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Particle Filtering Algorithms
for Acoustic Source Localization

Darren B. Ward, Eric A. Lehmann and Robert C. Williamson

Abstract— Traditional acoustic source localization algorithms
attempt to find the current location of the acoustic source using
data collected at an array of sensors at the current time only. In the
presence of strong multipath, these traditional algorithms often er-
roneously locate a multipath reflection rather than the true source
location. A recently proposed approach that appears promising
in overcoming this drawback of traditional algorithms, is a state-
space approach using particle filtering. In this paper we formulate
a general framework for acoustic source localization using parti-
cle filters. We discuss four specific algorithms that fit within this
framework, and demonstrate their performance using both simu-
lated reverberant data and data recorded in a moderately rever-
berant office room (with a measured reverberation time of 0.39
seconds). The results indicate that the proposed family of algo-
rithms are able to accurately track a moving source in a moder-
ately reverberant room.

Index Terms— localization, generalized cross-correlation, time-
delay estimation, acoustic signal processing, particle filters

I. INTRODUCTION

The problem of locating and tracking a wideband acoustic
source in a multipath environment arises in several fields, in-
cluding sonar, seismology, and speech. In this paper we are
particularly interested in the speech area, where applications
include automatic camera steering for video-conferencing, dis-
criminating between individual talkers in multisource environ-
ments, and providing steering information for microphone ar-
rays [1].

Traditional approaches to this problem collect data from sev-
eral microphones and use a frame of data obtained at the current
time to estimate the current source location. These traditional
approaches can be divided into two categories: (i) time-delay
estimation (TDE) methods such as the well-known generalized
cross-correlation (GCC) function [2], which estimate location
based on the time delay of arrival of signals at the receivers; and
(ii) direct methods such as steered beamforming. Each method
transforms the received frame of data into a function that ex-
hibits a peak in the location corresponding to the source. We
will refer to this function as the localization function. The prac-
tical disadvantage of these traditional approaches is that rever-
beration causes spurious peaks to occur in the localization func-
tion. These spurious peaks may have greater amplitude than the
peak due to the true source, so that simply choosing the maxi-
mum peak to estimate the source location may not give accurate
results.
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A promising approach that overcomes the drawback of tradi-
tional methods is to use a state-space approach based on particle
filtering (PF), as recently described in [3], [4]. The key to these
new techniques is that the peak due to the true source follows
a dynamical model from frame to frame, whereas there is no
temporal consistency to the spurious peaks. Using a sequential
Monte Carlo approach, particle filters are used to recursively
estimate the probability density of the unknown source location
conditioned on all received data up to and including the current
frame. Related work on using particle filters to track multiple
moving targets can be found in [5].

In this paper we formulate a general framework for acoustic
source localization using particle filters. We assume the pres-
ence of a single acoustic source in a reverberant environment, in
which the speed of wave propagation is known (and constant),
and the sensor positions are also known.

The paper is organized as follows. In the next section we for-
mulate the source localization problem and present an overview
of classical approaches. These classical methods are used as a
reference to compare with the tracking ability of the particle fil-
ter algorithms developed later in this paper. The general frame-
work we propose for acoustic source localization using parti-
cle filters is described in Section III. In Section IV we present
a detailed summary of four different algorithms that fit within
this framework, including those proposed in [3], [4]. Section V
gives a description of the different parameters used to assess
the tracking accuracy of each algorithm. In Sections VI and
VII, we then present a series of experiments to test the particle
filtering algorithms and compare them with the classical source
localization approaches. These experiments involve both simu-
lations based on the image method [6], and data obtained from
recordings performed in a real office room.

II. SOURCE LOCALIZATION

A. Signal Model

Consider a collection of
�

sensors positioned arbitrarily and
located in a multipath environment. Assuming a single source,
the discrete-time signal received at the � th sensor (where ������������	� �

) is: 
���
���� ��� ��
���������
�����������
���� � (1)

where � ��
���� is the complete impulse response from the source
to the � th sensor, ��
���� is the source signal, ����
���� is additive
noise (assumed to be uncorrelated with the source signal and
from sensor to sensor), and � denotes convolution. The impulse
response from the source to any sensor can be separated into
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direct path and multipath terms, giving
�� 
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where %
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is the source location in Cartesian coordinates,
% � is the sensor

location, ,���
���� is the component of the impulse response be-
tween the source and the � th sensor due to multipath only, and#76�#

denotes the vector 2-norm. The delay from the source to
the � th sensor is ( � �98;:�< #&% s ' % � # � (4)

where 8 is the speed of wave propagation.
Assume that the data at each sensor are collected over a frame

of = samples, and let>�� 
@?1� �A- 
���
@? = � � 
�� 
@? = � � � ��������� 
���
@? = � = ' � � 3 (5)

denote the data at the � th sensor for frame ? . Stack the sensor
frames to form the

�CB = matrixDFE � GHI > < 
@?1�...>�JK
@?1�
L MN � (6)

which represents the data received at the array during time
frame ? . We will refer to

DOE
as the raw data. The problem

is to estimate the current location of the source from the raw
data.

B. Traditional Approach

Classical source localization algorithms attempt to determine
the current source location using data obtained at the current
time only. There are essentially two methods used: time-delay
estimation methods (which estimate location based on the time
delay of arrival of signals at the receivers) and direct methods.
Each method transforms the raw data into a function that ex-
hibits a peak in the location corresponding to the source. Here
we briefly review these two methods.

1) TDE method: many conventional source localization al-
gorithms partition the sensors into pairs, and attempt to find
a time-delay estimate (TDE) for each pair of sensors. These
TDEs can be obtained using a variety of techniques, including
the adaptive eigenvalue decomposition algorithm (AEDA) [7]
and the well-known generalized cross-correlation (GCC) func-
tion [2] (and its variants). These techniques act to transform the
raw data into another functional form from which time delays
can be estimated. Specifically, for a given time delay ( , let theP

-dimensional measurement (where
P

is the number of sensor
pairs) be Q E 
 ( � �9R T 
 ( � DFE � � (7)

where R T 
 6 � is the (algorithm-dependent) function that trans-
forms the raw data to a localization measure that exhibits a peak
corresponding to the true source location. We will refer to R T 
 6 �

as the TDE localization function. As an example, we will con-
sider the TDE localization function for the GCC technique.1

Let >�SUT V+
@?1� denote the data received during a given frame? at the W th sensor of the X th sensor pair, i.e. >YSUT V+
@?1�[Z>]\ ^	_ S :�<a`@b V c 
@?1� � Xd� ���������	� P � We� ���&f . With gOh 6 i denoting the
Fourier transform, j SUT V1
5ke� �lgOh >�SUT V+
@?1� i represents the fre-
quency domain data received during time frame ? at the sensors
in the X th pair. With - m 3 S denoting the X th element of the vectorm , the X th element of the TDE localization function for the GCC
technique is then- R T 
 ( � DFE � 3 S �onqp S�
5ke� j SUT < 
5ke� jsrSUT ^ 
5ke�at	u1vxw d k � (8)

where p S�
5ke�zys{ b is a weighting term. One common choice
for this weighting term isp S�
5ke� � �| j SUT < 
5ke� j rSUT ^ 
5ke� | � (9)

which results in the well-known PHAT localization algorithm
[2].

For the X th pair of sensors, the TDE is determined as}( S ��~��+����~U�O- Q E 
 ( � 3 S � (10)

Determining the TDEs for all pairs requires
P

one-dimensional
searches over the scalar space of possible time delays.

For each pair of sensors, the TDE
}( S approximates a bear-

ing line along which a potential source lies. The source loca-
tion is then estimated as the location which best fits the poten-
tial source loci across all sensor pairs. There has been a large
amount of work in the literature concerning how to find this
best fit (see e.g., [8], [9], [10], [11]). In the simulation and ex-
perimental results for the TDE method presented in Sections VI
and VII, we define the source location

}%
s as that minimizing the

distance to each intersection point of the bearing lines with each
other. Intersection points lying outside the room boundary are
discarded, which provides an effective way of diminishing the
contribution of outliers in the TDE measurements. This method
is similar to that proposed in [9] and has shown to provide a
good performance for the present work compared to other vari-
ants proposed in the literature.

In practice, there are two major drawbacks with the tradi-
tional TDE approach: (i) although the true source location will
usually correspond to a peak in the TDE localization function,
in the presence of multipath it may not always be the global
maximum; and (ii) in the presence of noise there is usually no
single point at which the source loci from different sensor pairs
intersect. Note that TDE methods are an indirect approach to
source localization, since they rely on a two-stage algorithm,
viz., first estimate time delays for different pairs, then combine
these time delays to find the source location.�

Note that AEDA differs from GCC in that it returns a single time delay
estimate, whereas GCC produces a function which has the TDE as the indepen-
dent variable. The localization function for AEDA is therefore a delta function.
Hence, it cannot be used with the pseudo-likelihood function described in Sec-
tion III, although it can be used with the Gaussian likelihood function.
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2) Direct method: contrary to the TDE method, direct meth-
ods attempt to estimate the source location vector without re-
course to pairwise TDEs. In this case, let the scalar measure-
ment be � E 
 % � ��� D


 % � DFE � � (11)

where
%

is the source location vector, and � D

 6 � is the direct

localization function. As an example of a direct localization
function, consider the frequency-averaged output power of a
steered beamformer [12], [13].

Let j ��
5ke� �ogOh >���
@?1� i denote the frequency domain data
received at the � th sensor during a given time frame ? . For a
beamformer steered to the location

%
, the localization function

is � D

 % � DFE � �on�� 
5ke�7��� J���� <�� � 
 % � ke� j ��
5ke�U���

^
d k � (12)

where the integration is computed over the frequency range of
interest, � 
5ke�ey�{ b is a frequency weight, and

� ��
 % � ke� �9� �zt u1v��1��� _���� : ����� :Y� ref ` (13)

is the complex-valued beamformer weight on the � th sensor,
with � ��y[{ the gain applied to the � th sensor signal,

% �
the sensor location, and � ref the distance to some reference
point (typically chosen as the centre of the sensor array). If� � � �U� � ��� � , then � ��
5ke� corresponds to a conventional
delay-and-sum beamformer. It was shown in [14] that, if the
sensor gain � � is chosen according to the signal gain level
of the source at the � th sensor, then the frequency-averaged
steered beamformer output is the optimal maximum likelihood
solution to locate wideband signals. It is also stated in [14] that
there is no significant performance degradation if the gain is
chosen as unity or is modelled by the direct path attenuation
only.

The source location is estimated from the localization func-
tion as }% ��~��+����~U� � E 
 % � � (14)

Determining the source location requires a single multi-
dimensional search over the vector space of possible source
locations. Although direct methods do not require the calcu-
lation of intermediate time delays, a multi-dimensional search
over source locations is required—this is potentially computa-
tionally very demanding.

Finally, observe the similarity between the direct method (12)
and the time-delay method (8). In fact, it was shown in [14] that
these methods are equivalent when GCC is performed across
all sensor pairs with p S�
5ke� chosen according to the signal gain
levels at the sensors in the X th pair, and the beamforming sensor
gain � � is chosen according to the signal gain level at the � th
sensor.

III. A FRAMEWORK FOR SOURCE LOCALIZATION USING
PARTICLE FILTERING

A. Development of a General Framework

In this section we formulate a general framework for source
localization based on particle filtering (PF). We use a first order

model of the source dynamics and define the source state at time? as   E ��¡ / s
�10

s
�+2

s
��¢/ s
�£¢0

s
��¢2

s ¤ 4 � (15)

where - / s
�10

s
�+2

s 3 4 is the true source location in Cartesian co-
ordinates, and - ¢/ s

� ¢0
s
� ¢2

s 3 4 is the source velocity. For a given
state

 
, we will denote the location vector of the state as

%;¥
.

At time ? , assume that a measurement
Q E

of the unobserved
state becomes available. This measurement is described by the
state-space equation Q E ��¦ 
   E �+§ < 
@?1�1� � (16)

where ¦ 
 6 � is an unknown, not necessarily linear, function of
the state

  E
and a noise term

§ < 
@?1� . Assume also that the state is
a Markov process, which can be modelled by the state transition
relation   E �9¨ 
   E :�< �+§ ^ 
@?1�1� � (17)

where ¨ 
 6 � is a known, not necessarily linear, function of the
previous state and a noise term

§ ^ 
@?1� .
Physically, the measurement

Q E
is obtained through some

transformation of the raw data:Q E 
@©�� �9R 
@© � DFE � � (18)

where we refer to © as the localization parameter and R 
 6 � as
the localization function. Observe that the measurements in
both the TDE (7) and direct (11) methods can be described by
(18). For the TDE method,

Q E
is a

P
-dimensional vector and© is a scalar time delay, whereas for the direct method,

Q E
is a

scalar and © is a location vector. The common description of
(18) will be used in the sequel. One should note that (16) is a
state-space equation that describes the measurements as a func-
tion of the unobserved state, whereas (18) describes how the
measurements are physically obtained from the raw data.

Let
Q <+ª E �«- Q < ��������� Q E 3 denote the concatenation of all mea-

surements up to time ? . The aim is then to recursively estimate
the conditional probability density X 
   E | Q <+ª E � —the source lo-
cation can be estimated as the mean or mode of this density
function. Unfortunately, this posterior filtering density is usu-
ally unavailable in practice. However, assuming that the poste-
rior density at time ? ' � is available, then the posterior at time? can be found through prediction and update as [15]X 
   E | Q <+ª E :�< � �on¬X 
   E |   E :�< � X 
   E :�< | Q <+ª E :�< � d

  E :�< (19a)X 
   E | Q <+ª E �$­ X 
 Q E |   E � X 
   E | Q <+ª E :�< � � (19b)

where X 
   E | Q <+ª E :�< � is the prior, X 
   E |   E :�< � is the state tran-
sition density, and X 
 Q E |   E � is the likelihood (or measurement
density).

In general no closed-form solution exists for (19a) and (19b),
although these recursions can be approximated through Monte
Carlo simulation of a set of particles (representing samples of
the source state) having associated discrete probability masses.
The generic particle filtering algorithm is described in [16].

With this framework in place, the general algorithm that we
propose for source localization using particle filters is described
in Fig. 1. This is a standard particle filtering algorithm, and
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Form an initial set of particles ®	¯z° ± ²³d´�µ�¶¸·�¹»ºF¼ and give them
uniform weights ®¾½7° ± ²³¿¶¸·	À+º�´aµ�¶«·�¹»ºF¼ . Then, as each new
frame of data is received:
1. Resample the particles from the previous frame ®	¯z° ± ²Á�Â �+¼ ac-

cording to their weights ®¾½7° ± ²Á�Â �&¼ to form the resampled set of
particles ®»Ã¯Ä° ± ²Á�Â �¾´�µ»¶Å·Æ¹UºF¼

2. Predict the new set of particles ®	¯ ° ± ²Á ¼ by propagating the re-
sampled set ®»Ã¯Ä° ± ²Á�Â �+¼ according to the source dynamical model

3. Transform the raw data into localization measurements through
application of the localization function:Ç Á1È@É;Ê ¶sË È@É ´1Ì Á�Ê

4. Form the likelihood function:Í È Ç Á1Î ¯ Ê ¶�Ï È Ç Á ´ ¯ Ê
5. Weight the new particles according to the likelihood function:½7° ± ²Á�¶ Í È Ç Á1Î ¯Ä° ± ²Á Ê

and normalize so that Ð ± ½7° ± ²ÁÑ¶Å·6. Compute the current source location estimate ÒÓ s as the weighted
sum of the particle locations:Ô ® Ó Á ¼�¶�ÕÖ ± × � ½7° ± ²Á Ó ° ± ²Ø

7. Store the particles and their respective weights ®	¯z° ± ²Á ´ ½7° ± ²Á ´�µ»¶·�¹UºF¼
Fig. 1. Generic particle filtering algorithm for source localization.

only steps 2)–4) are specific to the source localization prob-
lem. In implementing this algorithm, there are three algorith-
mic choices to be made:

(i) what model to use for the source dynamics in Step 2);
(ii) what localization function to use in Step 3); and

(iii) how to calculate the likelihood function in Step 4).
We note that there is also choice to be made in deciding the
precise implementation of the PF algorithm, although we will
not deal with the many variants of PF methods in this paper
(refer to [16], [17] for a review of these algorithms).

B. Source Dynamics

There are several dynamical models that could be used to rep-
resent the time-varying location of a person moving in a typical
room, e.g., [18]. One that is reasonably simple but has been
shown to work well in practice is the Langevin model used in
[3]. In this model the source motion in each of the Cartesian
coordinates is assumed to be independent. In the / -coordinate,
this motion is described as [3]:¢/ E �9�xÙ ¢/ E :�< �ÛÚ Ù�Ü]Ù (20a)/ E ��/ E :�< �ÛÝ ¨ ¢/ E (20b)�xÙ9� t :�Þ�ßYà 4 (20c)Ú Ùá�áâ�Ù)ã � ' � ^ Ù � (20d)

where Ü]Ù is a normally distributed random variable, Ý ¨ä�= � ��å is the time period separating two location estimates (with= being the frame length in samples and ��å denoting the sam-
pling frequency), and â�Ù is the source velocity. The model pa-
rameters suggested by [3] are æYÙç� �*è s :�< , and â�Ùç� � ms :�< .
The dynamics and parameters for the other Cartesian dimen-
sions are identical. In the sequel we will use (20) to model the
source dynamics.

C. The Localization Function

The localization function should be chosen such that it has a
maximum corresponding to the true source location. It is likely
that due to multipath, the localization function may also have
peaks at false locations. It is also likely that the true loca-
tion may not always be the global maximum. There are two
classes of possible localization function, corresponding to the
two methods used for conventional source localization, viz.,
TDE and direct methods.

1) TDE localization function: in TDE localization, the sen-
sor array is partitioned into

P
pairs, and the measurement is

formed according to (18), where © is a scalar time delay, andQ E
is a

P[B �
vector. The localization function for the X th pair

of sensors is denoted by - R 
@© � DOE � 3 S � XA� ���������	� P
. Assume

that from each of these
P

measurements, é possible TDEs
are obtained, with the � th TDE for the X th sensor pair denoted
by
}© S _ëê ` � Xá� ���������	� P � � � ���������	� é . These potential TDEs

would typically be obtained as the é largest local maxima of- Q E 
@©�� 3 S . A practical example of an implementation of the TDE
localization function is the GCC function given in (8).

Note that the localization function can be quite general, in-
corporating several different TDE algorithms simultaneously.
For example, one of the é potential TDEs could be obtained
by AEDA [7] with the remaining é ' � potential TDEs ob-
tained from the peaks of the GCC.

2) Direct localization function: in direct localization, the
measurement is given by (18), where © is the location vector,
and

Q E
is a scalar. Assume that from this measurement, é po-

tential source location vectors are obtained as the largest lo-
cal maxima of

Q E 
@©�� , and denote the � th potential location as}© _ëê ` � � � ���������	� é . A practical example of an implementa-
tion of a direct localization function is the steered beamforming
function in (12).

D. The Likelihood Function

For a given state
 

, the likelihood function measures the like-
lihood of receiving the data

Q E
. The likelihood function should

be chosen to reflect the fact that peaks in the localization func-
tion correspond to likely source locations. It should also reflect
the fact that occasionally there may be no peak in the localiza-
tion function corresponding to the true source location (such as
when the source is silent). The position of the peak may also
have slight errors due to noise and sensor calibration errors. We
propose the following two classes of likelihood function.

1) Gaussian likelihood: the Gaussian likelihood function
we develop here is essentially identical to that proposed in [3].

If é potential locations have been obtained from the lo-
calization function, then the Gaussian likelihood function is



5

formed by assuming that either one of these potential locations
is due to the true source location corrupted by additive Gaus-
sian noise, or none of the potential locations is due to the true
source location. There are two possible ways of forming the
likelihood function, depending on whether a TDE or direct lo-
calization function is used.

For a direct localization function, the likelihood function is
formed as Ü 
 Q E �   � �Cì�ê � <�í ê¾î 
@© ¥�ï }© _ëê ` �+ð ^ ��� í	ñ � (21)

where î 
@
 ï � �+ð ^ � denotes a Gaussian distribution with mean� and variance
ð ^

evaluated at 
 . The é potential loca-
tions obtained from the localization function are denoted by}© _ëê ` � � � ���������	� é , and © ¥ � %�¥ is the localization parame-
ter corresponding to the state.

The value of í�ñoò �
is the prior probability that none of

the potential locations is due to the source location, and í ê ò��� � � ���������	� é is the prior probability that the � th potential
location is the true source location. Without prior knowledge of
likely source locations, one would typically choose

í ê �
� ' í	ñé � � � ���������	� é � (22)

For a TDE localization function, the likelihood function for
the X th sensor pair is

Ü S�
 Q E �   � �Cì�ê � < í ê¾î 
@© S ¥ ï }© S _ëê ` �+ð ^ ��� í	ñ (23)

where
}© S _ëê ` � Xo� ���������	� P � � � ���������	� é is the � th potential

location obtained from the X th sensor pair, and© S ¥ �98 :�< 
 #&%�¥ ' % SUT < # ' #&%�¥ ' % SUT ^ # � (24)

is the TDE corresponding to the state, with
% SUT V the location

of the W th sensor in the X th pair. Assuming that the measure-
ments across sensor pairs are independent, the complete likeli-
hood function becomesÜ 
 Q E �   � �ôóõS�� < Ü S�
 Q E �   � � (25)

2) Pseudo-likelihood: the idea behind this approach is that
the localization function itself is typically a continuous func-
tion which could be used directly as the basis of a pseudo like-
lihood function. A lower bound is included to allow for the
case where no peak in the localization function corresponds to
the true source location. Again, there are two possible ways of
forming the likelihood function, depending on whether a TDE
or direct localization function is used.

For a direct localization function, the pseudo-likelihood
function we propose isÜ 
 Q E �   � �9��~U��h Q E 
@© ¥ � � í	ñ i;ö � (26)

where © ¥ � %�¥ , and ÷ yø{ b . The purpose of ÷ is to help shape
the localization function to make it more amenable to recursive
estimation.

For a TDE localization function, the pseudo-likelihood func-
tion is Ü 
 Q E �   � �ùóõS�� < Ü S�
 Q E �   � � (27)

where Ü S�
 Q E �   � �9��~U��h�- Q E 
@© S ¥ � 3 S � í	ñ i ö � (28)

with © S ¥ again given by (24) and ÷ y�{ b .
3) Discussion: the Gaussian likelihood has the advantage

that it treats all peaks as being equally likely, although it re-
quires a search over the localization function to find the peaks.
The pseudo-likelihood does not require such a search, but im-
poses a weighting on the possible source positions proportion-
ally to the localization function (i.e., a larger peak will be
treated as a more likely source location than a smaller peak—
this implicit weighting may not always be advantageous).

IV. SUMMARY OF PROPOSED ALGORITHMS

The framework developed in the previous section is rather
general and can be implemented using a wide class of TDE
or direct localization schemes. To clarify this development,
here we summarize four specific PF algorithms corresponding
to each of the likelihood–localization pairs that we proposed in
the previous section.

A. GCC localization with Gaussian likelihood (GCC-GL)

Organise the sensor array into
P

pairs. Implement the PF
algorithm in Fig. 1, with steps 3) and 4) as follows:

Step 3: for each sensor pair, calculate the GCC (8) across a
set of candidate time delays. Find the é largest local maxima
in the GCC function and denote the corresponding time delays
as
}© S _ëê ` � Xú� ���������	� P � � � ���������	� é .

Step 4: for each resampled state
  _ V `E calculate the likelihood

function X 
 Q E |   _ V `E � ��Ü 
 Q E �   _ V `E � using (23)-(25).

B. GCC localization with pseudo-likelihood (GCC-PL)

Organise the sensor array into
P

pairs. Implement the PF
algorithm in Fig. 1, with steps 3) and 4) as follows:

Step 3: for each sensor pair, calculate the GCC (8) only at the
time delays corresponding to the resampled states

  _ V `E , where
these time delays are found using (24).

Step 4: for each resampled state
  _ V `E calculate the likelihood

function X 
 Q E |   _ V `E � ��Ü 
 Q E �   _ V `E � using (24), (27), and (28).

C. SBF localization with Gaussian likelihood (SBF-GL)

Implement the PF algorithm in Fig. 1, with steps 3) and 4) as
follows:

Step 3: calculate the steered beamformer output power (12)
over a set of candidate source locations. Find the é largest
local maxima in the output power function and denote the cor-
responding location vectors as

}© _ëê ` � � � ���������	� é .
Step 4: for each resampled state

  _ V `E calculate the likelihood
function X 
 Q E |   _ V `E � ��Ü 
 Q E �   _ V `E � using (21).



6 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING

D. SBF localization with pseudo-likelihood (SBF-PL)

Implement the PF algorithm in Fig. 1, with steps 3) and 4) as
follows:

Step 3: calculate the steered beamformer output power only
at the set of location vectors corresponding to the resampled
states

  _ V `E .
Step 4: for each resampled state

  _ V `E calculate the likelihood
function X 
 Q E |   _ V `E � ��Ü 
 Q E �   _ V `E � using (26).

E. Discussion

Algorithm A (GCC-GL) requires the calculation of
P

sepa-
rate GCC functions across a set of time delays. It also requiresP

one-dimensional searches to find the candidate TDEs. This
algorithm is essentially that proposed in [3]. Note that the GCC
can be implemented efficiently using the FFT, although the time
delays are restricted to a specific set of values (determined by
the sampling frequency and the number of points in the FFT).

Algorithm B (GCC-PL) requires calculation of
P

separate
GCC functions only at the specific time delays corresponding
to the resampled states. It is not necessary to perform any
searches. Because the time delays are determined by the re-
sampled states, however, the FFT cannot be used to calculate
the GCC in this algorithm.

Algorithm C (SBF-GL) requires the calculation of a steered
beamformer response over the set of all possible source loca-
tions (this set is potentially very large). Furthermore, it requires
a multi-dimensional search to find the candidate source loca-
tions. We believe that this particular algorithm is too computa-
tionally demanding to be viable.

Algorithm D (SBF-PL) requires the calculation of the steered
beamformer response only at the locations corresponding to the
resampled states. No multi-dimensional searches are required.
This algorithm was proposed in [4].

V. ANALYSIS OF THE TRACKING ACCURACY

In the following sections, we will present the results from a
series of experiments using simulated as well as real audio data,
performed in order to determine the performance of the vari-
ous algorithms proposed in Section IV together with traditional
algorithms presented in Section II-B. These tests allow for a
comparative assessment of the tracking ability of each method
when used in a moderately reverberant and noisy environment.
We first give a brief description of the different parameters used
to assess the overall tracking accuracy for each algorithm sim-
ulation.

Three different parameters have been implemented in order
to provide a reproducible and algorithm-independent assess-
ment of the tracking ability. Only the first parameter (mean
square error) is applicable to the traditional localization meth-
ods described in Section II-B; the other two are based on the
specific distribution of the particles for PF algorithms.

1) Mean Square Error (MSE): for each frame of raw dataDFE
received from the sensors, the tracking algorithm delivers an

estimate
}%
s � }%

s

@?1� of the current source location. The square

error û E for time frame ? is computed as:û E � #&% s ' }% s # ^ � (29)

The MSE value then corresponds to the variable û E averaged
over the total number of frames in the audio sample. This pa-
rameter gives an indication about how much the source location
estimate deviates from the true source position. A high MSE
value hence always reflects an inaccurate tracking ability.

2) Mean Standard Deviation (MSTD): for each time frame? , the standard deviation ü E of a particle set around its estimate}%
s is defined as:

ü E �þýÿÿ� �� V � <�� _ V `E #&% _ V `¥ ' }% s # ^ � (30)

Similarly to the MSE parameter, the MSTD value corresponds
to the variable ü E averaged over the total number of frames pro-
cessed by the algorithm. The MSTD parameter is an accuracy
measure of the estimated source position delivered by a parti-
cle filter. A large ü E value means that the position estimate

}%
s

results from a widely spread particle set, indicating a low level
of estimation certainty.

3) Frame Convergence Ratio (FCR): we first define the
term convergence as follows. For time frame ? , a particle fil-
ter is said to be converging toward the true source position

%
s

if this latter lies within one standard deviation ü E from the es-
timated source location

}%
s. In other words, a particle filter is

convergent if the following inequality holds:#&%
s ' }% s #�� ü E ��� � (31)

where � accounts for the inaccuracy of the source position mea-
surements during the recording of the audio samples. The pa-
rameter FCR is defined as the percentage of frames for which
the particle filter has been found to converge, over the entire
audio sample length.

It must be noted here that the FCR value depends indirectly
on the MSTD parameter. If the particles are widely spread
around the source location estimate, the probability of the true
source lying within one standard deviation of the estimate is
higher, which in turn implies a higher FCR value. Hence, a high
FCR percentage may be partly resulting from a large MSTD
value.

VI. IMAGE METHOD SIMULATIONS

In this section, we present the tracking results obtained using
synthetic audio data for the classical GCC and SBF approaches.
Results obtained from algorithms SBF-PL and GCC-GL are
also shown here as generic representatives of the PF methods
(these two particle filtering methods were presented in [4] and
[3], respectively).

A. Simulation setup

For all the results presented in this section, the audio data
at each sensor was obtained using the image method for simu-
lating small-room acoustics [6] for a set of reverberation times
RT � ñ ranging from 0 to 0.6s. The simulation setup was defined
to match the experimental setup used in Section VII as closely
as possible: the room dimensions were set to

fx� 	
m
B�
 � � 


m
Bfx� 


m, and 8 microphones were used in total, the positions of
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Fig. 2. Typical microphone signal simulated with the image method for
RT � ³�������� ms.

which were defined as shown in Fig. 5 at the constant height of
1.464m.

A single sample of simulated audio data has been used to ob-
tain the results presented in this section. Fig. 5 shows the cor-
responding source trajectory (distance of approximately 1.6m)
defined for the image method simulations. The source signal
used was the speech utterance “Draw every outer line first, then
fill in the interior” pronounced by a male speaker and looped
twice, yielding a length of about 7.2s.

The sensors’ signals were generated by splitting the source
signal into 120 frames along the source’s path (resulting in a
frame length of about 60.4ms). The data received at each sen-
sor was obtained by convolving these frames of source signal
with the corresponding transfer functions resulting from the im-
age method between the source’s and sensor’s positions. Af-
ter recombining the convolution results, random Gaussian noise
was finally added to each microphone signal yielding an SNR
level of about 20dB. Fig. 2 shows a typical signal generated for
microphone 1 using this setup and for a reverberation time of
RT � ñ � ����è ms.

B. Simulation results

Each of the four methods under investigation in this section
was simulated for a variety of RT � ñ values and using the same
setup as given above. Fig. 3 shows some typical tracking results
obtained for each of them for RT � ñ � ����è

ms. The tracking
quality of the classical SBF and GCC methods rapidly degrades
for increasing reverberation times, and plots of the tracking re-
sults for these two methods become unusable for larger RT � ñvalues.

Fig. 4 gives a good insight into this kind of behaviour. It
shows the MSE obtained for each algorithm as a function of the
RT � ñ value chosen for the image method computations. For the
two PF algorithms (SBF-PL and GCC-GL), the MSE plotted
in Fig. 4 corresponds to the average square error resulting from
100 algorithm runs using the same audio sample and simulation
setup.

C. Discussion

As clearly depicted in Fig. 3 and Fig. 4, methods based on a
sequential Monte Carlo principle show a distinct improvement
in tracking ability compared to more traditional source localiza-
tion methods. Fig. 4 shows that for practically relevant levels
of performance (i.e. for MSE values close to zero), PF-based

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

RT
60

 (s)

M
S

E
 (m

2 )

SBF
GCC
SBF_PL
GCC_GL

Fig. 4. Average error for two classical and two PF-based source localization
methods, plotted vs. reverberation time. The audio data was simulated with the
image method for small room acoustics.

methods are able to deal with reverberation levels two to three
times higher than classical localization methods.2

As shown in Fig. 3, the presence of outliers in the observa-
tions computed from the raw data appear as spurious peaks in
the tracking results of these classical methods. The frequency
of these peaks increases dramatically as the reverberation time
becomes larger, which results in a deterioration of the overall
tracking ability. On the other hand, PF-based methods provide
an efficient way of filtering these peaks out and hence prove to
be more robust to reverberation and noise.

VII. REAL AUDIO EXPERIMENTS

In the previous section, we have described the tracking accu-
racy of classical as well as PF-based methods using synthetic
audio data. In this section, we use real audio samples recorded
in a typical office room to assess the tracking performance of
these algorithms when used in a moderately reverberant envi-
ronment.

A. Experimental hardware setup

The recording environment was a typical office room mea-
suring roughly

fx� 	
m
B�
 � � 


m
B fx� 


m, with various encased and
protruding spaces (windows, door, column, etc.). A number of
office furniture objects were also present in the room during
the recordings. A near to scale diagram of the room layout is
presented in Fig. 5.

The level of reverberation in the room was experimentally
measured by means of a loudspeaker emitting a high level
white noise signal. Measuring the 60dB decay period of the
sound pressure level after the source signal is switched off,
for a number of speaker and microphone positions, provided
the frequency-averaged reverberation time RT � ñ � è�� 
 	 s. The
level of noise in the room was comparable to typical office noise
levels, including mainly a computer fan and an air-conditioning�

The classical GCC results depicted in Fig. 4 are in keeping with those pre-
sented in [19], where a threshold effect is observed around RT � ³������ ��� s for
an ML cross-correlation-based TDE estimator.
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Fig. 3. Example plots showing typical tracking results for two classical and two PF-based methods. Solid lines are the algorithms’ estimate of the source location,
dotted lines represent true source position. The audio sample used was simulated with the image method for a reverberation time RT � ³�������� ms.
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Fig. 5. Room layout with microphone positions (black circles numbered from
1 to 8, positioned at a constant height of 1.464m), and showing a typical exam-
ple of source trajectory (dashed arrow).

vent on the ceiling. These sources of noise were not considered
as significant during the recordings.

The simulation setup made use of a total of 8 microphones
organized as one pair on each wall as depicted in Fig. 5. The
moving sound source was generated in the room with a loud-
speaker in upright position emitting the desired sound signal
and following a predefined path at a constant height of 1.464m
(distance from the floor to the center of the speaker cone). For
practical reasons, the source trajectory was always a straight
line, showing a variety of lengths and orientations (mainly from
one side or corner of the room to the other, within the unused
floor area). Fig. 5 shows a typical example of such a source tra-
jectory. Due to the practical method used to simulate the mov-
ing sound source in the room, a small source of error may have
been introduced when monitoring the position of the speaker
for the duration of the recording. The maximum deviation of
the actual speaker path from the desired source trajectory was
estimated to be less than 10cm in every direction. The mea-
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Fig. 6. Typical example of microphone signal recorded in real office room.
The source signal was the sentence “Draw every outer line first, then fill in the
interior” (taken from the TIMIT database) pronounced by a male speaker.

 ÷ í	ñ ð é
SBF-PL 30 3 0 – –

GCC-GL 30 – 0.4
��� �

e :"! 3
SBF-GL 25 – 0.5 0.25 4
GCC-PL 30 0.5 0.01 – –

TABLE I
CHOSEN PARAMETER SETTINGS FOR EACH PF ALGORITHM.

surement inaccuracy parameter � in (31) was therefore set to
0.1m.

The audio samples used as source signals were speech ut-
terances by male speakers with a sample length varying from
3.6s to 7.5s. Fig. 6 shows a typical example of sensor signal
recorded with microphone 1 as the loudspeaker was moving
with constant velocity across the room. The sensor signals were
all sampled at 8kHz and band-pass filtered between 300 and
3000Hz prior to source localization processing.

B. Experimental software setup

1) Tuning of PF-based algorithms: the main objective of
the simulations presented in this section is to give a compari-
son of the classical and PF-based methods described above with
each other. In order to ensure a fair algorithm comparison, the
parameters of each PF algorithm were independently tuned us-
ing a reference audio sample to achieve the best particle filter
performance. This process was done empirically by running
each algorithm a number of times with varying parameters un-
til a satisfactory performance was achieved. Table I presents the
parameter settings chosen for each PF algorithm. For algorithm
SBF-GL, the beamformer output power was computed over a
set of candidate locations distributed on a grid across the room
with a uniform spacing of 0.15m.

The PF results given in this section are obtained from the
algorithms operating in tracking mode. Higher level prob-
lems (e.g. related to the detection and handling of long speech
pauses, ways of initializing the particle set at simulation start,
etc.) are of course important for a functional system, but we
do not examine this issue in the present paper. Consequently,
the particle set for each PF algorithm was initialized by placing
all the particles at the start location of the sound source in the
room. This way, the unpredictable effects of a uniform initial
particle distribution were reduced to a negligible level. Thus,
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Fig. 7. Beamformer output power function used as pseudo-likelihood in algo-
rithm SBF-PL, for one signal frame.

we are measuring the ability of the algorithms to track a mov-
ing source only.

Given the relatively small dimensions of the room, the vari-
ables â�Ù and â$# of the source dynamics model given by (20)
were set to 0.7ms :�< .

2) Other considerations: in each algorithm (classical meth-
ods included), the incoming sensor signals were split into
frames of =«� �x�;f

samples (corresponding to a frame length
of 64ms) multiplied by a Hamming window, and the processing
was carried out using a frame overlapping factor of 50%.

For the classical SBF method, the output power function of
the steered beamformer was computed on a uniformly spaced
grid of points across the room with a 0.02m spacing.

C. Experimental results

1) Example plots: to illustrate some of the simulation re-
sults, we first present some typical plots obtained from algo-
rithm SBF-PL using a sample of real audio data, a recording of
which is given in Fig. 6.

Fig. 7 shows an example of the function used as pseudo-
likelihood plotted for one signal frame over the entire two-
dimensional state-space.3 This plot shows clearly the multi-
hypothesis character of the observation: the peak associated
with the true source is located at the 
 / �10 � coordinate posi-
tion 
 è�� 
$�x�&fx� 
 � , other peaks are clutter measurements due to
reverberation.

Fig. 8 presents the tracking result in the / and
0

coordinates
for a 3.8s run of algorithm SBF-PL. It demonstrates the ability
of this method to accurately track the sound source across the
room despite the relatively high level of reverberation. This
kind of result typically yields tracking quality values of MSE �è�� è�� 


m
^
, MSTD � è�� è%	 ! m and FCR � 	&� %.

2) Comparative results: the comparative results shown here
have been obtained in the following manner. Each of the four
PF methods under test was run 100 times with each one of 6 dif-
ferent samples of real audio data, implying a variety of source'

Note that this figure is shown for illustration purposes only: with algorithm
SBF-PL, the likelihood function is evaluated only at the particles’ positions.
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Fig. 8. Tracking results for one run of algorithm SBF-PL using real audio
data, showing the true source trajectory (dotted line) and the estimated path
resulting from the particle filter (solid line). Grey lines represent ( one standard
deviation of the particle set from its weighted mean (estimated source position)*

s).

SBF-PL SBF-GL GCC-PL GCC-GL SBF GCC
MSE 0.082 0.087 0.027 0.026 1.019 0.789

MSTD 0.212 0.151 0.103 0.098 – –
FCR 86.1 68.8 78.2 80.3 – –
MSE 0.022 0.058 0.032 0.057 1.181 0.786

MSTD 0.182 0.164 0.109 0.109 – –
FCR 97.3 79.0 82.5 67.5 – –
MSE 0.021 0.139 0.114 0.403 1.414 1.179

MSTD 0.193 0.171 0.114 0.116 – –
FCR 97.7 64.4 56.3 33.9 – –
MSE 0.170 0.115 0.195 0.168 1.371 1.312

MSTD 0.219 0.176 0.113 0.111 – –
FCR 74.0 81.3 42.0 49.4 – –
MSE 0.024 0.246 0.255 0.282 1.232 0.932

MSTD 0.174 0.181 0.114 0.116 – –
FCR 97.8 60.7 30.8 34.1 – –
MSE 0.171 0.341 0.635 0.848 1.395 1.228

MSTD 0.247 0.177 0.118 0.116 – –
FCR 79.2 55.0 24.4 19.8 – –

TABLE II
EXPERIMENTAL RESULTS: EACH OF THE 6 MAIN ROWS SHOWS THE

AVERAGE PERFORMANCE MEASURES (MSE IN M
�
, MSTD IN M, FCR IN

%) FOR A DIFFERENT SAMPLE OF REAL AUDIO DATA.

signals and trajectories. Since a different level of performance
is usually achieved for different source signals and paths, the
results obtained for each of the audio samples are given sepa-
rately. Table II contains the values obtained for the performance
assessment parameters averaged over the 100 real audio simu-
lations.

As for the classical SBF and GCC results presented in this
table, a single run of each algorithm has been used to generate
the MSE value for each audio sample. Contrary to PF-based
methods (where the resampling and prediction steps introduce
some degree of randomness), these classical methods will gen-
erate the exact same tracking results when applied twice to the
same audio sample.

D. Discussion

In Table II, differences in the overall performance results
from one audio sample to the other reflect a variable degree
of tracking difficulty for the algorithms, resulting typically
from the quality of the audio signals and the specific trajectory
of the sound source. As expected, these comparative results
also demonstrate the major tracking improvement of PF-based
methods versus classical source localization algorithms.

When comparing PF methods only, results from Table II tend
to show that algorithm SBF-PL generally works better than the
other methods, yielding on average lower MSE and FCR val-
ues. However, more simulations using real audio data may be
required in order to fully verify this statement.

The MSTD values shown in Table II are more or less con-
stant for each PF-based algorithm. This reflects the fact that
the MSTD value is mainly resulting from the specific parame-
ter setting chosen for each of these algorithms and that it does
not strongly depend on which audio sample is used.

VIII. CONCLUSIONS

Carrying out source localization in the practical environ-
ment of a moderately reverberant office room is not a trivial
task. Even low levels of reverberation or background noise can
rapidly become detrimental to classical TDE-based or beam-
forming methods. Under such adverse conditions, the use of se-
quential Monte Carlo methods proves to be of advantage com-
pared to these more traditional algorithms.

In this paper, we have presented a framework for source lo-
calization using particle filters, and compared four specific al-
gorithms, each of them differing from the other in the nature
of the observations or in the way the measurement likelihood
is computed. Results obtained from two traditional source lo-
calization methods have also been investigated and used as ref-
erence for an overall comparison of each algorithm’s tracking
ability.

Using synthetic audio data as well as audio samples recorded
in a real office room, we have demonstrated that sequential
Monte Carlo methods show a much higher degree of robust-
ness against reverberation and background noise compared to
these classical algorithms.
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