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Outline

¢ Induction (what's “inductive”?)

¢ Inductive Principles (what’s the “principle”?)
e Empirical Risk Minimization

e Key Theorem of Learning Theory

e Conditioning on the Data

After the break, we will move on to the more technical part of the talk

¢ “Conditioning on the data” in a Frequentist (PAC) setting — The Luckines:
Framework

e A new approach — Algorithmic Luckiness




Induction P £

] . . . . akegin qur+ olume - of divinity or school
Hume'’s prOblem IS hOW o JUStIfy Induﬁﬁliﬁi&lﬁ(&lﬁﬁézgﬁégsk Does it contain any
(discovery of |aWS) from empirica| chestact reasoning concerning quantity or number? No. Does it

contain any experimental reasoning containing matter of fact
and existence? No. Commit it then to the flames, for it can

Impossible‘for all is but a woven web of guesseg®"™" noming but sophistry and ilusion.

— David Hume

Popper’s key insight: scientific theories do not lead ,k
certain knowledge; merely approximations to the tr |
Thus no “justification”

We can, however, reason logically about the process of scientific discove
Doing so shows one should prefer a more refutable theory over a less refuta
one.




Induction P £

[W]e can always construct our machine so that it starts issuing
probabilistic predictions only after the 1000th event, say, or after
any other number n which we may choose, bearing in mind the

Based on work by Menger (1924) Roppeériargued eoukd ford. (The problem is so
“ ” trivial that it is not worth making any effort to solve it
ma”y COﬂSlder the d|menS|0n Of a th}@@ﬁ%caﬂy for we know, after all, that applications of the
Although itis impossible to build a getféraltedtnity MacHireT, =" "etnoy
Popper clearly admitted the possibilitykkinog-eamstiad A of sciengs21 (1956,1983)
frameworkof building a machine and being able to pro \
bilistically reason about its performance.
We will study learning machines, and not induction in g

eral.




Learning Problem e

The players ... threw these abstract formulas at one another
displaying the sequences and possibilities of their science.

Given: — Herman Hesse: The Glass Bead Game

e A training samplez = (x,y) = (z1,...,2m) € k‘
(X x Y)" = Z™ drawn iid fromPz (unknown). ‘

e A deterministiclearning algorithmA : Z(>) — yX,

e A lossfunction/ : Y x Y — [0, 1].

Question: How can one tell whethefl is good or not?
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One Possible Solution N A

Find a (probabilistichoundon R; [A (2)] := Exy [l (A (z)(X),Y)], that is, a
function such that

P (R[A(Z)] S (A,Z,6) > 1—6.
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Why do we want such bounds? 5%3

A bound such as
P (R A (Z)] <y (A, Z,0)) >1-0

IS not an end in itself; it suggests ho
to adjust the parameters (or knobs)
the learning algorithm.

Thus thecloserthe analysis is to the algorithm the more insightful we would
hope it to be.

Difficulty: Givenz € Z" how can the algorithml choose an hypothesis that
achieves a small value &t;[/(z)]?

Key point: Givenz € Z™. No chance of computing;[A(z)| even in principle
because we do not knoRy.
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A Recipe for Generalisation Error Bounds

1. Relate the prediction errdg, [h| to some=mpirical
guantity, e.g. training error

that converges exponentially 1§ [h] for anyh.
2. Apply thebasic lemmado the difference of the

prediction error and the empirical quantity (training

error). This introduces @host sample

3. Fully exploit the independence assumptioreddy using a technigue known
assymmetrisation by permutatiofprobability is overdoublesampleZ*™)

P22 (T(Z)) = Bt [Pzoni (T (T (Z)))] = Ezon [Pyjzzn— (Th (T (2)))] -

4. Sincez € Z?" is fixed, we can construct@verw.r.t. the losg and apply

theunion bound




Inductive Principle — Empirical Risk Minimization 3%3

This is a great algorithm to analyse.

Possibility of computing such bounds motivates: _ Ralf Herbrich

Empirical Risk Minimization Algorithm

A gl g c yx
ANz arg 2111:{(1 R/ [k, z].
The “principle” is to minimize the empirical surrogate

Ths ﬁ]e%feﬁdﬁhgzbn the choice of séfs get a family ofempirical risk mini-
mization algorithms

Note that the algorithmil’’ has one “knob”: the class of functiofis.

erm

How to chooseH(? Want}H as large as possible to ensure a good approximatio
of the underlying data generating process. Pay a price




Consistency and Strict Consistency

)

Question: DoesA’t “work”?

eIl

More precise question:ls Aerm consistent?
Assume thafH and!/ are such that for any € Z™
B[ A%(2), 2| = inf Ri[n(2), 2]

erm heH

and that for allh € H, A < R;[h| < B. Let
H(c) :={h € H: Ri|h] > c}.

Say that/)! is strictly (nontrivially) consistenif for all ¢ > 0, for all ¢ > 0,

lim PZm (‘Rl [ emp)(z>,Zi| — > 5) = 0.

Need a definition like this to rule out “coding” the identity of a function into
one observation: can construct such artificial function classes of arbitrary co

plexity which can be learned usin@ﬂfm with only one observation.




Consistency of ERM @%

)

‘

AT s strictly consistent

=
Ve >0 lim Pzm {Sup (R[h] — RZ h, z]) } = *
m=—00 heX
Ve >0 lim P {sup |Rl[ ] Rl h Z } * %
m=0o heXH

=
1
Ve >0 lim —Ezm 10g g\f(g,fH,él(z)l =0

m—oo M,

TV
Covering number ofH at scalec
w.r.t. to thet;(z) metric: forh €

I Ihlle ) = 7 ez ()]

The effective gap in the reasoning implicit in the difference betweandxx
can be plugged using a more complex notion of cover — a one sided bracl

cover. | am unaware of any results on the relative sizes of such covering nu
bers compared t (¢, I, (1(=z)).




e

So What? f%

The big deal is that (modulo the small gap mentioned)
Ezm lOg N (57 fH, g1(’Z)>

IS the “right” quantity to study for understanding the effect of fliknob on
AT . (Why it is worth fussing with strict consistency.)

Thus we know how to understand the effect of the “knoh”

Note it is impossible to compute (even in principle) since we do not kRgw
(the distribution from whicle is drawn).

Can upper bound byup logN (e, H, ¢1(z)) which can be effectively bounded.

zezm

Leads to “generalization bounds” of the form: for Z™

P, (Rl {A“ (Zﬂ <4y (%,Z,5>) >1—9.

erm




The “Key Theorem” in Learning Theory 3%3

“*ERM is strictly consistent iff covering numbers behave nitely

Observe that whilst we set out to understand the behaviadr gfour bounds
are in fact for

AN =z arg max Rj[h]
heS(H,z)

where

AN

S(H, z) = {h c 3 Ri[h, 2] = R[A% z]} .

erm?

Consequently the bounds are very loose.

Furthermored”’ could perform as poorly ag’C . (what is there to stop it?).

erm worst

Conclusion: behaviour of covering numbers is the crucial quantity for this
Inductive principle (algorithm). Suggests to makeas small as possible.




Another Algorithm: SRM 3%3

An obvious difficulty with.A”" is that if one choose$( badly, the algorithm

has no hope of approximating the data.

Suppose fore € 2, we know

P,. (Rl [Agfm (Z)} < oy (%, 2,5)) >1-4.

Given a sequence of nonnegative numbkees (¢;);en such thatdy . 4; = ¢ and
a sequence of hypothesis clas$€és= (H,);cn

i = i*<279{757¢> = argmil\?wxg{i?Z?éi)
(AS

ATL(2) = AT (2).

ST erm




o P

Bounds for Ay, B £

By the definition of A% it comes with a performance bound already. For

STrIm

v € N, with probability at least — ¢, over a random draw of,
R [ Af(2)] < w0t 2,0

Thus the union bound ensures that with probability at Iéast over a random
draw ofz, forall € N

R | A%%(2)] < w96, 2,0)
and thus with probability at least— ¢ over a random draw of,

R|AN(R)] S w30, 2,00) &

ST11




Algorithm Independence of Bound 3%3

Classical bound takes form: with probability at least ™" m‘ft(;"pri‘gt“g‘;’:oiz ::t:y'es
1 — o over a random draw of € Z" according to ,
PZTTL,

RJA (2)] < (K, z,0).

erm

Thusanyalgorithm
A gm K

any -

for which R[4 (2),z] = 0 has the same bound

any

on performance.

This isgoodbecause one gets a general theory.
It is badbecause the same bound holds fortlwstalgorithm.

Bayesians would say the problem is that we arecootditioning on the data.
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Why Conditioning on the Data is Important SV

That bayesians and frequentists are willing to discuss these
matters is an important first step toward developing a theory that

Why condition — a Simp|e example_ synthesizes both unconditional and conditional inference.
SupposeX = (X, X»), X1, X iid according to — George Casella (1988)

PuX,=0—1)=Py(X;=0+1) ==

for —oo < 0 < 0.
Consider the “confidence procedure”

Tr1+x9 : L —
C(:E)::{_Q e

331—1 if|$1—£€2|20

wherex = (1, z5). Can check that

P,(C(X) containg?) = 0.75 V0

so we would be happy using(.X ) according to standard frequentist notions of
acceptability.




&

Why Conditioning on the Data is Important

e

)

But after one sees the data:
If |x1 — 25| = 2 knowfor certainthatt € C(X)
If |x1 — 29| = 0, equally unsure whethér= x; — 1 orz; + 1.

Statisticians have expended considerable effort to develop procedures that r
frequentist guarantees of performaracel which can condition on the data to
exploit a lucky observation.

Bayesian methods intrinsically condition on the data, but offer no frequenti
guarantees of performance (most Bayesians would say this is no problem
cause such guarantees are neither necessary nor useful).

Many subtleties. To date really only for simple parameter estimation.

Something like this is needed in order to provide frequentist guarantees of p
formance for learning algorithms that do more than merely minimize and er
pirical risk functional.




Q%9

Maximum Margin Algorithm s

If there exists gne separating hyperplane then there exist many

Maximum Margin Classifier: H;(z) compriseStfHdeiy not choose the optimal one?
planesh,, achieving marginy. (hy) = 7; on z. Here — Vladimir Vapnik

Valhw) = max yi(w, z;)/||wl].

(wi,y;)€2
For linear hyperplanes, the risk bound is of the form
) C
(i) < Wlog?(m) + clog(1/9).

MaximumMargin algorithm: FofH the set of linear hyperplanes.

Anv = _(h
MM zHargr&%M )

(“Optimal” only in the sense that it optimizes the particufafunction used.)
Try to understand!,; as an instance of’%

srm -




Data Dependent SRM:AiﬁZ )9 3%3

ST11)

New algorithm:Penalize complexity of((z) as if independent of. Consider
H(z) = (H;(=));. Suppose for data-independéiit andh,,,, = A (z) have

a bound
Rl[hémp] < @D(ﬂ-fj 25 5l> —- X<Z>
Let
7= arg miin x(7) Aﬂ;)’é(z) = Agf;;(z)(z)

Gist: penalize complexity ignoring data-dependence; apply SRM.

Problem: how to rigorously justify?




How to conceptualize what’s going on? Pt

. . . . Adherents of the vatious non-NPW schools take advantage of
Can not strictly justify the algorithm as-an, @&ph@a;th@ma@ ore conclusive sounding

S R M statements than they would for “unlucky outcomes”.
' — Jack Kieffer: Conditional Confidence Statements1977

If as well asRj[h, z] = 0 we havey.(h) = v > 0, then
R;|h] is small.

We areluckyif our data is like this.
We want tocondition on the dathke Bayesians do.

Would like to capture this notion in a general formal way.




Framev

"o A new approac

]
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|l uckiness Py

| should be so lucky; lucky, lucky, lucky.
| should be so lucky in love.

The marginy. (hy,) measures howicky hy, is on z. — Kylie Minogue
In generall.: H x Z™ — R. -
Would like a bound that says with probability at least o k

over a random draw of according toPzn if Rjlh,z] =0

andw(L(h, z),0) < 2?then
The parametet is aneffective complexity

There needs to be some restrictions/onf we “use up” all of the information
In the sample estimating its luckiness there is “none left” to estimigte.
A bound like<> is a bound for the algorithm

AlLu’gfy = Z — arg gélgI{l Y(m,logw(L(h, z),0))




Luckiness (continued)
Given aluckiness functiord.: H x Z™ — R, thelevelis

Cr(h, z) = [1((g(xi), yi))iZy s L(g, 2) = L(h, 2)}] ,

the number of dichotomies induced anby functions at
least as lucky ag. RequireL to be well behaved:

L is probably smootw.r.t. w: R x (0,1] — N if for all
m € N all distributionsP z and allo € (0, 1]

P22m(5|h e H: gL(h, Z[1:2m]) > W(L(h, Z[l:m]))y 5)) < 0.
If L is probably smooth w.r.tv, 6 = (9;);, >, 0; = 0, with probability at least
1 — o over a random draw of, if R;[h, z| = 0 andw(L(h, z), 6,/4) < 2¢ then

Ri[h) < 2 (d+ log2(4/ 0q)) ©
Effectively H(z) = (3;(2)); with 3,(z) = {h € 3 w(L(h, z),6;/4) < 2'}.




Comments on Luckiness

e Can putAyn Into this framework.

e The luckiness function is how weencode
our prior knowledgeWe weight with); the
«th data-dependent hypothesis class

Hi(z) = {h € 3 w(L(h, 2),01/4) < 2}

e Key practical difficulty is showingL is
probably smooth w.r.t. a “goody — the
smaller theu the tighter< is.

e Problem: Still do not pay enough attention
to thealgorithm which motivates . .
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Algorithmic Luckiness — Foundation

It is possible to prove @asic lemmédor al-
gorithms which means that treymmetrisa-
tion by permutatiorstep only considers all
hypotheses that can be learned using
Basic lemma says:

P (RiA(Z) - Ri[A(2),2] >¢) <

~ ~ E
2+ Pzan (Rz A(Zpnm) s Zigmsnyom | — Bi [ A (Zpam) > Zpam)| > 5)
Again, we introduce an ordering between the at nipst)! hypotheses using

analgorithmic luckinesd. (A, z). This gives

H(A, L, z) = {A (Hi (z)[lzm]) eI (AL z)} ,
T(A, L, 2) = {i | L (AT (2)) = L (A 20m) |
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lllustration of Basic Lemma whenm = 2 s
2| 2| 2| 2| —- A((21, ) Zo| 23| 21| 2| —m A((29,23))
2| 21| 2| 2| — A((29,21)) 2| 22| 21| 24| — A((z,2))
2| 2| 22| 2| — A((21,23)) 2| Za| 23| 21| — A((z,2))
2 21| 2| 2| — A((z,2)) Za| 22| 23| 21| —m A((z4, 20))
21| 24| 23| 2| — A((z1, 1)) 23| 24| 21| 22| — A((z3, 2))
2| 21| 2| | —e A((2, ) za| 23| 21| 22| — A((z4, 23))

Consider the simple case of = 2. Consider all the hypotheses generated by
A and take}H (A, L, z) to be those so generated that are at least as lucky
A((z1, z2)) where the luckiness is measured(en z»).




Algorithmic Luckiness — w-smallness s

Algorithmic luckinessH (A, L, z) is afunction
of A directly.

Need to be able to bound the covering numbg
N of hypothesed € H (A, L, z) on the double
samplez only using the luckiness on the first
half, i.e. the training sample.

w—smallness of..: Given an algorithm/ and a
loss!, rit ckiness s w—sm
scaleé f?gg agmﬁ 2 Q? 0o (217> a(lka(tﬂ Zjm)))0,7)) <0

To prove this property we can only exploit tH&4-.. is a product measure.

Robert C Williamson: Inductive Principles — Machine Learning Summer School, Canberra, February 2002 28



Algorithmic Luckiness — Main Result =%

Algorithmic Cuckiness Bound: For all [0, I]-valued Toss
functions/, for all w—small algorithmic luckiness functiongdthe W'””erB'St Lgcky'
L w.rt. A, for all 7, with probability at leastl — ¢ over e

z e ",

Ri[A(2)] < BilA(2), 2] + \/8 (M + log, (47m>> + .

m

whered = log (w (L (A, z), 2 7). If Lis {0, 1}-valued, then whenevet (z)
has zero training errorR; [A (), z] = 0, for r = 1/2m

R <2 ([0 o (). &




Application — Classical VC Setting E%E
[T/ 27 — 9~ maps 10 a hypothesis SpabeC J~, We

knOW that VC-dimension is not most important quantity.
— Vladimir Vapnik: Dagstuhl, Germany (July 2001)
H (A, L, z) CH |

regardless o and L.

Thus, for the zero-one lossy,y) = 1., the growth functionis an pper
bound onN (\z\_l yIH (AL z), 6 (z)) and can thus serve assdunction.

Neither the serendipity of the sample nor the properties of the algoritiiave
been exploited!

As is widely known, this results in bounds which are quite loose.
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Application — Compression Bounds B A

| used to be God. ..
— Manfred Warmuth: Dagstuhl, Germany (2001)

Sparsity luckiness: If A : 2(>*) — Y¥ is a com-
pression scheme, that ig,(z) = R (C (z)), then

Lsparse ('Aa Z) = |e <Z>’

Is w-small at any scale, where

w(L.0.7) = (2_6—7;) -

Plugging this result inta% gives a new compres-
sion result for regression as well as resembling the
original result of Littlestone and Warmuth (1986).




Sparsity Luckiness — Proof 3%3

You must be my lucky star ...

Since we only have to consider permutatiohs But I'm the luckiest bdy far.
— Madonna
where

|€ (Hi (Z>[1:m])| < \6 (Z[l:m])’ = _LO

we know that the permutation invariant
reconstruction functiotk never uses more than
— Ly examples.

The number of different choices of no more than
— Ly examples out o?m (double sample size) is

given by
X (Qm) (26m> ~ko
> ()< ()
i—o N\ —Lo




Application — Kernel Classifiers 3%3
Hep ={x— (¢p(x),w) |[weK}, ¢p:X—KC.

Assume that the learning algorithmishave the property
that

A:z=(z,y)— (¢(x), w.) wherew. = Y & (x;) and ||w.|| = 1.

I;ex

Examples are SVMs, BPMs and the perceptron algorithm.

Let the (normalisedinarginl’ (z) be defined by

['(z):= min y@<¢(£€@),wz>
B e 16 ol Tl




Application — Kernel Classifiers (cont.)

' ' ; =i (L =0 SucCH
that {¢ (x1),..., ¢ (z,)} can be covered by at most
balls of radius less than or equal ta For the loss
[ (y,y) = L,;<0, the luckiness function

Liargin (A, z) = —minq i €N

. gi () Z;ﬁzl
= ( [ (z)

Is w—small at scald /2m where

(L0, 1/2m) = (2_6—27’) -

The bound comprises 3 main termmsargin[’ (z), sparsity surrogate " [a;|
and a factor depending on thestribution of the data;(x).




Kernel Classifiers — Meaning ofe;(x) SN

The sequence (g;(x));
measures how clumpy the
data is.

A small number of small
clumps meanse;(x) is
small for small.

Compare with the idea of
“kernel alignment”.




Application — Kernel Classifiers (proof) ==

Makovoz theorenshows that for alk € Z™ there
exists a weight vecto& = > ", &;¢ (z;) such that

W — w|” < I?(2)

and||é|, < — Lnargin (A, 2) = —Lo.

It follows that (w., w/ [[w]]) > /1 —[?2(z); that
IS, w still correctly classifiex.

_LO
For every of the no more th n%%”;) many sub-

samplesz C z, w lives in a space of dimension no

@)9 Eentg%BﬁcL&tion of thgrowth function boungdeachw can achieve no more

—Lo : :
than (3623) many dichotomies oa.




ﬁ%.@

Discussion E A

Algorithmic luckiness framework differs from classical statistical learning the
ory aproaches in that it does not use the crude step of viewing algorithms |t
in terms of their hypothesis space.

Generalization of standard VC results. Get agnostic and realizable bounds.

Example of maximum margin algorithm illustrates that the framework has tr
power to develop new insights into what makes algorithms perform well.

Main point is that it provides new theoretical tools for understanding algorithrr
“smarter” that Empirical Risk Minimization.

Hope is that by analysing algorithms in this (or related) ways, will be able t
better discern the features about particular learning problems that make th
easy or difficult.
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