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Abstract

In the tasks of image representation, recognition and retrieval, a 2D image is usually transformed into a 1D long vector and

modelled as a point in a high-dimensional vector space. This vector-space model brings up much convenience and many advantages.

However, it also leads to some problems such as the Curse of Dimensionality dilemma and Small Sample Size problem, and thus

produces us a series of challenges, for example, how to deal with the problem of numerical instability in image recognition, how to

improve the accuracy and meantime to lower down the computational complexity and storage requirement in image retrieval, and how

to enhance the image quality and meanwhile to reduce the transmission time in image transmission, etc. In this paper, these problems

are solved, to some extent, by the proposed Generalized 2D Principal Component Analysis (G2DPCA). G2DPCA overcomes the

limitations of the recently proposed 2DPCA (Yang et al., 2004) from the following aspects: (1) the essence of 2DPCA is clarified and

the theoretical proof why 2DPCA is better than Principal Component Analysis (PCA) is given; (2) 2DPCA often needs much more

coefficients than PCA in representing an image. In this work, a Bilateral-projection-based 2DPCA (B2DPCA) is proposed to remedy

this drawback; (3) a Kernel-based 2DPCA (K2DPCA) scheme is developed and the relationship between K2DPCA and KPCA

(Scholkopf et al., 1998) is explored. Experimental results in face image representation and recognition show the excellent performance

of G2DPCA.

q 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In the tasks of image representation, recognition and

retrieval, vector-space model may be the most popular one. It

is adopted in most of the existing algorithms designed for

these tasks. Under this model, the original two-dimensional

(2D in short) image data are reshaped into a one-dimensional

(1D in short) long vector, and then represented as a point in
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a high-dimensional vector space. This makes a great number

of vector-space model based pattern recognition and analysis

techniques be conveniently applied to image domain, and

numerous successes have been achieved. However, it also

leads to the following problems. Firstly, the intrinsic 2D

structure of an image matrix is removed. Consequently, the

spatial information stored therein is discarded and not

effectively utilized. Secondly, each image sample is

modelled as a point in such a high-dimensional space that a

large number of training samples are often needed to get

reliable and robust estimation about the characteristics of

data distribution. It is known as the Curse of Dimensionality

dilemma, which is frequently confronted in real applications.

Thirdly, usually very limited number of data are available in

real applications such as face recognition, image retrieval,

and image classification. Consequently, Small Sample Size

(SSS) problem (Fukunnaga, 1991) comes forth frequently

in practice. The small sample size problem is defined

as follows. When only t samples are available in an

n-dimensional vector space with t!n, the sample covariance
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matrix Ĉ is calculated from the samples as

Ĉ Z
1

t

Xt

iZ1

ðxiKmÞðxiKmÞT (1)

where m is the mean of all the samples. (xiKm) 0s are not

linearly independent, because they are related byPt

iZ1

ðxi KmÞZ0. That is, Ĉ is a function of (tK1) or less

linearly independent vectors. Therefore, the rank of Ĉ is

(tK1) or less. This problem is often encountered in face

recognition, image retrieval, and data mining tasks where t

is very small but n is very large. Therefore, dimension

reduction becomes one of the most important topics in these

areas in pursuit of the low-dimensional representations of the

original data with the requirement of minimum reconstruc-

tion error.

PCA is a well-established linear dimension-reduction

technique. It finds the projection directions along which

the reconstruction error to the original data is minimum,

and projects the original data into a lower-dimensional

space spanned by those directions corresponding to the

top eigenvalues. Often, PCA is also known as the

Karhunen-Löwe transformation. PCA has been widely

used in many areas, such as face recognition, signal

processing, and data mining etc. In image representation,

Sirovich and Kirby originally used PCA to represent the

human face images (Kirby & Sirovich, 1990; Sirovich &

Kirby, 1987). In face recognition, Turk and Pentland

proposed the well-known Eigenface (Turk & Pentland,

1991). Since then, PCA-based face/object recognition

schemes have been investigated broadly. To deal with

pose variation problem, Pentland et al. proposed the

view-based and modular eigenspaces (Pentland et al.,

1994). Murase and Nayar introduced the appearance

manifolds (Murase & Nayar, 1995). To overcome the

illumination variation problem, Bischof et al. (2004);

Epstein et al. (1995); Hallinan (1994); Ramamoorthi

(2002); Shashua (1992), and Zhao and Yang (1999),

analyzed the ways of modelling the arbitrary illumination

condition for PCA-based recognition methods. Recently,

there is an increasing trend to investigate the kernel

based PCA (KPCA) (Scholkopf et al., 1998) method.

Another dimension-reduction method for face recognition

is the fisher linear discriminant analysis (FLD) (Fukun-

naga, 1991). FLD projects the data onto a lower-

dimensional vector space such that the ratio of the

between-class scatter to the within-class scatter is

maximized, thus achieving maximum discrimination.

The optimal projection (transformation) can be readily

computed by solving a generalized eigenvalue problem.

However, because of the SSS problem, the within-class

covariance matrix, Sw, is singular so that the numerical

problem is introduced in solving the optimal discriminat-

ing directions. To solve the singularity problem, the two-

stage LDA was proposed (Belhumeur et al., 1997;
Cevikalp et al., 2005; Swets & Weng, 1996; Zhao,

2000). Likewise, FLD is also extended to the kernel

space in (Liu et al., 2002, 2003; Yang, 2002). Note that

all the above techniques adopt the vector-space model

and transform a 2D image matrix into a long vector by

concatenating the column or row vectors therein. Hence,

they are inevitably affected by the problems of curse of

Dimensionality and Small Sample Size.

Recently, Two-Dimensional Principal Component

Analysis (2DPCA) (Yang et al., 2004), a variant of the

classical PCA, is developed for face recognition as

another linear image projection technique. Different from

the classical PCA, 2DPCA takes a 2D matrix based

representation model rather than simply the 1D vector

based one. When performing 2DPCA, the original 2D

image matrix does not need to be converted as a long

vector beforehand. Instead, a covariance matrix is

constructed by using the 2D image matrices directly.

The projection directions are computed based on this

covariance matrix to guide principal component analysis.

As reported in (Yang et al., 2004), 2DPCA can achieve

better performance than PCA in face recognition when

the number of samples is small. However, there still

remains several problems in 2DPCA. Firstly, the authors

did not explicitly explain the reason why 2DPCA can

achieve a better performance than PCA. Secondly, the

existing reported 2DPCA adopts a unilateral-projection

(right-multiplication) scheme only, and the disadvantage

arising in this way is that more coefficients are needed to

represent an image in 2DPCA than in PCA. This means

a lower compression rate in representing an image.

Thirdly, 2DPCA is still a linear projection technique,

which cannot effectively deal with the higher-order

statistics among the row/column vectors of an image.

However, it is well known that the object/face

appearances often lie in a nonlinear low-dimensional

manifold when there exist pose or/and illumination

variations (Murase & Nayar, 1995). The linear 2DPCA

is not able to model such a nonlinearity, and this

prevents it from higher recognition rate.

To remedy these drawbacks in the existing 2DPCA, this

paper proposes a framework of Generalized 2D Principal

Component Analysis (G2DPCA), which is more useful and

efficient for real applications. G2DPCA extends the standard

2DPCA from the following three perspectives: firstly, the

essence of 2DPCA is studied in theoretical sense and the

relationship between 2DPCA and PCA are exposed. These

give rise to an explicit explanation of the reason why 2DPCA

can often achieve better performance than PCA.

Secondly, instead of a unilateral-projection scheme, a

bilateral-projection based 2DPCA (B2DPCA) is

developed. There, two sets of projection directions are

constructed simultaneously, and are used to project the

row and column vectors of the image matrices to two

different subspaces, respectively. The advantage of

B2DPCA over 2DPCA is that an image can be
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effectively represented with much less number of

coefficients, achieving a higher compression rate. Thirdly,

to model the nonlinear structures which are often

presented in practical face recognition tasks, the kernel

trick is incorporated in the linear method and a Kernel-

based 2DPCA (K2DPCA) is derived. It can effectively

remedy the drawback of 2DPCA in modeling the

nonlinear manifold in face images. A preliminary work

of this paper is presented in (Kong et al., 2005).

The remainder of this paper is organized as follows:

2DPCA algorithm is reviewed in Section 2. The essence of

2DPCA and the relationship between 2DPCA and PCA are

revealed in Section 3. B2DPCA algorithm and the image

reconstruction method using B2DPCA are developed in

Section 4. The Kernel based 2DPCA is introduced in

Section 5. Experimental results are presented in Section 6.

We draw the conclusions in the last section.
2. 2D principal component analysis

Let x be an n-dimensional unitary column vector. The

idea is to project image A, an m!n matrix, onto x by

yZAx. To determine the optimal projection vector x, the

total scatter of the projected samples, Sx, is used to measure

the goodness of x. SxZxT E{[AKE(A)]T[AKE(A)]}xZ
xTSAx, where SAZE{[AKE(A)]T[AKE(A)]}, called the

image covariance matrix. Suppose that there are totally M

training samples {Ai}, iZ1,2,.,M, and the average image

is denoted by �A, then SA Z 1
M

PM
iZ1

½AiK �A�T ½Ai Z �A�. The

optimal projection direction, xOpt, is the eigenvector of SA

corresponding to the largest eigenvalue. Usually a set of

orthonormal projection directions, xl, x2,., xd, are selected

and these projection directions are the orthonormal

eigenvectors of SA corresponding to the first d largest

eigenvalues. For a given image A, let ykZAxk, kZ1,2,.,d.

A set of projected feature vectors yk, the principal

components (vectors) of A, are obtained. Then the feature

matrix of A is formed as BZ[y1,y2,.,yd]. The nearest-

neighborhood classifier is adopted for classification. The

distance between two arbitrary feature matrices, Bi and Bj,

is defined as dðBi;BjÞZ
Pd

kZ1 kyi
k Ky

j
kk2, where jjyi

k Ky
j
kjj2

is the Euclidean distance between yi
k and y

j
k.
3. The essence of 2DPCA

The work by Yang et al. experimentally shows that

2DPCA can achieve better performance in face recognition.

However, the essence of 2DPCA and its relationship to PCA

is not discussed in (Yang et al., 2004). We believe that this

discussion is indispensable for understanding the intrinsic

mechanism of 2DPCA and its advantages over PCA. The

following work in this paper will theoretically explain the

essence of 2DPCA and also its relationship to PCA.
Theorem 1. 2DPCA, performed on the 2D images, is

essentially PCA performed on the rows of the images if each

row is viewed as a computational unit.

Proof: Let Ai be the i-th training sample, A
j
i be the j-th

row of Ai. Let E(A) be the mean of all training samples,

E(A)j be the j-th row of E(A). Let Â
j
i be the centered Ai and

Â
i
i be the centered A

j
i, where ÂiZAi KEðAÞ and

Â
j
iZA

j
iKEðAÞj.

Because of the limited number of available samples in

specific applications, SA is often estimated by:

SA Z
1

M

XM

iZ1

½Ai KEðAÞ�T ½AiKEðAÞ� (2)

It can also be written as,

SA Z
1

M
JJT (3)

where

J Z ½A1KEðAÞ�T ;/; ½AM KEðAÞ�T
� �

(4)

or

J Z ðÂ
1
1Þ

T ;.; ðÂ
m
1 Þ

T
h i

;.; ðÂ
1
MÞ

T ;.; ðÂ
m
MÞ

T
h ih i

(5)

Therefore, SA can be viewed as the covariance matrix

evaluated using the rows of all the centered training

samples. In 2DPCA, the maximization of Sx is equal to

maximize x2TJJTx. This translates into the eigen-analysis

of JJT:

lixi Z JJT xi (6)

Hence, 2DPCA performed on the image matrices is

essentially the PCA performed on the rows of all the

images. ,
So far, we can give the explanation of the advantages of

2DPCA over PCA. Firstly, as the dimension of the row

vectors in an image is much smaller than that of the long

vector transformed from the entire image, the dilemma of

curse of dimensionality diminishes. Secondly, as the input

feature vectors to be analyzed are actually the row vectors of

the training images, the feature set is significantly enlarged.

Therefore, the SSS problem does not exist in 2DPCA any

more. Thirdly, the 2D spatial information is well preserved

by using the original 2D image matrix rather than reshaping

it to a long vector. Fourthly, the distance function adopted in

the classification criterion of 2DPCA is a global combi-

nation of all the local Eigen-feature distances. In terms of

the first two advantages, it can be known that the covariance

matrix in 2DPCA can be estimated more robustly and

accurately than that in PCA. Although this is also noticed by

(Yang et al., 2004), it did not explore the intrinsic reasons

mentioned above.
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4. Bilateral 2d principal component analysis

As mentioned in Section 1, 2DPCA is a unilateral-

projection-based scheme, where only right multiplication is

taken. Referring to the above analysis that 2DPCA is

essentially PCA performed on the row vectors of all the

available images, we know that a unilateral scheme will

have the correlation information among the column vectors

of the images lost. Compared with PCA, a disadvantage of

the unilateral-projection scheme is that more coefficients

are needed to represent an image. To remove these

problems, a bilateral-projection scheme is taken instead,

and a bilateral-projection-based 2DPCA (B2DPCA) is

proposed in this section. Compared with the existing

2DPCA, B2DPCA can effectively remove the redundancies

among both rows and columns of the images and thus

lower down the number of coefficients used to represent an

image. Also, the correlation information in both rows and

columns of the images are considered in B2DPCA, and this

will benefit the subsequent classification performed in the

obtained subspaces.
Table 1

The algorithm for computing Uopt and Vopt

S1 Initialize U, UZU0 and iZ0

S2 While not convergent

S3 Compute Cv and the eigenvectors feV
j g

r
jZ1 corresponding to its

top eigenvalues, then Vi ) ½eV
1 ;.; eV

r �

S4 Compute Cu and the eigenvectors feU
j g

l
jZ1 corresponding to its

top eigenvalues, then Ui ) ½eU
1 ;.; eU

l �

S5 i)iC1

S6 End while

S7 vOpt)vi-1 and UOpt)Ui-1

S8 Feature extraction: Bi ZUT
OptAiVOpt
4.1. Algorithm

Let U2Rm !Rl and V2Rn !Rr be the left- and right-

multiplying projection matrix, respectively. It is assumed

that all the samples are all centered in the later sections. For

an m!n image Ai and an l!r projected image Bi, the

bilateral projection is formulated as follows:

Bi Z UT AiV (7)

where Bi is the extracted feature matrix for image Ai.

The common optimal projection matrices, UOpt and VOpt

in Eq. (7) can be computed by solving the following

minimization problem such that UOptBiV
T
Opt gives the best

approximation of Ai, iZ1,.,M:

UOpt;VOpt

� �
Z arg min

XM

iZ1

kAiKUBiV
Tk2

F (8)

where M is the number of data samples and k$kF is the

Frobenius norm of a matrix.

Theorem 2. The minimization of Eq. (8) is equivalent to the

maximization of
PM
iZ1

jjUT AiVjj2F .

The proof is given in Appendix A.

Given the data set Ai2Rm!Rn, iZ1,.,M, the

covariance matrix of the projected samples is defined as:

C Z
1

M

XM

iZ1

BT
i Bi (9)

where Bi is defined in Eq. (7). By replacing Bi with UTAiV,
it translates into:

C Z
1

M

XM

iZ1

ðUT AiVÞT ðUT AiVÞ (10)

and it is trivial to check that trðCÞZ 1
M

PM
iZ1

jjUT AiVjj2F .

In this regard, maximizing the trace of the covariance

matrix of the projected samples is equivalent to maximizingPM
iZ1

jjUT AiVjj
2
F , while maximizing

PM
iZ1

jjUT AiVjj
2
F has been

shown to be equivalent to minimizing
PM
iZ1

jjAiKUBiV
T jj2F

and optimally reconstructing (approximating) the images.

Therefore, the proposed bilateral-projection scheme is

consistent with the principle of PCA and 2DPCA, and it

can be viewed as a generalized 2DPCA, i.e. the standard

2DPCA is a special form of the bilateral 2DPCA.

To our knowledge, there is no close-form solution for the

maximization of
PM
iZ1

jjUT AiVjj2F because CZ 1
M

PM
iZ1

VT AT
i U

UT AiV and there is no direct eigen decomposition for such a

coupled covariance matrix. Considering this, an iterative

algorithm is proposed to compute UOpt and VOpt. Before we

give details of the iterative algorithm, we have the following

two Lemmas.

Lemma 1. Given the UOpt, VOpt can be obtained as the

matrix formed by the first r eigenvectors corresponding to

the first r largest eigenvalues of Cv Z 1
M

PM
iZ1

AT
i UOptU

T
OptAi.

Proof: Since UOpt and VOpt maximize tr(C), which equals

tr 1
M

PM
iZ1

VTAT
i UUT AiV

� �
. If UOpt is known,

trðCÞZ tr 1
M

PM
iZ1

VTAT
i UOptU

T
OptAiV

� �
Z trðVTCvVÞ.

Therefore, the maximization of tr(C) equals to solve the

first r eigenvectors of 1
M

PM
iZ1

AT
i UOptU

T
OptAi corresponding to

the first r largest eigenvalues. ,

Lemma 2. Given VOpt, UOpt can be obtained as the matrix

formed by the first l eigenvectors corresponding to the first l

largest eigenvalues of CuZ 1
M

PM
iZ1

AiVOptU
T
OptA

T
i .

The proof of Lemma 2 is similar to that of Lemma 1. ,



Fig. 1. Ten sample images of two subjects in ORL database.
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Fig. 2. Eighteen sample images of subject 1a from UMIST face database labelled by #1, #2,., # 18 from left to right.
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By Lemma 1 and 2, the detailed iterative algorithm to

compute UOpt and VOpt is listed in Table 1. Theoretically,

the solutions are local optimal because the solutions are

dependent on the initialization of U0. By extensive

experiments, U0ZIm, a setting we adopted, will

produce excellent results. Another issue that deserves

attention is the convergency. We consider the mean

reconstruction error, i.e.

E Z
1

M

XM

iZ1

kAiKUBiV
TkF (11)

We use the relative reduction of E value to check the

convergence of B2DPCA. More specifically, let EðiÞ and

EðiK1Þ be the error at the i-th and (iK1)-th iteration,

respectively. The convergence of this algorithm can be

judged by whether it can satisfy the following inequity.

EðiK1ÞKEðiÞ

EðiK1Þ
%m (12)

where m is a small positive number. Our experiments in the

later section will show that the iterative algorithm usually

converges within two iterations.

4.2. Images representation and reconstruction using

B2DPCA

Since we have obtained the common optimal projection

matrices, UT
Opt 2Rm !Rl and VOpt 2Rn !Rr, for any

image Ai 2Rm !Rn, its feature matrix Bi 2Rl !RrZ
UT

OptAiVOpt. Therefore, Bi is the coefficient matrix that can

be used to reconstruct the image Ai by Âi ZUOptBiV
T
Opt.
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Fig. 3. Experimental comparison (%) on ORL database.
5. Kernel based 2d principal component analysis

Kernel Principal Component Analysis (KPCA) is a

generalized version of PCA. In KPCA, through the kernel

trick, the input data are mapped onto a higher- or even

infinite-dimensional space and PCA is performed therein.

The kernel trick achieves this mapping implicitly and

incurs very limited computational overhead. More

important, incorporating the kernel trick helps to capture

the higher order statistical dependencies among the input
data. KPCA has been applied to face recognition and it

has demonstrated better performance than PCA. Likewise,

the kernelization of 2DPCA will give a great help to

model the nonlinear structures in the input data. Similar to

KPCA, a nonlinear mapping without explicit function is

performed. Different from KPCA, this mapping is

performed on each row of all the image matrices, i.e.

let F : Rt /Rf , fOt, be the mapping on each row of the

image, where t is the length of the rows of an image and f

can be arbitrarily large. The dot product in the feature

space of Rf can be conveniently calculated via a pre-

defined kernel function, such as the commonly used

Gaussian RBF kernel.

For convenience, it is assumed that all the mapped data

are centered by the method in (Scholkopf et al., 1998). Let

F̂ðAiÞ be the i-th mapped image in which F̂ðA
j
iÞ be the j-th

centered row vector of it. The covariance matrix CF in Rf:

CF Z
1

M

XM

iZ1

F̂ðAiÞ
T F̂ðAiÞ (13)

where

F̂ðAiÞ Z ½F̂ðA1
i Þ

T ; F̂ðA2
i Þ

T ;.; F̂ðAm
i Þ

T �T

and m is the number of row vectors. If Rf is infinite-

dimensional, CF is inf!inf in size. It is intractable to



Fig. 4. Sample images of one subject from Yale face database.
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directly calculate the eigenvalues, li, and the eigenvectors,

vi, that satisfy

livi Z CFvi (14)

However, K2DPCA can be implemented using KPCA

according to the following theorem.

Theorem 3. The above defined kernelized 2DPCA on the

images is essentially KPCA performed on the rows of all the

training image matrices if each row is viewed as an

computational unit.

The proof is given in Appendix B.

After projecting each mapped row vector of all the

training and test images onto the first d reserved

eigenvectors in the feature space, an m!d feature matrix

is obtained for each image. The nearest-neighborhood

classifier is then adopted for classification whose steps are

similar to 2DPCA.
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6. Experimental results and discussions

6.1. Face recognition on ORL, UMIST and Yale databases

The proposed B2DPCA and K2DPCA methods are

applied to the face image reconstruction and recognition.

They are evaluated on three well-known face databases:

ORL, UMIST and Yale databases. ORL contains images

from 40 individuals, each providing 10 different images.

The pose, expression and facial details (e.g. with glasses or

without glasses) variations are also included. The images

are taken with a tolerance for some tilting and rotation of

the face of up to 208. Moreover, there are also some

variations in the scale of up to about 10%. Ten sample

images of two persons from the ORL database are shown

in Fig. 1. UMIST consists of 564 images of 20 people with

large pose variations. In our experiment, 360 images with

18 samples for each subject are used to ensure that the face

appearance changes from profile to frontal orientation with

a step of 58 separation (labelled from 1 to 18). The sample

images for subject 1 are shown in Fig. 2. Yale contains

altogether 165 images for 15 subjects. There are 11 images

per subject, one for each of the following facial expressions

or configurations: center-light, w/glasses, happy, left-light,

w/no glasses, normal, right-light, sad, sleepy, surprised,

and wink.

All images in ORL, UMIST and Yale databases are

grayscale and normalized to a resolution of 56!46 pixels.
The ORL database is employed to check whether the

proposed methods have good generalization ability under

the circumstances that the pose, expression, and face scale

variations exist concurrently. The UMIST face database is

used to examine the performance when face orientation

varies significantly. The Yale face database is used to see

whether the proposed algorithms can achieve good result

when there exist occlusion, expression and illumination

variations.

To test the recognition performance with respect to

different number of training samples on ORL, k (1%k%5)

images of each subject are randomly selected for training

and the remaining (10Kk) images for testing. When

2%k%5, 50 times of random selections are performed.

When k equals 1, there are 10 possible selections for

training. The final recognition rate is the average of all. The

performance of B2DPCA and K2DPCA compared with that

of the current methods is listed in Fig. 3.

To test the recognition performance with respect to

different number of training samples on Yale, only nine

images of each person are used (the two images with

left-light and right-light are excluded). The nine sample

images for one of the subjects in Yale are shown in

Fig. 4. k (1%k%5) images of each subject are randomly

selected for training and the remaining (9Kk) for test.

When 2%k%5, 50 times of random selections are

performed. When k equals 1, there are nine possible

selections for training. The final recognition rate is the

average of all. The performance is listed in Fig. 5. Two
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Fig. 6. The effect of different d-value on recognition rate of B2DPCA.

Table 2

Experiment results (%) OMIST database

#5, #14 #1, #7, #13 #2, #8, #14 #3, #9, #15 #4, #10, #16 #5, #11, #17 #6, #12, #18

PCA (Turk & Pentland, 1991) 80.3 82.7 89.7 90.7 90.7 88.0 86.0

KPCA (Yang, 2002) 80.9 86.0 87.0 91.0 92.0 89.3 87.3

LDA (Belhumeur et al., 1997) 77.5 90.0 91.3 95.0 96.3 94.3 91.7

Kernel Fisherface (Yang, 2002) 9.5 94.7 96.7 98.3 99.0 98.0 97.3

2DPCA (Yang et al., 2004) 90.3 91.0 93.0 95.0 95.0 93.7 92.3

KDDA (Lu et al., 2003) 87.8 94.0 96.0 95.7 97.3 95.7 95.7

DCV (Cevikalp et al., 2005) 84.1 89.7 93.7 97.7 94.7 92.7 88.0

B2DPCA 90.7 91.7 93.4 95.3 95.8 94.0 92.8

K2DPCA 92.7 94.0 94.3 95.7 97.0 95.7 94.0
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experiments, with small number of training samples (two

and three), are conducted on UMIST database. When the

number of training samples for each individual is two,

we select the {#5, #14} face images of each subject for

training, the remaining for test. When the number of

training samples is three for each subject, six groups are

selected for training, i.e. 1{#1,#7,#13}, 2{#2,#8,#14},

3{#3,#9,#15}, 4{#4,#10,#16}, 5{#5,#11,#17} and

6{#6,#12,#18}. The remaining images corresponding to

each group are used for test. The performance of

B2DPCA and K2DPCA is compared with that of the

state-of-the-art methods in Table 2.

The Gaussian RBF kernel is adopted in K2DPCA, the

optimal results are obtained when the width, d, of the kernel

is about 2.72. The optimal dimensions of Uopt and Vopt of

B2DPCA in both experiments are around 56!5 and 56!5,

therefore, the size of the extracted feature matrix for each

image is 5!5. For both experiments, the nearest-neighbor-

hood classification criterion is adopted and the distance

between any two feature matrices is the same as the one

used in 2DPCA. Through experiments, we find that

B2DPCA is better than 2DPCA, K2DPCA does outperform

2DPCA and KPCA as explained in Section 5.

It should be pointed out that FLD is good at

discrimination rather than representation. FLD can

generally achieve better performance than PCA under

noticeable illumination and pose variations. However,

FLD will be inferior to PCA if the illumination and pose

variations are not significant and there are very limited

training samples for each subject. The reason for this lies

in two-fold: firstly, when there are large pose- and

illumination-variations in face images, the top eigenvec-

tors in PCA-based approaches does not model identity

information but these external variations. Secondly, in

FLD, the null space of Sw, whose rank is CK1, is

discarded. When the number of training samples for each

subject is small (e.g. 2), the rank of null space of Sw is

comparable to the rank of range space of Sw. Therefore,

discarding the whole null space of Sw will lead to a loss

of a large quantity of discriminant information. However,

with the number of training samples increasing, the rank

of null space of Sw is much smaller than the rank of
range space of Sw and discarding the whole null space of

Sw will lose relatively little useful information.

We also find that K2DPCA is superior to Fisherface

(FLD) and DCV. Additionally, K2DPCA is comparable

to KDDA in all the experiments we have done, and it is

better than KDDA when the number of training samples

is 2, 3 and 4. K2DPCA is even better than Kernel

Fisherface method when the number of training sample is

2. K2DPCA is better than B2DPCA in generalization

ability.
6.2. The effect of d-value on recognition performance

A common d is set to be the same for both I and r in

B2DPCA, therefore, the final feature image obtained from

B2DPCA for each image is a d!d square matrix. A large d

will result in a small compression rate while a small d will

lose some important information for classification. To

illustrate this situation, lots of experiments are conducted

on two databases. The results are shown in Fig. 6, where the

x-axis denotes the d-value and the y-axis denotes the

recognition rate. Three experiments with different number

of training samples (2, 3 and 4, respectively) for each subject

are done on ORL database. Three experiments with different



Fig. 7. First row: raw images. Second row and fourth row: image reconstructed and compressed by 2DPCA using 2 and 8 principal component (vectors),

respectively. Third row and fifth row: image reconstructed and compressed by B2DPCA with dZ10 and dZ20, respectively.
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training set (l{#1,#7,#13}, 3{#3,#9,#15}, 5{#5,#11,#17})

are conducted on UMIST. From Fig. 6, when the d-value is

about 5, B2DPCA will achieve the highest recognition rate.

When d is larger, the recognition rate is nearly constant.

Meantime, to ensure an efficient classification and high

compression rate, d is therefore set to be 5.
6.3. Face image reconstruction and compression

2DPCA is an excellent dimension-reduction tool for

image processing, compression, storage and transmission.

In this part, we compare the compression rate and

reconstruction effect of B2DPCA with that of 2DPCA.

Fig. 7 shows the reconstruction effect of them, where the

raw images lie in the first row and the reconstructed image

by 2DPCA using 2 and 8 principal component (vectors)

are shown in the second and fourth rows, respectively.
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Fig. 8. Convergence of B2DPCA.
]The reconstructed images by B2DPCA with dZ10 and dZ
20 are shown in the third and fifth rows. Therefore, the

second and third rows have almost the same compression

rate since (56!46/56!2)z(56!46/10!10), while the

fourth and fifth rows have almost the same compression rate

since (56!46/56!8)z(56!46/20!20). But the effect of

the reconstruction by B2DPCA in the third and fifth rows

are much better than that by 2DPCA in the second and

fourth rows, respectively.

6.4. Convergence of B2DPCA

The image reconstruction error can be used as a measure

of the convergency of B2DPCA algorithm. In this experi-

ment, the reconstruction error is shown as the iteration

proceeds. The reconstruction error is defined as
1
M

PM
iZ1

jjAiKUBiV
T jjF . For simplicity, we set dZ10 for all

cases. Six experiments same as those in Section 6.2 are

conducted and the results are reported in Fig. 8, where

the x-axis denotes the iteration number and the y-axis

denotes the error. It can be seen that, after two iterations,

B2DPCA converges.
7. Conclusions

A framework of Generalized 2D Principal Component

Analysis is proposed to extend the original 2DPCA in three

ways: firstly, the essence of 2DPCA is clarified. Secondly, a

bilateral 2DPCA scheme is introduced to remove the

necessity of more coefficients in representing an image in

2DPCA than in PCA. Thirdly, a kernel-based 2DPCA

scheme is introduced to remedy the shortage of 2DPCA in

exploring the higher-order statistics among the rows/col-

umns of the input data.
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Appendix A. The proof of Theorem 2

Proof. Let VZ
PM
iZ1

jjAiKUBiV
T jj2F . According to the

property of trace of matrix, we have

V Z
XM
iZ1

trððAiKUBiV
T ÞðAiKUBiV

T ÞT Þ

Z
XM
iZ1

trðAiA
T
i ÞC trðUBiV

T UBT
i UT ÞK2trðUBiV

T AT
i Þ

Z
XM
iZ1

trðAiA
T
i ÞC trðUBiB

T
i UT ÞK2

XM

iZ1

trðUBiV
T AT

i Þ

Z
XM
iZ1

trðAiA
T
i ÞC

XM
iZ1

trðBT
i UT UBiÞC2trðUBiV

T AT
i Þ

Z
XM

iZ1

ftrðAiA
T
i ÞC trðBT

i BiÞK2trðUBiV
T AT

i Þg

Z
XM

iZ1

ftrðAiA
T
i ÞC trðBiB

T
i ÞK2trðUBiV

T AT
i Þg

where the second term derives from the facts that (1) both U

and V have orthonormal columns, and (2) tr(AB)Ztr(BA)

for any two matrices.

Since the first term is a constant, the minimization of Eq.

(8) is equivalent to minimizing:

J Z
XM

iZ1

ftrðBiB
T
i ÞK2trðUBiV

T AT
i Þg (15)

Let,

vJ

vBi

Z 2
XM

iZ1

fBiKUT AiVg Z 0 (16)

Therefore, only if BiZUTAiV, the minimum value of J
can be achieved. We substitute Bi in Eq. (8) by

UTAiV : V Z
XM
iZ1

trððAiKUBiV
T ÞðAi KUBiV

T ÞT Þ

Z
XM

iZ1

ftrðAiA
T
i ÞC trðBiB

T
i ÞK2trðUBiV

T AT
i Þg

Z
XM

iZ1

ftrðAiA
T
i ÞC trðBiB

T
i ÞK2trðBiB

T
i Þg

Z
XM

iZ1

ftrðAiA
T
i ÞKtrðBiB

T
i Þg

Z
XM

iZ1

jjAijj
2
F K

XM
iZ1

jjBijj
2
F

Z
XM

iZ1

jjAijj
2
F K

XM
iZ1

jjUT AiVjj2F
where the first term is a constant, therefore, the minimiz-

ation of Eq. (8) is equivalent to the maximization of the

following Eq. (17) and the solutions that maximize Eq. (17)

are the optimal ones.
s Z
XM
iZ1

jjUT AiVjj2F (17)
,

Appendix B. The proof of Theorem 3

Proof. From Eqs. (13) and (14), we have viZ(1/li)C
Fvi.
vi Z
1

li

1

M

XM

kZ1

F̂ðAkÞ
T F̂ðAkÞ

" #
vi (18)
Another form of CF is
CF Z
1

M
JFðJFÞT (19)
where
JF Z ½½F̂ðA1
1Þ

T ;.; F̂ðAm
1 Þ

T �;.; ½F̂ðA1
MÞ

T ;.; F̂ðAm
MÞ

T ��

(20)
From Eqs. (18)–(20), we have,
vi Z
1

liM
JFai (21)
where aiZ(JF)Tvi is an (M!m)-dimensional column

vector and it is denoted by ai Z ½a1
i ;a

2
i ;.;aM!m

i �T . Thus,

the solutions vi lie in the span of F̂ðAl
kÞ

T , kZ1,., M; lZ
1,., m. That is,
vi Z
XM
kZ1

Xm

lZ1

ak!l
i F̂ðAl

kÞ
T (22)
Multiply F̂ðAh
gÞ

T on both size of Eq. (14), we can get,
liðF̂ðAh
gÞ

T†viÞ Z ðF̂ðAh
gÞ

T†CFviÞ (23)
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That is,

li

XM

kZ1

Xm

lZ1

ak!l
i F̂ðAh

gÞ
T F̂ðAl

kÞ
T

� �

Z F̂ðAh
gÞ

T 1

M

XM

tZ1

F̂ðAtÞ
T
F̂ðAtÞ

XM

kZ1

Xm

lZ1

a
k!l
i F̂ðAl

kÞ
T

" # !

Z F̂ðAh
gÞ

T 1

M

XM

pZ1

Xm

qZ1

F̂ðAq
pÞ

T F̂ðAq
pÞ

" 

!
XM

kZ1

Xm

lZ1

ak!l
i F̂ðAl

kÞ
T

#!

Z
1

M

XM

kZ1

Xm

lZ1

ak!l
i ðF̂ðAh

gÞÞ
T
XM
pZ1

Xm

qZ1

F̂ðAq
pÞ

T

! F̂ðAq
pÞ

T F̂ðAl
kÞ

T
� �

:

Defining an (M!m)!(M!m) matrix K by

Kðk!l;p!qÞ Z F̂ðAl
kÞ

T F̂ðAq
pÞ

T
� �

The above equation can be converted into:

MliKai Z K2ai (24)

or

Mliai Z Kai (25)

Since K is positive semidefinite, K’s eigenvalues will be

nonnegative, the eigenvalues l1%l2,%,.,%lM!m and the

corresponding eigenvectors a1, a2,.,aM!m can be solved

by diagonalizing K, with ap,apC1,.,aM!m by enforcing

the unitilization of the corresponding v in F, i.e. (vd$vd)Z1

for all dZp,.,M!m. In terms of viZ
PM
kZ1

Pm
lZ1

ak!l
i F̂ðAl

kÞ
T ;

this turns into:

1 Z
XM
kZ1

Xm

lZ1

a
k!l
d F̂ðAl

kÞ
T

 ! XM

pZ1

Xm

qZ1

a
p!q
d F̂ðAq

pÞ
T

 ! !

Z ðadKadÞ Z ldðadadÞ:

To extract the principal component of each row, we need

to project each F̂ðA
j
iÞ onto the eigenvectors vk in F, i.e.

vkF̂ðA
j
iÞ

� �
Z
XM
pZ1

Xm

qZ1

a
p!q
d F̂ðAq

pÞ
T F̂ðA

j
iÞ

� �
:

Hence, K2DPCA performed on 2D images can be regarded

as KPCA performed on the rows of all the training images. ,
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