1+e )7t is Li. generating on Q of arbitrary order.

Proof Let distinct points zy,...,2, € © and ¢,...,¢, € R be given such that
Y cio(x + z;) = 0. The general case is treated similarly, using the fact that
o'(x) = o(z)(1 —o(x)), so that all higher order derivatives of o(x) can be expressed

as polynomials in o(x). Thus for all z € T C Q

n n

= ciolx + Z =e"r(e*

S aiole +5) =3 = (e
with r(z) = ¥iL; s72;. Thus r(z) = 0 vanishes identically. As zy,...,2, € Q are
pairwise distinct and as z — e® is injective on 2, the poles —e™% ¢ =1,...,n, of

r(z) are pairwise distinct. Thus r(z) is of degree n and identically zero. Therefore

¢y =+ = ¢, =0 and the result follows. | |

Albertini et al [1] showed o(z) = ;1= satisfied their uniqueness condition IP
using both a residue argument (as above) and directly using Cauchy’s formula for

det(a 7 )ij (see [6, lemma 11.3.1]).

5 Main Result

As a consequence of the uniqueness theorems 4.4 and 4.7 we can now state our main

result on the existence of minimal o-realizations of a function ¢(z). It extends a



parallel result for standard transfer function realizations, where o(z) = 27!,

Theorem 5.1 (Realization) Let Q@ C C be a self-conjugate subset, contained in
the domain of holomorphy of a real meromorphic function o: R — R. Suppose o s
l.i. generating on Q of order at least 2n and assume ¢(x) has a finite dimensional

realization (A, b, c) of dimension at most n such that A has all its eigenvalues in €.

1. There exists a minimal o-realization (Ay,b1,c1) of ¢(x) of degree §,(¢p) <
dim(A, b, ¢). Furthermore, there exists an invertible matriz S such that

,Sb:[bl
0

2. If (A1, b1,c1) and (A}, U], c)) are minimal o-realizations of ¢(x) such that the

etgenvalues of Ay and A} are contained in (2, then there exists a unique in-

A Ay
As

, ST = [e1, 2]

(5.1) SAS™! =

holds.

vertible matriz S such that
(5.2) (ALY, ) = (SALS™, Sby, e, S

holds.

3. A o-realization (A, b, c) is minimal if and only if (A, b, c) is controllable and

observable; i.e. if and only if (A, b, c) satisfies the generic rank conditions

rank(b, Ab,..., A" ') =n
c

cA

rank

I
N

CAnfl
for Ac K" be K, ¢l e K.

Proof The existence of minimal o-realizations with 0, (¢) < dim(A, b, ¢) is trivial:
just pick any o-realization (A1, by, c1), with eigenvalues of A; contained in Q, from

the set of all o-realizations of ¢(z) with smallest possible dimension < dim(A, b, ¢).



Let (Aj,by,c1) be a minimal o-realization of ¢(x) with eigenvalues of A; con-

tained in 2. By the uniqueness theorem 4.7,
e (61 — Ay) by = (61 — A) 'y for all €.

Thus (5.1) follows from the Kalman decomposition; see [15]. Moreover, statements
2 and 3 follow immediately from Kalman’s realization theorem for strictly proper

rational transfer functions [15]. [

Remark The use of the terms “observable” and “controllable” is solely for formal
correspondence with standard systems theory. There are no dynamical systems

actually under consideration here.

Remark For any o-realization (A, b, ¢) of the form

Ay A b
A= . 2 ) b= ' , C= [01702]7
0 Ay 0
we have
U(A) _ U(All) %
0 U(AQQ)

and thus co(zl + A)b = cyo(x] + Ajq1)by. Thus transformations of the above kind

always reduce the dimension of a o-realization.

The following results are immediate consequences of theorem 5.1 and lemma 4.5.

Corollary 5.2 Let ¢(x) = g™ (z) be a k-th derivative of a rational function g(x).
Then

1. ¢(z) = c(xl — A)F1b for (A, b, c) € K™ x K* x KI*",
2. If (A,b,¢) and (A,b,¢) are minimal realizations such that for all z € T
d(x) = c(xl — A) o =c(al — A)F 1
then there exists a unique invertible matriz S such that

(A,b,¢) = (SAS™Y, Sb,eS7Y).



8. A realization (A,b,c) € K™ x K* x KI*" satisfying ¢(x) = c(xl — A)~F1b

is of minimal size n if and only if (A, b, c) is controllable and observable.

Proof By lemma 4.5 the function o(x) = 2% is Li. generating of all orders.

Applying theorem 5.1 to o(z) = 7% and Q = C — {0} completes the proof. [ |

The next result is a special case of a more general result appearing in [13].

Corollary 5.3 Let ¢(x) be a polynomial of degree < 2n. Suppose

S

p(x) = ;Ci(x—ai)%

= Yl
i=1
are two sums of 2nth power representations of ¢(x) of minimal length s satisfying
s <n. Then

(a/’lhc’,i) - (aﬂ'(i)7c7l'(i))7 7/ = ]., ..., 8

for a permutation w: {1,...,s} = {1,...,s}.

2n

Proof By lemma 4.5 the function o(z) = #°" is Li. generating of order 2n + 1.

Then (A,b,c) and (A", ¥, ') defined by

1

A =diag(ay,...,as), b=1| |, c=(c1,...,¢s)
1
1

A" = diag(a),...,ay), b= 1|, d=(d,...,c)
1

are o-realizations of ¢(x) of order s < n. By minimality of s, (A,b,c) and (A", ¥, ¢)

are controllable and observable. Applying theorem 5.1 to o(z) = z**, = C, yields
(ALY, ) = (SAS!, Sb,eS™)

for a unique invertible matrix S. Since SAS~! = A’ and both A and A’ are diagonal,

S must be a permutation matrix. The result follows. [ |



As afinal consequence we obtain another proof of the following result (c.f. [24]which

contains a more general result)

Corollary 5.4 Let o(x) = (1+e %)t and
o(x) = Z cio(x —a;) = ZC;U(x —al)
i=1 -

be two minimal length o-representations with

ISa;| <7, |Saf] <7, i=1,...,n.
Then
(ai; i) = (an(i), Cx(i))
for a unique permutation w: {1,...,n} — {1,...,n}. In particular, minimal length

representations (1.1) with real coefficients a; and ¢; are unique up to a permutation

of the summands.

Proof By lemma 4.8, o(z) = (1+e ) ! isLi. generatingon Q@ = {z € C: |Sz| < 7}
of arbitrary order. By minimality of the representations a; # a; and aj # aj for
i#j. Let (A,b,c) and (A", V', ) be defined by

1
A = diag(—logay,...,—logay,), b=1| |, c=(c1,...,¢cn),
L 1 J
L
A" = diag(—logal,...,—logal), b'=|: |, =(,...,c),
1

using the standard branch of the complex logarithm function. Then (A,b,¢) and
(A", 0, ') are controllable and observable o-realizations of ¢(z). By theorem 5.1
applied to o(z) = (1 4+ e *)! and Q = {z € C: |Jz| < 7} the result follows as in

the previous proof.



6 Jordan Canonical Forms

We now explore the connection between the Jordan canonical form for minimal
realizations (A, b, ¢) and o-realizations. Consider the partial fraction decomposition
of a transfer function ¢(&) = (&1 — A) b

m  Kg

1) =3Y s

zl]l

Then

o) = 5 [ole+ele)de

m o(z +€)
:222%3(—wﬁ

(6.2) = Tz + )

zlyl

By the realization theorem, any minimal o-realization (A,b,c) of ¢(x) satisfying
(2.7) is a controllable and observable realization of the transfer function g(§). Thus

by the Jordan control canonical form [15], (A,b,¢) is similar to (A,,by,c)) =
(SAS™!, Sb,cS™1) with

(6.3) Ay = diag(zil + Ny, ..o 2 + Ny,
0 1 .. 0
(6.4) N, = | eRVS i=1,...,m,
e 01
0 0 0
[ €xy 0
€xy : .
(65) bJ = . , € = S RKZJ
: 0
L eﬁm
(66) cjy = [CH,...,CL%I,...,le,...,Cme]EKn,

where r; are the multiplicities of the poles z; of g(§), and ¢;; are the coefficients

from the partial fraction expansion (6.1). Thus for a o-realization (A,b,c) of ¢(x)



in Jordan control canonical form (6.3)—(6.5),

m K

co(xl +A)b=> > ,Cia(j’l)(x + 2).

(6.7)

In particular, in the generic case where (A, b, ¢) has distinct possibly complex poles,
then .
co(zl + A)b=> cio(z + z).

=1

Remark When ¢ is real, the poles and residues always appear in complex conju-
gate pairs. Thus, by analogy with the systems theory case, it is always possible (in

the generic case of no repeated poles) to write

colel + A= X colat2) + X olel el 2L
z €ER zi R

R I R I

where z; € spect A, ¢;*,c;, %", z; are the real and imaginary parts of the residues

and poles of ¢(£1 — A)~'b, and
o(c® 2% 2 a) = (B +icd)o(z + (2% +i2")) + (F —ic))o(x + (2% —i2h))

is the canonical second-order building block. Thus it is simple to cope with complex
poles in o-realizations using only real parameters.

As an example, consider o(z) = (1+e~%)~!. For simplicity write a = ¢ft, 3 = ¢/,
v =z and § = z!. We then obtain

2a+2ae Y cos(d) —2[Fe " Vsin(0)
1+2e*7cos(d) + e22727

oo, B,7,0;2) =

The non-uniqueness of the parametrization (due to the periodicity of e?) is apparent
explicitly in the cos(d) and sin(J) terms.

x

Another example is o(z) = ¢™*". In this case,

ola, B,7,0;z) = 2@"”2’2“”7’72”2@ cos(2x 6 +2v0) + [ sin(2z0 4+ 279)).

Remark Complex parametrizations for standard neural networks have been dis-
cussed in [10,19]. The motivation there was to be able to use neural networks with

complex inputs.



6.1 Diagonalizable o-Realizations

A o-realization (A,b,c) of ¢(x) is called K-diagonalizable if the operator A: V —
V is diagonalizable over K. Since the set of degree n rational functions r(x) €
C(x) with distinct poles is dense in the set of all rational functions of degree n,

C-diagonalizability of a o-realization (A, b, ¢) is generic property.

Over R, a necessary and sufficient condition for diagonalizable o-realizations is
that the poles of the associated rational function c(xl — A)~'b are on the real axis
and simple. Certainly this is not a generic property. Note that a sufficient condition
for a real rational function g(z) = 32, g;x~* of degree n to have a R-diagonalizable
realization is that the n x n-Hankel (g;1;-1);;—, is positive definite. In this case also
the residues of the partial fraction decomposition of g(x) are positive. The following

result provides an answer to question 4.

Theorem 6.1 Let 0: R — R be analytic, possibly only on an interval I C R, and
let 2 DI be a self-conjugate subset of C contained in the domain of holomorphy of
o. Assume that o is l.i. generating on 2 of order at least 2n. The set of functions
¢: R — R with o-degree §,(¢) = n and which admit a diagonalizable o-realization
over R of length n has the structure of an analytic manifold of dimension 2n. It
has exactly 2" connected components. Each such ¢(x) with o-degree 6,(¢) has a

decomposition

(6.8) blz) = za< ),

with real numbers ¢; # 0, a; € Q, a; # a; for i # j. The different connected
components are characterized by a; < --- < a,, and sign(c;) = €;, €; € {—1,1},
i=1,...,n. Moreover, the decomposition (6.8) is unique in the sense that for real
numbers ay,...,a, € Q, c1,...,¢, and ay,...,a, € Q, c,...,c, satisfying (6.8),
then

for a permutation 7: {1,...,n} = {1,...,n}.

Proof Let I', C 2" x R denote the open subset of R*" defined by

Upi={(ar,...,ap;c1, ..., cn) € QL' X (R={0})": a1 < -+ < ay, a; € QNR, ¢; # 0}.



For any (a,c) € I',, let gq.(x) be the rational function defined by

n

Goo(1) =3 —2

i=1 ¥

Let ¢qc(x) be defined by

Guclw) 1= 5= [ 0(a + E)gucle) dc,

" omi

where I is a sufficiently large arc containing all the poles of g4.(2), (a,c¢) € T',. Then

the map
(@, ¢) = Pac(w)

is, by theorem 4.7, an injective map on I[',,. The image M,, is exactly the class of
functions described by (6.8). Iy, is a smooth analytic manifold of dimension 2n with
2™ connected components characterized by sign(¢;) = ¢4, ¢, € {—1,1}, i =1,...,n.
Endow M,, with the unique structure of an analytic manifold such that (a, ¢) — ¢gc

is an analytic diffeomorphism. This completes the proof. [ |

7 Conclusions and Related work

We have drawn a connection between the realization theory for linear dynamical
systems and neural network representations. This is an exciting connection because
it opens the way for the application of some of the machinery of realization theory to
neural networks. A number of new open problems arise also. For example there is the
problem of partial realizations [11,16]. We are currently exploring the application
of the theory of Padé approximants and continued fractions to the neural networks

considered here.

After this paper was substantially completed the authors became aware of the
work of Barrar and Loeb [3]. They have considered parametrizations like (2.7) for
general nonlinear families. We have considered a slightly more specific case, and we

have obtained results not obtainable in their setup.

Finally let us point out that the ability to parametrize general neural network
representations in different ways could have a profound effect on learning algorithms:
simply by performing gradient descent in the different parameter spaces is expected
to offer different behaviour.
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