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Outline

• Induction (what’s “inductive”?)

• Inductive Principles (what’s the “principle”?)

• Empirical Risk Minimization

• Key Theorem of Learning Theory

• Conditioning on the Data

After the break, we will move on to the more technical part of the talk. . .

• “Conditioning on the data” in a Frequentist (PAC) setting — The Luckiness
Framework

• A new approach — Algorithmic Luckiness
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Induction

If we take in our hand any volume - of divinity or school
metaphysics, for instance- let us ask. Does it contain any

abstract reasoning concerning quantity or number? No. Does it
contain any experimental reasoning containing matter of fact

and existence? No. Commit it then to the flames, for it can
contain nothing but sophistry and illusion.

— David Hume

Hume’s problem is how to justify Induction: the inference
(discovery of laws) from empirical data.

Impossible“for all is but a woven web of guesses”.

Popper’s key insight: scientific theories do not lead to
certain knowledge; merely approximations to the truth.
Thus no “justification”

We can, however, reason logically about the process of scientific discovery.
Doing so shows one should prefer a more refutable theory over a less refutable
one.
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Induction

[W]e can always construct our machine so that it starts issuing
probabilistic predictions only after the 1000th event, say, or after
any other number n which we may choose, bearing in mind the
number of different properties in our ‘world’. (The problem is so

trivial that it is not worth making any effort to solve it
systematically; for we know, after all, that applications of the

simple inductive rule will never give us more that increasingly
good aproximations).

— Karl PopperRealism and the Aim of Science, p321 (1956,1983)

Based on work by Menger (1924) Popper argued could for-
mally consider the “dimension” of a theory.
Although it is impossible to build a general learning machine
Popper clearly admitted the possibilitywithin a constrained
frameworkof building a machine and being able to proba-
bilistically reason about its performance.
We will study learning machines, and not induction in gen-
eral.
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Learning Problem

The players . . . threw these abstract formulas at one another
displaying the sequences and possibilities of their science.

— Herman Hesse: The Glass Bead GameGiven:

• A training samplez = (x,y) = (z1, . . . , zm) ∈
(X× Y)m = Zm drawn iid fromPZ (unknown).

• A deterministiclearning algorithmA : Z(∞) → YX.

• A lossfunctionl : Y× Y→ [0, 1].

Question: How can one tell whetherA is good or not?
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One Possible Solution

Find a (probabilistic)boundonRl [A (z)] := EXY [l (A (z) (X) ,Y)], that is, a
functionψ such that

PZm (Rl [A (Z)] ≤ ψ (A,Z, δ)) ≥ 1− δ .

Robert C Williamson: Inductive Principles — Machine Learning Summer School, Canberra, February 2002 6



Why do we want such bounds?

A bound such as

PZm (Rl [A (Z)] ≤ ψ (A,Z, δ)) ≥ 1−δ

is not an end in itself; it suggests how
to adjust the parameters (or knobs) of
the learning algorithmA.

Thus thecloserthe analysis is to the algorithm the more insightful we would
hope it to be.

Difficulty: Givenz ∈ Zm how can the algorithmA choose an hypothesis that
achieves a small value ofRl[A(z)]?

Key point:Givenz ∈ Zm. No chance of computingRl[A(z)] even in principle
because we do not knowPZ.
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A Recipe for Generalisation Error Bounds

1. Relate the prediction errorRl [h] to someempirical
quantity, e.g. training error

R̂l [h,z] :=
1

|z|
∑

(x,y)∈z

l (h (x) , y) ,

that converges exponentially toRl [h] for anyh.

2. Apply thebasic lemmato the difference of the
prediction error and the empirical quantity (training
error). This introduces aghost sample.

3. Fully exploit the independence assumption ofz by using a technique known
assymmetrisation by permutation: (probability is overdoublesampleZ2m)

PZ2m (Υ (Z)) = EI

[
PZ2m|I=i (Πi (Υ (Z)))

]
= EZ2m

[
PI|Z2m=z (ΠI (Υ (z)))

]
.

4. Sincez ∈ Z2m is fixed, we can construct acoverw.r.t. the lossl and apply
theunion bound.
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Inductive Principle — Empirical Risk Minimization

This is a great algorithm to analyse.

— Ralf HerbrichPossibility of computing such bounds motivates:
EmpiricalRisk Minimization Algorithm

AH
erm : Z(∞) → H ⊆ YX

AH
erm : z 7→ arg min

h∈H
R̂l [h, z] .

The “principle” is to minimize the empirical surrogate
R̂l [h, z] of Rl [h, z].Thus depending on the choice of setsH, get a family ofempirical risk mini-
mization algorithms.

Note that the algorithmAH
erm has one “knob”: the class of functionsH.

How to chooseH? WantH as large as possible to ensure a good approximation
of the underlying data generating process. Pay a price. . .
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Consistency and Strict Consistency

Question: DoesAH
erm “work”?

More precise question:Is AH
erm consistent?

Assume thatH andl are such that for anyz ∈ Zm

R̂l

[
AH

erm(z), z
]

= inf
h∈H

R̂l [h(z), z]

and that for allh ∈ H, A ≤ Rl[h] ≤ B. Let

H(c) := {h ∈ H : Rl[h] ≥ c}.
Say thatAH

erm is strictly (nontrivially) consistentif for all c ≥ 0, for all ε > 0,

lim
m→∞

PZm

(∣∣∣R̂l

[
AH(c)

emp (z), z
]
− c
∣∣∣ > ε

)
= 0.

Need a definition like this to rule out “coding” the identity of a function into
one observation: can construct such artificial function classes of arbitrary com-
plexity which can be learned usingAH

erm with only one observation.
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Consistency of ERM

AH
erm is strictly consistent

⇔
∀ε > 0 lim

m→∞
PZm

{
sup
h∈H

(R[h]− R̂l[h,z]) > ε

}
= 0 ?

∀ε > 0 lim
m→∞

PZm

{
sup
h∈H

|Rl[h]− R̂l[h,z]| > ε

}
= 0 ??

⇔
∀ε > 0 lim

m→∞

1

m
EZm log N (ε,H, `1(z))︸ ︷︷ ︸

Covering number ofH at scaleε
w.r.t. to the`1(z) metric: for h ∈
H, ‖h‖`1(z) := 1

m

∑
z∈z |h(z)|.

= 0

The effective gap in the reasoning implicit in the difference between? and??
can be plugged using a more complex notion of cover — a one sided bracket
cover. I am unaware of any results on the relative sizes of such covering num-
bers compared toN (ε,H, `1(z)).
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So What?

The big deal is that (modulo the small gap mentioned)

EZm log N (ε,H, `1(z))

is the “right” quantity to study for understanding the effect of theH knob on
AH

erm. (Why it is worth fussing with strict consistency.)

Thus we know how to understand the effect of the “knob”H.

Note it is impossible to compute (even in principle) since we do not knowPZm

(the distribution from whichz is drawn).

Can upper bound bysup
z∈Zm

log N (ε,H, `1(z)) which can be effectively bounded.

Leads to “generalization bounds” of the form: forz ∈ Zm

PZm

(
Rl

[
AH

erm (Z)
]
≤ ψl (H,Z, δ)

)
≥ 1− δ .
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The “Key Theorem” in Learning Theory

“ERM is strictly consistent iff covering numbers behave nicely”

Observe that whilst we set out to understand the behaviour ofAH
erm our bounds

are in fact for
AH

worst := z 7→ arg max
h∈S(H,z)

Rl[h]

where
S(H, z) =

{
h ∈ H : R̂l[h,z] = R̂l[A

H
erm, z]

}
.

Consequently the bounds are very loose.

FurthermoreAH
erm could perform as poorly asAH

worst (what is there to stop it?).

Conclusion: behaviour of covering numbers is the crucial quantity for this
inductive principle (algorithm). Suggests to makeH as small as possible.

Robert C Williamson: Inductive Principles — Machine Learning Summer School, Canberra, February 2002 13



Another Algorithm: SRM

An obvious difficulty withAH
erm is that if one choosesH badly, the algorithm

has no hope of approximating the data.

Suppose forz ∈ Zm, we know

PZm

(
Rl

[
AH

erm (Z)
]
≤ ψl (H,Z, δ)

)
≥ 1− δ .

Given a sequence of nonnegative numbersδ = (δi)i∈N such that
∑

i δi = δ and
a sequence of hypothesis classesH = (Hi)i∈N

i∗ = i∗(z,H, δ, ψ) := arg min
i∈N

ψl(Hi, z, δi)

AH,δ
srm (z) := AHi∗

erm(z).
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Bounds for A
H,δ
srm

By the definition ofAH,δ
srm it comes with a performance bound already. For

i ∈ N, with probability at least1− δi over a random draw ofz,

R
[
AHi

erm(z)
]
≤ ψl(Hi, z, δi)

Thus the union bound ensures that with probability at least1−δ over a random
draw ofz, for all i ∈ N

R
[
AHi

erm(z)
]
≤ ψl(Hi, z, δi)

and thus with probability at least1− δ over a random draw ofz,

R
[
AH,δ

srm (z)
]
≤ ψl(Hi∗, z, δi∗) ♠
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Algorithm Independence of Bound

“You must condition on the data!”

— (Spirit of) Thomas Bayes
Classical bound takes form: with probability at least
1 − δ over a random draw ofz ∈ Zm according to
PZm,

Rl[A
H
erm(z)] ≤ ψ(H, z, δ).

Thusanyalgorithm

AH
any : Zm → H

for which R̂l[A
H
any(z), z] = 0 has the same bound

on performance.

This isgoodbecause one gets a general theory.

It is badbecause the same bound holds for theworstalgorithm.

Bayesians would say the problem is that we are notconditioning on the data.
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Why Conditioning on the Data is Important

That bayesians and frequentists are willing to discuss these
matters is an important first step toward developing a theory that

synthesizes both unconditional and conditional inference.

— George Casella (1988)
Why condition — a simple example.
SupposeX = (X1, X2),X1, X2 iid according to

Pθ(Xi = θ − 1) = Pθ(Xi = θ + 1) =
1

2

for −∞ < θ <∞.
Consider the “confidence procedure”

C(x) :=

{
x1+x2

2 if |x1 − x2| = 2
x1 − 1 if |x1 − x2| = 0

wherex = (x1, x2). Can check that

Pθ(C(X) containsθ) = 0.75 ∀θ
so we would be happy usingC(X) according to standard frequentist notions of
acceptability.
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Why Conditioning on the Data is Important

But after one sees the data:

If |x1 − x2| = 2 know for certainthatθ ∈ C(X)

If |x1 − x2| = 0, equally unsure whetherθ = x1 − 1 or x1 + 1.

Statisticians have expended considerable effort to develop procedures that have
frequentist guarantees of performanceandwhich can condition on the data to
exploit a lucky observation.

Bayesian methods intrinsically condition on the data, but offer no frequentist
guarantees of performance (most Bayesians would say this is no problem be-
cause such guarantees are neither necessary nor useful).

Many subtleties. To date really only for simple parameter estimation.

Something like this is needed in order to provide frequentist guarantees of per-
formance for learning algorithms that do more than merely minimize and em-
pirical risk functional.
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Maximum Margin Algorithm

If there exists one separating hyperplane then there exist many
of them. Why not choose the optimal one?

— Vladimir Vapnik

Maximum Margin Classifier: Hi(z) comprises hyper-
planeshw achieving marginγz(hw) = γi onz. Here

γz(hw) := max
(xi,yi)∈z

yi〈w, xi〉/‖w‖.

For linear hyperplanes, the risk bound is of the form

ψ(i) ≤ c

γi2
log2(m) + c log(1/δ).

MaximumMargin algorithm: ForH the set of linear hyperplanes.

AMM := z 7→ arg max
h∈H

γz(h)

(“Optimal” only in the sense that it optimizes the particularψ function used.)
Try to understandAMM as an instance ofAH,δ

srm .
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Data Dependent SRM:AH(z),δ
dsrm

New algorithm:Penalize complexity ofH(z) as if independent ofz. Consider
H(z) = (Hi(z))i. Suppose for data-independentHi andhiemp = AHi

erm(z) have
a bound

Rl[h
i
emp] ≤ ψ(H, z, δi) =: χ(i)

Let
i∗ := arg min

i
χ(i) A

H(z),δ
dsrm (z) := AHi∗(z)

erm (z)

Gist: penalize complexity ignoring data-dependence; apply SRM.

Problem: how to rigorously justify?
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How to conceptualize what’s going on?

Adherents of the various non-NPW schools take advantage of
“lucky observations” to make more conclusive sounding

statements than they would for “unlucky outcomes”.

— Jack Kieffer: Conditional Confidence Statements. . . 1977

Can not strictly justify the algorithm as an application of
SRM.

If as well asR̂l[h,z] = 0 we haveγz(h) = γ � 0, then
Rl[h] is small.

We arelucky if our data is like this.

We want tocondition on the datalike Bayesians do.

Would like to capture this notion in a general formal way.
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Break

BREAK

Have covered

• Induction (what’s “inductive”?)

• Inductive Principles (what’s the “principle”?)

• Empirical Risk Minimization

• Key Theorem of Learning Theory

• Conditioning on the Data

Yet to come:

• “Conditioning on the data” in a Frequentist (PAC) setting — The Luckiness
Framework

• A new approach — Algorithmic Luckiness
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Luckiness

I should be so lucky; lucky, lucky, lucky.
I should be so lucky in love.

— Kylie MinogueThe marginγz(hw) measures howluckyhw is onz.
In generalL : H × Zm → R.
Would like a bound that says with probability at least1− δ
over a random draw ofz according toPZm if R̂l[h,z] = 0
andω(L(h,z), δ) ≤ 2d then

Rl[h] ≤ ψ(m, d) ♦

The parameterd is aneffective complexity.

There needs to be some restrictions onL: if we “use up” all of the information
in the sample estimating its luckiness there is “none left” to estimateRl[h].
A bound like♦ is a bound for the algorithm

A
L,H
lucky := z 7→ arg min

h∈H
ψ(m, logω(L(h,z), δ))
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Luckiness (continued)
Given aluckiness functionL : H × Zm → R, thelevel is

`L(h, z) := |{(l(g(xi), yi))
m
i=1 : L(g,z) ≥ L(h, z)}| ,

the number of dichotomies induced onz by functions at
least as lucky ash. RequireL to be well behaved:

L is probably smoothw.r.t. ω : R × (0, 1] → N if for all
m ∈ N all distributionsPZ and allδ ∈ (0, 1]

PZ2m(∃h ∈ H : `L(h,Z[1:2m]) > ω(L(h,Z[1:m])), δ)) ≤ δ .

If L is probably smooth w.r.t.ω, δ = (δi)i,
∑

i δi = δ, with probability at least
1− δ over a random draw ofz, if R̂l[h,z] = 0 andω(L(h,z), δd/4) ≤ 2d then

Rl[h] ≤ 2
m (d + log2(4/δd)) ♥

EffectivelyH(z) = (Hi(z))i with Hi(z) =
{
h ∈ H : ω(L(h, z), δi/4) ≤ 2i

}
.
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Comments on Luckiness

• Can putAMM into this framework.

• The luckiness functionL is how weencode
our prior knowledge. We weight withδi the
ith data-dependent hypothesis class

Hi(z) =
{
h ∈ H : ω(L(h, z), δi/4) ≤ 2i

}
• Key practical difficulty is showingL is

probably smooth w.r.t. a “good”ω — the
smaller theω the tighter♥ is.

• Problem: Still do not pay enough attention
to thealgorithm, which motivates. . .
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Algorithmic Luckiness — Foundation

It is possible to prove abasic lemmafor al-
gorithms which means that thesymmetrisa-
tion by permutationstep only considers all
hypotheses that can be learned usingA.
Basic lemma says:

PZm

(
Rl [A (Z)]− R̂l [A (Z) ,Z] > ε

)
<

2 · PZ2m

(
R̂l

[
A
(
Z[1:m]

)
,Z[(m+1):2m]

]
− R̂l

[
A
(
Z[1:m]

)
,Z[1:m]

]
>
ε

2

)
Again, we introduce an ordering between the at most(2m)! hypotheses using
analgorithmic luckinessL (A, z). This gives

H (A, L, z) :=
{

A
(

Πi (z)[1:m]

)
| i ∈ I (A, L, z)

}
,

I (A, L, z) :=
{

i
∣∣∣ L(A,Πi (z)[1:m]

)
≥ L

(
A, z[1:m]

)}
.
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Illustration of Basic Lemma whenm = 2

z3z4 A((z4, z1))

z3z1 A((z1, z4))

z4z1 A((z1, z3))

z4 A((z3, z1))

z4z3

z4z3z2z1 A((z1, z2)) z4z3 A((z2, z3))

z4z1z2z3 A((z3, z2))

z1z3z4z2 A((z2, z4))

z1z3z2z4 A((z4, z2))

z2z1z4z3

z2z1z3

z1 A((z2, z1))

z3 z2

z3 z1 z2

z4 z2

z2z1

z2

z2 z1

A((z3, z4))

z4 A((z4, z3))

Consider the simple case ofm = 2. Consider all the hypotheses generated by
A and takeH (A, L, z) to be those so generated that are at least as lucky as
A((z1, z2)) where the luckiness is measured on(z1, z2).
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Algorithmic Luckiness — ω-smallness

Algorithmic luckinessH (A, L, z) is a function
of A directly.

Need to be able to bound the covering number
N of hypothesesh ∈ H (A, L, z) on the double
samplez only using the luckiness on the first
half, i.e. the training sample.

ω–smallness ofL: Given an algorithmA and a
lossl, the algorithmic luckinessL is ω–small at
scaleτ , if for all δ

PZ2m

(
N (τ,H (A, L,Z) , `l,1 (Z)) > ω

(
L
(
A
(
Z[1:m]

))
, δ, τ

))
< δ .

To prove this property we can only exploit thatPZ2m is a product measure.
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Algorithmic Luckiness — Main Result

And the winner is . . . Lucky!

— Britney Spears

Algorithmic Luckiness Bound: For all [0, 1]-valued loss
functionsl, for all ω–small algorithmic luckiness functions
L w.r.t. A, for all τ , with probability at least1 − δ over
z ∈ Zm,

Rl [A (z)] ≤ R̂l [A (z) , z] +

√
8

m

(
dde + log2

(
4m

δ

))
+ 4τ ♣

whered = log
(
ω
(
L (A, z) , δ

4m, τ
))

. If l is {0, 1}-valued, then wheneverA (z)

has zero training error,̂Rl [A (z) , z] = 0, for τ = 1/2m

Rl [A (z)] ≤ 2

m

(
dde + log2

(
4m

δ

))
. ♣
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Application — Classical VC Setting

VC-dimension is not most important quantity.

— Vladimir Vapnik: Dagstuhl, Germany (July 2001)

If A : Z(∞) → YX maps to a hypothesis spaceH ⊆ YX, we
know that

H (A, L, z) ⊆ H

regardless ofz andL.

Thus, for the zero-one lossl (ŷ, y) = Iŷ 6=y the growth functionis an upper

bound onN
(
|z|−1 ,H (A, L, z) , `l,1 (z)

)
and can thus serve as aω function.

Neither the serendipity of the sample nor the properties of the algorithmA have
been exploited!

As is widely known, this results in bounds which are quite loose.
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Application — Compression Bounds

I used to be God. . .

— Manfred Warmuth: Dagstuhl, Germany (2001)

Sparsity luckiness: If A : Z(∞) → YX is a com-
pression scheme, that is,A (z) = R (C (z)), then

Lsparse (A, z) := − |C (z)|

is ω-small at any scaleτ , where

ω (L, δ, τ ) =

(
2em

−L

)−L
.

Plugging this result into♣ gives a new compres-
sion result for regression as well as resembling the
original result of Littlestone and Warmuth (1986).
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Sparsity Luckiness — Proof

You must be my lucky star . . .
But I’m the luckiest by far.

— Madonna
Since we only have to consider permutationsΠi

where∣∣∣C(Πi (z)[1:m]

)∣∣∣ ≤ ∣∣C (z[1:m]

)∣∣ =: −L0

we know that the permutation invariant
reconstruction functionR never uses more than
−L0 examples.

The number of different choices of no more than
−L0 examples out of2m (double sample size) is
given by

−L0∑
i=0

(
2m

i

)
≤
(

2em

−L0

)−L0

.
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Application — Kernel Classifiers
Consider learning algorithms forkernel classifiers, that is,

Hφ := {x 7→ 〈φ (x) ,w〉 |w ∈ K} , φ : X→ K ⊆ `n2 .

Assume that the learning algorithmsA have the property
that

A : z = (x,y) 7→ 〈φ (x) ,wz〉 wherewz =
∑
xi∈x

α̂iφ (xi) and ‖wz‖ = 1 .

Examples are SVMs, BPMs and the perceptron algorithm.

Let the (normalised)marginΓ (z) be defined by

Γ (z) := min
(xi,yi)∈z

yi 〈φ (xi) ,wz〉
‖φ (xi)‖ · ‖wz‖

.
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Application — Kernel Classifiers (cont.)
Margin Luckiness: Letεi (x) be the smallestε > 0 such
that {φ (x1) , . . . ,φ (xm)} can be covered by at mosti
balls of radius less than or equal toε. For the loss
l (ŷ, y) = Iyŷ≤0, the luckiness function

Lmargin (A, z) = −min

i ∈ N
∣∣∣∣∣∣ i ≥

(
εi (x)

∑m
j=1 |α̂j|

Γ (z)

)2


is ω–small at scale1/2m where

ω (L, δ, 1/2m) =

(
2em

−L

)−2L

.

The bound comprises 3 main terms:marginΓ (z), sparsity surrogate
∑m

j=1 |α̂j|
and a factor depending on thedistribution of the dataεi(x).

Robert C Williamson: Inductive Principles — Machine Learning Summer School, Canberra, February 2002 34



Kernel Classifiers — Meaning ofεi(x)

The sequence (εi(x))i
measures how clumpy the
data is.

A small number of small
clumps means εi(x) is
small for smalli.

Compare with the idea of
“kernel alignment”.
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Application — Kernel Classifiers (proof)

Makovoz theoremshows that for allz ∈ Zm there
exists a weight vector̃w =

∑m
i=1 α̃iφ (xi) such that

‖w̃ −wz‖2 ≤ Γ2 (z)

and‖α̃‖0 ≤ −Lmargin (A, z) =: −L0.

It follows that 〈wz, w̃/ ‖w̃‖〉 ≥
√

1− Γ2 (z); that
is, w̃ still correctly classifiesz.

For every of the no more than
(

2em
−L0

)−L0

many sub-
samples̃z ⊆ z, w̃ lives in a space of dimension no
more than−L0.By an application of thegrowth function bound, eachw̃ can achieve no more

than
(

2em
−L0

)−L0

many dichotomies onz.
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Discussion
Discussion

Algorithmic luckiness framework differs from classical statistical learning the-
ory aproaches in that it does not use the crude step of viewing algorithms just
in terms of their hypothesis space.

Generalization of standard VC results. Get agnostic and realizable bounds.

Example of maximum margin algorithm illustrates that the framework has the
power to develop new insights into what makes algorithms perform well.

Main point is that it provides new theoretical tools for understanding algorithms
“smarter” that Empirical Risk Minimization.

Hope is that by analysing algorithms in this (or related) ways, will be able to
better discern the features about particular learning problems that make them
easy or difficult.
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