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Abstract. The classical on-line learning algorithms such as the LMS (Least
Mean Square) algorithm have attracted renewed interest recently because of many
variants based on non-standard parametrisations that bias the algorithms in favour
of certain prior knowledge of the problem. Tools such as link functions and Breg-
man divergences have been used in the design and analysis of such algorithms. In
this paper we reconsider the development of such variants of classical stochastic
gradient descent (SGD) in a purely geometric setting. The Bregman divergence
is replaced by the (squared) Riemannian distance. The property of convexity of
a loss function is replaced by a more general notion of compatibility with a met-
ric. The ideas are explicated in the development and analysis of an algorithm for
online learning on spheres.

1 Introduction

Stochastic Gradient Descent (SGD) algorithms for online learning have been very widely
studied. Recently much work has focussed on different parameterisations which build
a bias into the algorithm. Examples such as exponentiated gradient descent [1] perform
much better when their bias (sparsity of the target weight vector) is satisfied compared
to the classical LMS algorithm. A systematic theory has been developed to understand
these algorithms using the tools of link functions and Bregman divergences [2].

These variants of stochastic gradient descent seem to take account of some geome-
try, but do not fully respect it. For example, the normalised EG algorithm (in which the
parameter vector is restricted to a simplex) [3,1] does not (even approximately) follow
a geodesic in its updates (A geodesic is the shortest path between two points on the pa-
rameter manifold). Furthermore, they do not allow a clear connection with a Bayesian
interpretation and motivation of the algorithms.

Mahony & Williamson [4] have shown how one can derive all of the algorithms
available in the link-function framework directly from a Bayesian prior. This works by
noting that a distribution (the prior) and a metric can both be used to assign a value to
the volume of a set. They posited that the distribution and the metric both give the same
value to the volume of an arbitrary set thus allowing a choice of metric which matches
the distribution. The algorithms utilise the natural gradient and (approximately) follow
geodesics. Whilst a nice connection, the development of performance bounds eluded
the authors.



In this paper we start from scratch and develop stochastic gradient descent with re-
spect to a general metric. Such an idea has been considered before, notably by Amari [5]
who was motivated to match an online learning algorithm to the probabilistic generative
model which generates the data. We do not assume the data is generated probabilisti-
cally, but do assume there are some constraints on the parameter vector that can be
expressed in terms of restrictions to a manifold. We develop algorithms fully respecting
the geometry imposed and do all of the analysis in terms of Riemannian distances rather
than Bregman divergences.

Given a class of functions (linear) and a parameterisation (restriction to a manifold)
it turns out that one is not completely free to choose a loss function. Perhaps more
surprisingly, the classical assumption of convexity of the loss function is not sufficient
to ensure convergence of the algorithm. Convexityis sufficient for algorithms in “flat”
metrics where the geodesics are all straight lines. In Section 4 we present a general
notion of compatibility of a loss function that reduces to convexity when the metric is
flat.

We illustrate the new framework by developing and analysing an algorithm on the
simplest curved manifold — the sphere. Whilst there is a classical literature on statistics
on spheres (e.g., [6,7]), to the best of our knowledge this is the first SGD algorithm
specifically developed on the sphere. Our hope is that the new framework will lead to
improved algorithms and analyses for existing constraints (such as on a simplex or even
the space of semidefinite matrices [8]) as well as new algorithms for new problems.

2 Preliminaries and Notation

Consider the standard on-line learning setting where the learning algorithm maintains a
parameterpt. In each trial the algorithm receives an instancext ∈ Rn, forms a predic-
tion ŷt, and receives a labelyt. Finally the algorithm incurs a lossL(ŷt, yt) and updates
its parameter vector based on this feedback.

For the sake of concreteness we restrict ourselves to linear regression, i.e.,

ŷt = fp(x) := 〈p, x〉 . (1)

Now assume you know that the target parameter lies in a parameter setM ⊆ Rn. Two
main cases have been studied:M = Rn (i.e., no restriction) andM = Pn−1 is the
n − 1 dimensional probability simplex inRn (or in general any subset ofRn defined
by linear constraints). The work of Kivinen and Warmuth [1] and others has shown
that algorithms that exploit the knowledge that the target lies on the simplex can have
radically better performance.

So what about other subsets ofRn? Since we want to use variational techniques it is
reasonable to assume thatM is a Riemannian manifold. Arguably the simplest natural
case to study (besides the simplexPn−1) is restricting the parameter spaceM to then
dimensional sphereSn−1. We useM = Sn−1 as the main example of this paper even
though our methodology is developed for arbitrary manifolds.

So how do we best take advantage for the fact that the target lies on the sphere?
First we can do a standard gradient descent update (such as the Widrow Hoff update).
Now the updated parameterp′t will be off the sphere. However the following heuristic
(or kludge) will again produce a parameter on the sphere: Replace the intermediate



parameterp′t by the pointpt+1 on the sphere that is closest top′t. This method only
weakly respects the geometry of the parameter space.

A second method involves Bregman divergences between pairs of parameters and
link functions (which are closely related to the derivatives of Bregman divergences) [9].
A suitable link function hasM as its domain andRn as its range and the update has the
form:

pt+1 = h−1(h(pt)− η∂pL(〈pt, xt〉︸ ︷︷ ︸
ŷt

, yt).

Sinceh−1 is applied at the end, the updated parameter stays inM. For the case of the
simplex, the method has been quite successful: One can use as the Bregman divergence
the relative entropy. In this case the linkh is essentially a componentwise logarithm and
the inverseh−1 the softmax function. However, the choice of the link function is still
rather at hoc and the resulting update (the EG update) does not follow a geodesic path.
Moreover, we don’t know have any natural link functions for the sphere.

In this paper we replace the Bregman divergence by the squared Riemannian dis-
tance between parameters on the manifoldM. We plug this squared distance into the
usual cost function [1] for deriving on-line updates. Before we do this we need to dis-
cuss loss functions that are amenable to our differential geometry viewpoint.

In this section we propose a general structure for parametric on-line learning prob-
lems that incorporates the possibility of nonlinear geometry.

An on-line learning problem consists of several components as follows:

Input SpaceΩ typically a subset ofRn.
Sampling processΣ: At each time-step of the algorithm the sampling process(xt, yt) =

Σ(t) provides a data point(xt, yt) ∈ Ω × R.
Parametrised model class (PMC)(fp,M): The parametrised model class is the para-

metric class of functions{x 7→ fp(x): p ∈ M}. The functionfp:Ω → R, is a
continuously differentiable real valued function for eachp. The parameter setM is
a Riemannian manifold. The predictions of the algorithm areŷ = fp(x).

Loss functionL: A continuously differentiable functionL(p, (x, y)),L:M×Ω×R →
R. GivenΣ, we sometimes will use theinstantaneous lossLt(p) := L(p, (xt, yt)).

Typically, the sampling processΣ(t) is derived from a generative noise model

yt = f(xt) + µt, (2)

whereµt is a given noise process andf :Ω → R is an unknown function. The inputxt

may itself be a realisation of a stochastic process onΩ ⊂ Rn or a deterministic process
provided by the user. In this paper we will deal only with the noise free case to simplify
the treatment of the underlying geometry. The most common on-line learning problem
involves the class of linear predictors as a parametrised model class (1). The parameter
p ∈ Rn lies in Euclidean space and is called theweight vectoror justweight. A wide
range of general learning problems can be reformulated into the structure of a linear
predictor model.

It is important to separate the choice of loss function from the specification of the
PMC. The most common on-line learning problem involves a Gaussian generative noise
model. The associated loss function is the squared error loss

L(pt, (xt, yt)) = (yt − 〈pt, xt〉)2 . (3)



This is associated with the log likelihood of the probability distribution associated
with the parameterp for the given measured data point. Observe that in this case
L(pt, (xt, yt)) = L̃(yt, ŷt), which is the more traditional way of defining the loss func-
tion.

The information theoretic structure of the Gaussian generative noise model is ge-
ometrically flat [10]. Assuming for the moment that a true parameterp? exists, the
squared loss function can be interpreted as a scaled degenerate squared distance mea-
sure associated with the flat structure of the generative noise model

L(pt, (xt, yt)) = ‖xt‖2

〈
p? − pt,

xt

‖xt‖

〉2

,

where‖xt‖ is the standard2-norm inRn. Here, the projected component of the distance
p? − pt in the directionxt is measured by the loss function. Once the flat geometric
structure associated with the generative noise model is no longer valid it is clear that
the squared error loss function loses much of its motivation.

The goal of a (parametric) on-line learning algorithm is to progressively refine an
estimatefpt

(x), t = 0, 1, . . . , k − 1 to minimize the expected or cumulative value of
the lossL(pt, (xt, yt)). A key concept in the design and analysis of on-line learning
algorithms is that there is only a small change in parameter estimate made at any one
time step. Typically, there is a small positive constantη at each step of the algorithm,
called thelearning rateor step-sizethat limits the change inpt. In noisy environments
the step-size is chosen small to limit the effect of noise disturbing the averaged con-
vergence properties of the algorithm. In less noisy environments the step-size can be
chosen larger.

Consider a learning problem specified byΩ,Σ, fp,M andL. In the online learning
algorithm data points(xt, yt) are given one at the time. The algorithm derives a new
weightpt+1 based on the latest data(xt, yt) and the current weightpt via theupdate
rule A:M × Ω × R → M. Hence the rule of the on-line learning algorithm may be
written as

pt+1 = A(pt, (xt, yt)).

The simplest and most widely known algorithm is theWidrow-Hoff algorithm given by

pt+1 = pt − η ∂pL(pt, (xt, yt)), (4)

where∂p is the vector of partial differentials∂
∂pi . A number of generalisations of

the Widrow-Hoff algorithm were proposed in the literature. Amari [5] investigates the
natural gradientalgorithm

pt+1 = pt − η G−1 ∂pL(pt, (xt, yt)), (5)

whereG−1 =
(
gij
)

is the inverse of the metricg in the parameter space. Thenatural
gradientG−1 ∂p is the “right” intrinsic notion of a gradient in a non-Euclidean space.
It is the steepest direction of a function on a manifold. Another approach is taken by
Warmuthet al. [2,9] who introduced a concept oflink functions. A link function h
maps parameter spaceM to Rn and hence the update rule (4) is modified to

pt+1 = h−1(h(pt)− η ∂pL(pt, (xt, yt))), (6)



whereh−1 is the inverse of the link functionh. Whilst allowing the use of differentM,
the update (6) can be shown to not follow a geodesic in general.

3 Two Simple Examples

In this section we present two simple examples of on-line learning algorithms. First,
we review the well known stochastic gradient descent algorithm posed on Euclidean
space. Second, we propose a learning problem posed on the sphere. The non-Euclidean
problem considered has a simple geometric structure that clearly demonstrates the key
ideas in the paper. All derivations are made formally in the noise free case to simplify
the development and focus on the geometric structure.

3.1 Linear Predictor Model in Rn

We assume there is a truep? and the sample processΣ(t) is given by(〈p?, xt〉 , xt) =
Σ(t) ∈ R×Rn wherext ∈ Rn is sampled as desired. The PMC isŷt = 〈pt, xt〉 , pt ∈
M = Rn. The loss function is the squared error loss

Lt(p) = L(p, (xt, yt)) = (〈p, xt〉 − yt)
2 (7)

The Widrow-Hoff learning algorithm 4 takes the familiar form

pt+1 = pt − 2η (〈p, xt〉 − yt) xt.

3.2 Scale Invariant Linear Predictor

We first motivate the choice ofM = Sn−1. Suppose the sample processΣ(t) generates
xt ∈ Sn−1 so ‖xt‖ = 1 One can think of the data as scale invariant; that is, the
generative model gives that same output for any scaling of the data pointyt = f(xt) =
f(αxt), ∀α ∈ R, xt ∈ Rn.

The PMC for the scale invariant linear predictor isfp(x) = 〈pt, xt〉 , pt ∈ M =
Sn−1. Again we suppose a true parameterp? exists: i.e.,yt = 〈xt, p?〉, for all (xy, yt)
generated byΣ(t). Due to the scale invariance one has〈p?, αxt〉 = 〈p?, xt〉 and con-
sequently〈p?, xt〉 = 0. This does not imply thatp? = 0, simply that the dataxt is
always orthogonal top?. Clearly, anyαp? for α ∈ R is also a valid estimate of the para-
metric model. It is thus natural to constrain the parameter estimates to a constant norm
‖p‖ = 1. Furthermore,p = 0 will generate a perfect estimate of the true output and
provide no information about the true parameter valuep?. Thus, it is necessary to apply
a norm constraint to the parameterp to avoid the on-line learning algorithm learning
the null hypothesis.

Problems of the above nature are common in identification of data dependencies.
For example in identification of an ARMA model the data received can be entered into
a Hankel matrix. An estimate of the underlying model, expressed as a weight vector,
is characterised as the zero eigenvector of the Hankel matrix. In terms of an on-line
learning problem, the columns of the Hankel matrixht ∈ Rn may be taken as data
samples. The goal of the learning algorithm is to refine the parameter estimatept that
makes〈ht, p〉 small.



The instantaneous loss function that we propose here is

Lt(p) = L(p, (xt)) = 〈p, xt〉2 . (8)

Note thatLt:Sn−1 → R. Thus, although it appears to be a Euclidean squared error
loss, the underlying geometry of the problem will result in interesting structure. The
choice of loss function is discussed in detail in Section 4.

The algorithm update on the unit sphereSn−1 can be written as

pt+1 = pt cos (η ‖Vt‖)−
Vt

‖Vt‖
sin (η ‖Vt‖) ,

whereVt = 2 〈pt, xt〉 (xt − 〈pt, xt〉 pt) and the norm‖Vt‖ is the standard norm of the
vectorVt in Rn. A detailed derivation for this algorithm is given in Section 5.

4 Parametrised Model Classes and Loss Functions

In this section we propose a definition for compatibility of a loss function and a param-
eterised model class (PMC). It is interesting to note that the concept of convexity that is
often taken for granted in the Euclidean case does not generalise to the case of non-flat
PMCs. The weaker concept of compatibility is justified by reference to the examples
introduced in Section 3.

Definition 1. Consider a parameterised model class(fp,M). Thesolution setis de-
fined to be

St(0) := {p ∈ M : yt = fp(xt)} .

The solution set of a PMC depends explicitly on the data sample at each time in-
stant. The solution set characterises the set of parameters for which a given data sample
provides no further information on the parameter performance. An important (although
trivial) observation is that for a single output learning algorithmyt ∈ R solution set
is generically an(n − 1)-dimensional hyper-surface inM. For λ ∈ R we define a
generalised solution set

St(λ) := {p ∈ M : λ = yt − fp(xt)} .

Let p ∈ M be a regular point of the functiongt(p) = yt−fp(xt). The parameterλ ∈ R
is a regular valueif dgt: TpM → R is surjective at anyp ∈ g−1

t (λ). If λ is a regular
value ofgt(p) then the preimageSt(λ) is a submanifold ofM of codimension1, a
hyper-surface of dimensionn− 1. If λ0 is a regular value ofgt(p) then locally the sets
S(λ), |λ − λ0| small, provide a foliation ofM (cf. Figure 1). That is, there exist local
coordinatesξ = (ξ1, . . . , ξn−1, λ) for M such that thenth coordinate characterises the
change in parameterλ and the first(n− 1) coordinates parameterise the surfaceSλ.

The following definition is important in understanding and choosing good loss func-
tions for non-linear PMCs.

Definition 2 (Compatibility).

Weak Compatibility A parametrised model class and loss functionL are calledweakly
compatibleif the minimal level set ofLt(p) is the solution setSt(0).
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Fig. 1.For a fixed data sample(xt, yt) the solution setSt(0) is a hyper-surface ofM if
0 is a regular point of the functiongt(p) = yt − fp(xt). In this case parameter space
has a local foliation into the setsSt(λ). A loss functionL is weakly compatible if its
level sets generate the same foliation ofM.

Output Compatibility A parametrised model class and loss functionL are calledout-
put compatibleif they are weakly compatible and the level sets ofLt(p) are the
generalised solution setsSt(λ).

Compatibility A parametrised model class and loss functionL are calledcompatible
if they are weakly compatible and if for any given data sample and any geodesic
γ: [0, 1] → M such thatγ̇(0) is orthogonal to the level set ofLt passing through
γ(0), thenγ̇(t) is orthogonal to the level set ofLt passing throughγ(t) for all t.

Strong Compatibility A parametrised model class and loss functionL are calledstrongly
compatibleif they are compatible and if the level setLt(p) = 0 is a totally geodesic
submanifold inM.

Convex Compatibility A parametrised model class and loss functionL are calledcon-
vexly compatibleif they are weakly compatible and if the loss functionLt(p) = 0
is convex with respect to the geometry ofM.

The goal of a loss function is to measure an error associated with a given parameter
for the present measured data. The minimum that should be required of a loss func-
tion is that it measures its minimum cost when the parameter estimate produces the
best output possible over parameter space. This is the concept of weak compatibility
in Definition 2. Thus, an algorithm that acts to reduce the loss at each sample time
will drive the parameter estimate closer to the best parameter estimate for the model at
the intersection of all solution sets for the observed data. In both the examples posed,
Section 3.1 and 3.2, it is clear that the PMC and loss function are weakly compatible.

Output compatibility is a natural consequence of the squared error structure of clas-
sical loss functions. For a generative noise modelyt = fp(xt) + µt consider a loss of
the formLt(p) = F (|yt − fp(xt)|), whereF : R → R is a monotonic increasing
function withF (0) = 0. For the classical squared error loss functionsF (x) = x2. Any
loss function of this form will be output compatible with the PMC. In both the examples
posed, Section 3.1 and 3.2, the structure of the loss function is based on a least squares
error criterion and the PMC and loss function are output compatible.

The definition of compatibility is important because it links the underlying geom-
etry of the PMC to the structure of the loss function. The concept of compatibility is
stronger than weak and output compatibility since the earlier definitions do not refer
to the underlying Riemannian geometry of the PMC in any way. Compatibility plays
an important role in the derivation of the on-line learning algorithms presented in Sec-



tion 5. Anticipating the formal details given in the following section, the update at a
point pt is made along the geodesic passing throughpt with velocity−gradL. If the
PMC and loss function are compatible then the gradient vector field of the loss is paral-
lel to the geodesic along the update step. Thus, the instantaneous decrease in loss along
the update step is maximised and the update step generates the maximal total decrease
in loss for a step of that length. In both the examples posed, Section 3.1 and 3.2, the
PMC and the loss function are compatible. This is clear in the Euclidean case as both
the geodesics and the level sets of the loss function are straight lines. In the case of
the sphere, the geodesics are great circles while the level sets of the loss function are
small circles. Only the solution set, at the equator for a given data samplext, is both a
geodesic and a level set of the cost function (cf. Figure 2).

It is possible to hypothesise situations where the PMC and loss are ‘output com-
patible’ but not ‘compatible’. In such a case, either the PMC itself is not well posed or
the underlying concept of a loss measuring output error is irrelevant for the particular
learning problem considered. If the geometric structure is inherited from the generative
noise model [10] then we would expect that a problem would be both compatible and
output compatible.

One of the consequences of compatibility is that it leads naturally to a ‘best’ choice
of loss function. Consider the instantaneous loss function

Lt(pt) = min
p∈St(0)

dist(p, pt)2.

This loss function is a least squares distance loss based on geodesic distance to the so-
lution set. It is clear that a loss function defined in this way will be compatible with the
underlying PMC. Other loss functions that scale the squared distance using any mono-
tonic scaling function are also compatible. The authors conjecture that this characterises
the possible compatible loss functions for a given PMC.

Strong compatibility is a small increment on compatibility. In the Euclidean ex-
ample, Section 3.1, the solution set is a hyper-plane and is clearly a totally geodesic
submanifold. In the case of the sphere, Section 3.2, the solution set is the equator of the
sphere with respect to the data pointxt (Figure 2). Thus, the PMC and loss function are
strongly compatible.

Convexity has been at the core of many of the earlier developments of on-line learn-
ing algorithms. The concept of convexity is certainly well defined on a Riemannian
manifold. It imposes some strong conditions on the structure of the underlying cost
function. For example, the solution set is a subset of a totally geodesic submanifold of
the parameter space. To see this, choose any two points in solution set and generate the
geodesic between the two points. The cost function is minimal at either end point of
the geodesic and convexity implies it is minimal at all points along the geodesic, which
must be contained in solution set. The Euclidean problem considered Section 3.1 is
convexly compatible as a direct consequence of the convexity of the least squares error
loss.

Proposition 3. The PMC on the sphere of Section 3.2 is not convexly compatible.

Proof omitted. For more on convex functions on the sphere see [11].



5 Deriving an On-Line Learning Algorithm for non-Euclidean
PMC

Let Lt:M → R be a non-constant smooth function. IfM is compact thenLt has at
least one point of minimum at a critical pointp ∈ M. Following Kivinen and Warmuth
[1], define a cost functionUt:M → R by

Ut(p) := ∆(p, pt) + ηLt(p),

where∆(p, pt) is a measure of how far the two parameters are apart.Ut consists
of two terms: the regularisation and the optimisation. The former term introduces a
penalty ifp is far frompt. The latter one is proportional to the instantaneous lossLt.
The learning rateη > 0 determines the relative importance of the two terms. In the
framework of Kivinen and Warmuth [9]∆ is the Bregman divergence. Here we take
∆(p, pt) = 1

2 dist(p, pt)2, wheredist(p, pt) is the Riemannian distance betweenp and
q. The advantage of making∆ depend solely on the distance is that such a measure is
independent of a parametrisation ofM. Letp ∈ M be a point of minimum ofUt, which
does not have to be unique. Because the functionUt is smooth,p is the critical point,
where the differentialdUt is zero; more precisely,

dUt(p)(V ) = d∆(p, pt)(V ) + η dLt(p)(V )
=
〈
−Exp−1

p pt, V
〉

g
+ η 〈gradLt(p), V 〉g = 0,

for any tangent vectorV ∈ TpM. Here〈 , 〉g denotes the inner product with respect
to the Riemannian metricg. The mapExp is called theexponential mapand can be
described as follows. Suppose that there exists a geodesicγ: [0, 1] → M satisfying the
initial conditionsγ(0) = p andγ̇(0) = V . ThenExpp(V ) := γ(1) is the end point of
the geodesicγ. Consequently the inverseExp−1

p pt denotes the velocity vector of the
geodesic fromp to pt calculated atp, cf. [12]. Here, and throughout this paper,grad is
thecovariant gradientoperator extended to Riemannian manifolds by

dh(w)(V ) = 〈gradh(w), V 〉g ,

for any V ∈ TwM and functionh:M → R. Such a definition of the gradient of a
function onM makes it a vector field onM, cf. [13]. Let pt+1 be a point of minimum
of Ut. Then

Exp−1
pt+1

pt = η gradLt(pt+1), (9)

but for our algorithm we take the approximation

− Exp−1
pt

pt+1 = η gradLt(pt). (10)

The two above equations define two different update rules called theimplicit update
(since to determinept+1 one needs to solve the equation (9)) and theexplicit up-
date(10). The explicit update (10) says that pointpt+1 is the end point of the geodesic
starting frompt with initial velocity vector equal to−ηgradLt(pt). Note that (9) does
not necessarily definept+1 uniquely. On the other hand the explicit update has the prop-
erty of decreasing the value ofLt as the following Proposition 4 shows.



Recall that the manifoldM is completeif the exponential mapExpp(V ) is defined
for all p ∈ M and all vectorsV ∈ TpM. By the Hopf-Rinow theorem [13] a connected
manifold is complete if and only if it is complete as a metric space. For example a
sphereSn−1 is a complete manifold but any proper open subset ofRn with Euclidean
metric is not.

Proposition 4. Let M be a complete manifold andLt:M → R be a continuously
differentiable function with a finite number of isolated critical points. Then there exists
ξ > 0 such that for any learning rate0 < η < ξ

Lt(pt+1) ≤ Lt(pt),

wherept+1 is given by explicit update (10), and equality holds if and only ifpt+1 = pt.

Proof. Let γV : [0, c] → M be a geodesic with initial pointpt = γV (0) and initial
velocity vectorV = γ̇V (0) = −gradLt(pt), and letf = Lt ◦ γV . Then by the chain
rule

f ′(0) = 〈gradLt(γV (0)), γ̇V (0)〉
= 〈gradLt(pt),−gradLt(pt)〉 = −‖gradLt(pt)‖2 ≤ 0,

where equality holds if and only ifpt is a critical point ofLt, in which case (10) gives
pt+1 = pt. If pt is not a critical point ofLt then, sincef ′ is continuous,f is monoton-
ically decreasing in some interval[0, ξ). Since the number of isolated critical points of
f is finite then clearlyξ > 0. Henceforth, for any0 < η < ξ there isf(η) < f(0).
By the rescaling lemma (cf. [13]) and by (10) it follows thatγV (η) = γηV (1) = pt+1.
HenceLt(pt+1) < Lt(pt), for any0 < η < ξ, what was to show. ut

Proposition 4 shows that under weak assumption for the loss function, the explicit
update always leads towards decreasing the loss, for a sufficiently small learning rate.
Although it is impossible to tell, in general, how efficient this algorithm is, that is how
fast the sequence of derived parameters approaches the true parameter and how large the
cumulative loss is, we may say that for any finite sequence of data points such learning
rate always exists.

We conclude this section with showing that both update rules: the Widrow-Hoff
algorithm (4) of the linear predictor model inRn, and the geometrical update of the
scale invariant linear predictor, described in Sections 3.1 and 3.2, are examples of the
explicit update (10).

5.1 Examples of the Explicit Update

Example 5.Let M = Rn. The covariant gradientgrad is equal to the standard gradient
∂. Considering the standard Euclidean connection, we find that geodesics inRn are line
segments andExp−1

pt
pt+1 = pt+1 − pt. The explicit update (10) then becomes

− (pt+1 − pt) = η ∂pLt(pt),

which is precisely the Widrow-Hoff learning algorithm.



Example 6.Let us now assume thatM = Sn−1 is then − 1-unit sphere embedded in
Rn with its standard metric induced from the Euclidean metric onRn. The covariant
gradientgradLt(p) onSn−1 is equal to the projection of the standard gradient onto the
tangent space atp. Thus, the gradient of the scale invariant linear predictor (8) is given
by

gradLt(p) = 2 〈p, xt〉 (xt − 〈p, xt〉 p) . (11)

The exponential mapping on the unit sphere is given by

Expp(V ) = p cos ‖V ‖+
V

‖V ‖
sin ‖V ‖ , (12)

for anyp ∈ Sn−1 andV ∈ TpSn−1, where the norm is taken with respect to the Eu-
clidean metric onRn. Given the exponential mapping (12) the the explicit update (10)
takes the form

pt+1 = Exppt
(−η gradLt(pt))

= pt cos (η ‖Vt‖)−
Vt

‖Vt‖
sin (η ‖Vt‖) ,

whereVt = gradLt(pt) is given by (11). To complete the calculation we give the
formula for‖Vt‖

‖Vt‖ = ‖gradLt(pt)‖ = 2 |〈pt, xt〉| ‖xt − 〈pt, xt〉 pt‖ = 2 |〈pt, xt〉|
√

1− 〈pt, xt〉2,

or in short‖Vt‖ = |sin 2d|, whered = arccos 〈pt, xt〉 is the spherical distance between
pt andxt.

6 Analysis

This section investigates performance of the learning algorithm on the unit sphere. To
begin with a geometrical relationship between input and output points of the algorithm
is established. Afterwards it is shown that for any learning rate0 < η < 1 the algorithm
always progresses, in terms of spherical distances, towards a (closer) true parameterp?,
except for the pathological case whendist(pt, p?) = π/2. Finally cumulative mistake
bound is investigated.

6.1 Description of the Algorithm on the Sphere

In order to analyse the learning algorithm (10) we first describe its single step in terms
of spherical geometry. Observe that the three pointsxt, pt andpt+1 aways lie along a
geodesic, a great arc onSn−1 and the order of the points depends on the sign of〈pt, xt〉.
When the inner product〈pt, xt〉 is positive thend < π/2 and the order ofxt, pt, pt+1

is as illustrated on Figure 2, while for〈pt, xt〉 negatived > π/2 and the order of the
points changes toxt, pt+1, pt. Consider the two spherical triangles4xt, pt+1, p? and
4xt, pt, p?, as in Figure 2. By the law of cosines on the unit sphere, the following
identities hold{

cos a = cos (b + d) cos e + sin (b + d) sin e cos β and
cos c = cos d cos e + sin d sin e cos β,

(13)
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Fig. 2.Update step on the unit sphere, wheren = 3.

where
c = dist(pt, p?) and a = dist(pt+1, p?).

It is easy to check that the system of equations (13) still holds ford > π/2 if b is
replaced by−b. That is the situation with the explicit update since now the gradient
gradLt points in the opposite direction. Thus we have shown that the geometrical re-
lationship between the pointsxt, pt, pt+1 andp? of the learning algorithm (10) on the
sphere is captured by (13), whereb = η sin 2d.

6.2 Measure of Progress

In Section 6.3 we analyse the upper bound of the cumulative loss of the explicit algo-
rithm onSn−1, which gives a measure of how the algorithm performs. For the present
we consider step-wise progress towards the true parameter.

It is useful to analyse each step of a learning algorithm in terms of progress towards
acomparator parameterp, cf. [8]. Using the notation of the previous section we denote
a = dist(pt+1, p) andc = dist(pt, p), for any parameterp ∈ Sn−1. It is convenient
here to measure the progress in terms of the differencesin2 c − sin2 a. With a little
algebra it can be found from (13) that

sin2 c− sin2 a = (Lt(pt)− Lt(pt+1)) cos2 β (14)

− Lt(p) (Lt(pt)− Lt(pt+1))
(
1 + cos2 β

)
(15)

+ cos(b + 2d) cos β sin b sin 2e. (16)

Proposition 4 asserts that the differenceLt(pt) − Lt(pt+1) remains positive for suffi-
ciently smallη. Therefore term (14) is positive and depends on the loss atpt andβ. The



remaining terms (15) and (16) depend on bothLt(p) andLt(pt), where (15) is nega-
tive and (16) is usually relatively small. Further analysis is restricted to the case when
Lt(p) = 0. We have the following.

Lemma 7. Let p? be a parameter such thatfp?
(xt) = 0. Then the algorithm (10)

makes progress towardsp?, for anyβ 6= π/2 and any0 < η < 1. If β = π/2 then the
algorithm makes no progress, that isdist(pt+1, p?) = dist(pt, p?).

Proof. By the hypothesise = π/2 and hence the measure of progress becomes

sin2 c− sin2 a = cos2 a− cos2 c = cos2 β sin b sin(b + 2d).

Clearly if β = π/2 thensin2 c = sin2 a and by (13) it follows thatcos c = cos a hence
c = a, what was to show. Assume now thatβ 6= π/2. We will show thatsin b sin(b +
2d) ≥ 0, where the equality holds if and only ifd = π/2. We assume the opposite that
sin b sin(b + 2d) < 0 and derive a contradiction. Consider the three cases separately.

If d = π/2, thenb = η sin 2d = η sinπ = 0 and the case is proved.
If d < π/2, then sinceb = η sin 2d it follows from the hypothesis that0 < b < 1

and thereforesin b > 0. Hence it must be thatsin(b + 2d) ≤ 0 thenb + 2d ≥ π and
b = η sin 2d ≥ π − 2d, hencesin 2d ≥ π − 2d, butsin 2d = sin(π − 2d) < π − 2d. A
contradiction.

The cased > π/2 is proven in a similar way. ut

One consequence of Lemma 7 is that if the learning rate satisfies0 < η < 1
and the spherical distancedist(pt, p?) < π/2 then alsodist(pt+1, p?) < π/2, for
otherwise, sincept+1 continuously depends onη, there would be0 < η0 < 1 such that
dist(pt+1, p?) = π/2 which is impossible in view of Lemma 7. Thusdist(pt+1, p?) ≤
dist(pt, p?).

6.3 Upper Bound for the Cumulative Loss

We conclude the analysis of the explicit algorithm on the sphere with derivation of
cumulative mistake upper bounds. Such bounds provide a measure of performance of
an on-line algorithm. For a given sequence ofk instances{xt}k−1

t=0 one compares the
loss accumulated by the algorithm with the accumulated loss for a fixed comparator
parameter.

Here we choose comparator to be the true parameterp? so that the sequence of
k instances satisfy〈p?, xt〉 = 0, for all t. In other words, allxt lie on a great circle
orthogonal top? and the loss is alwaysLt(p?) = 0. The following fact is needed.

Proposition 8. If 0 ≤ a ≤ c ≤ π/3 then

cos a− cos c

cos c
≤ c2 − a2.

Let lossk(A) denote the cumulative loss of the algorithm afterk iterations, defined by

lossk(A) :=
k−1∑
t=0

Lt(pt).



Lemma 9. Let dist(p0, p?) ≤ π/3 then for any0 < η < 1 the following upper bound
for the cumulative loss holds

lossk(A) ≤ dist(p0, p?)2 − dist(pk, p?)2

η

(
1− η +

√
(1− η)2 + 2

3k (3− (2− η) η) (dist(p0, p?)2 − dist(pk, p?)2)
)

<
dist(p0, p?)2 − dist(pk, p?)2

2η (1− η)
.

Proof. We shall use the notation of the previous section, wherea = dist(pt+1, p?),
c = dist(pt, p?) ande = dist(xt, p?). By the hypothesise = π/2 and hence the system
of equations (13) yields

cos a− cos c

cos c
=

sin(b + d)− sin d

sin d
.

One checks that with the hypothesis of the lemma the following estimation holds

sin(b + d)− sin d

sin d
> 2η (1− η) Lt(pt) +

2
3

η2 (3− (2− η) η)
1
k

(Lt(pt))
2
.

Thus by Proposition 8 and the remark after Lemma 7 the following inequality holds

dist(pt, p?)2 − dist(pt+1, p?)2 > 2η (1− η) Lt(pt) +
2
3

η2 (3− (2− η) η)Lt(pt)2.

Summing up fort = 0, . . . , k − 1 yields

dist(p0, p?)2−dist(pk, p?)2 > 2η (1− η)
k−1∑
t=0

Lt(pt)+
2
3

η2 (3−(2− η) η)
k−1∑
t=0

Lt(pt)2.

By Hölder’s inequality

k−1∑
t=0

Lt(pt)2 ≥
1
k

(
k−1∑
t=0

Lt(pt)

)2

,

and hence

dist(p0, p?)2−dist(pk, p?)2 > 2η (1− η) lossk(A)+
2
3

η2 (3− (2− η) η)
1
k

(lossk(A))2 .

Solving the above quadratic inequality completes the proof. ut

One of the goals in machine learning is to design an on-line algorithm with the
best possible cumulative loss. Lemma 9 assures that given a sequence of examples
such that〈p?, xt〉 = 0, for all t, we may choose an optimalη so that cumulative loss
lossk(A) < 2

(
dist(p0, p?)2 − dist(pk, p?)2

)
< 2dist(p0, p?)2 ≤ 2π2/9.



7 Conclusion

The paper reconsidered the basic ideas of stochastic gradient descent in a setting more
general than usual. We showed how to respect the underlying geometry induced by re-
strictions to the parameter space for linear predictors. We also showed that the classical
and seemingly obvious notion of convexity for loss functions does not map across to
the more general situation so simply. We developed notions of compatibility between
a loss function and a metric. We illustrated our ideas on the problem of learning linear
functions with the parameters restricted to a sphere.

We also analysed the algorithm in terms of a cumulative mistake bound. Unsur-
prisingly (given the non-flat geometry) we did not obtain results of the same structural
form as those obtained for flat metrics. Specifically it matters significantly where the
algorithm starts (how far it is fromp?).

It is reasonable to expect that the analysis of the algorithm presented can be consid-
erably refined. More interesting is the prospect of applying the general framework here
to a wide range of problems.
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