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Abstract. In patch-based object recognition, using a compact visual
codebook can boost computational efficiency and reduce memory cost.
Nevertheless, compared with a large-sized codebook, it also risks the loss
of discriminative power. Moreover, creating a compact visual codebook
can be very time-consuming, especially when the number of initial visual
words is large. In this paper, to minimize its loss of discriminative power,
we propose an approach to build a compact visual codebook by maxi-
mally preserving the separability of the object classes. Furthermore, a
fast algorithm is designed to accomplish this task effortlessly, which can
hierarchically merge 10,000 visual words down to 2 in ninety seconds.
Experimental study shows that the compact visual codebook created in
this way can achieve excellent classification performance even after a
considerable reduction in size.

1 Introduction

Recently, patch-based object recognition has attracted particular attention and
demonstrated promising recognition performance [1,2,3,4]. Typically, a visual
codebook is created as follows. After extracting a large number of local patch
descriptors from a set of training images, k-means or hierarchical clustering is
often used to group these descriptors into n clusters, where n is a predefined
number. The center of each cluster is called “visual word”, and a list of them
forms a “visual codebook”. By labelling each descriptor of an image with the
most similar visual word, this image is characterized by an n-dimensional his-
togram counting the number of occurrences of each word. The visual codebook
can have critical impact on recognition performance. In the literature, the size
of a codebook can be up to 103 or 104, resulting in a very high-dimensional
histogram.

A compact visual codebook has advantages in both computational efficiency
and memory usage. For example, when linear or nonlinear SVMs are used, the
complexity of computing the kernel matrix, testing a new image, or storing the
support vectors is all proportional to the codebook size, n. Also, many algo-
rithms working well in a low dimensional space will encounter difficulties such
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as singularity or unreliable parameter estimate when the dimensions increase.
This is often called the “curse of dimensionality”. A compact visual codebook
provides a lower-dimensional representation and can effectively avoid these dif-
ficulties. Moreover, in patch-based object recognition, the histogram used to
represent an image is essentially a discrete approximation of the distribution
of visual words in that image. A large-sized visual codebook may overfit this
distribution, as pointed out in [5]. Pioneering work of creating a compact and
discriminative visual codebook has been seen recently in [4], which hierarchically
merges the visual words in a large-sized initial codebook. To minimize the loss of
discriminative ability, the work in [4] requires the new histograms to maximize
the conditional probability of the true labels of training images (or image regions
in their work). This is a rigorous but complicated criterion that involves non-
trivial computation after each merging operation. Moreover, at each level of the
hierarchy, the optimal pair of words to be merged are sought by an exhaustive
search. These lead to a heavy computational load when dealing with large-sized
initial codebooks.

Creating a compact codebook is essentially a dimensionality reduction prob-
lem. To preserve the discriminative power, any classification performance re-
lated criterion may be adopted, for example, the rigorous Bayes error rate, error
bounds or distances, class separability measure, or that used in [4]. We pay
particular interest to the class separability measure because of its simplicity
and efficiency. By using this measure, we build a compact visual codebook that
maximally preserves the separability of the object classes. More importantly, we
propose a fast algorithm to accomplish this task effortlessly. By this algorithm,
the class separability measure can be immediately evaluated once two visual
words are merged. Also, searching for the optimal pair of words to be merged is
cast as a 2D geometry problem and testing a small number of pairs is sufficient
to find the optimal pair. Given an initial codebook of 10,000 visual words, the
proposed fast algorithm can hierarchically merge them down to 2 words in ninety
seconds. As experimentally demonstrated, our algorithm can produce a compact
codebook which is comparable to or even better than that obtained by [4], but
our algorithm needs much less computational overhead, especially when the size
of the initial codebook is large.

2 The Scatter-Matrix Based Class Separability Measure

This measure involves the Within-class scatter matrix (H), the Between-class
scatter matrix (B), and the Total scatter matrix (T). Let (x, y) ∈ (Rn × Y)
denote a training sample, where R

n stands for an n-dimensional input space,
and Y = {1, 2, · · · , c} is the set of c class labels. The number of samples in the
i-th class is denoted by li. Let mi be the mean vector of the i-th class and m
be the mean vector of all classes. The scatter matrices are defined as

H =
∑c

i=1

[∑li
j=1(xij − mi)(xij − mi)

�
]

B =
∑c

i=1 li(mi − m)(mi − m)�

T =
∑c

i=1

[∑li
j=1(xij − m)(xij − m)�

]
= H + B .

(1)



A Fast Algorithm 721

A large class separability means small within-class scattering but large between-
class scattering. A combination of two of them can be used as a measure, for
example, tr(B)/tr(T) or |B|/|H|, where tr(·) and | · | denote the trace and de-
terminant of a matrix, respectively. In these measures the scattering of data
is evaluated through the mean and variance, which implicitly assumes a Gaus-
sian distribution for each class. This drawback is overcome by incorporating
the kernel trick and it makes the scatter-matrix based measure quite useful, as
demonstrated in Kernel based Fisher Discriminate Analysis (KFDA) [6].

3 The Formulation of Our Problem

Given an initial codebook of n visual words, we aim to obtain a codebook con-
sisting of m (m � n) visual words in the sense that when represented with these
m visual words, the c object classes can have maximal separability.

Recall that with a set of visual words, a training image can be represented
by a histogram which contains the number of occurrences of each word in this
image. Let xn (xn ∈ R

n) and xm (xm ∈ R
m) denote the histograms when n

and m visual words are used, respectively. In the following, we first discuss an
ideal way of solving our problem, and show that such a way is impractical for
patch-based object recognition. This motivates us to propose the fast algorithm
in this paper.

Inferring m visual words from the n initial ones is essentially a dimensionality
reduction problem. It can be represented by a linear transform as

xm = W�xn (2)

where W (W ∈ R
n×m) is an n×m matrix. Let Bn and Tn denote the between-

class and total -class scatter matrices when the training images are represented
by xn. The optimal linear transform, W�, can be expressed as

W� = arg max
W∈Rn×m

tr(W�BnW)
tr(W�TnW)

. (3)

Note that the determinant-based measure is not adopted because n is often
much larger than the number of training images, making |Bn| and |Tn| zero.
The problem in (3) has been studied in [7] recently1. The optimal W is located
by solving a series of Semi-Definite Programming (SDP) problems. Nevertheless,
this SDP-based approach quickly becomes intractable when n exceeds 100, which
is far less than the number encountered in practical object recognition. Moreover,
the W in patch-based object recognition may have the following constraints:

1. Wij ∈ {0, 1} if requiring the m new visual words to have meaningful and
determined content;2

1 Note that this problem is not simply the Fisher Discriminant Analysis problem.
Please see [7] for the details.

2 For example, when discriminating motorbikes from airplanes, the content of a visual
word will be “handle bar” and/or “windows” rather than 31% handle bar, 27%
windows, and 42% something else.
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2.
∑m

j=1 Wij = 1 if requiring that each of the n visual words only be assigned
to one of the m visual words.

3. If no words are to be discarded, the constraint of
∑n

i=1 Wij ≥ 1 will be
imposed because each of the n visual words must be assigned to one of the
m visual words;

This results in a large-scale integer programming problem. Efficiently and opti-
mally solving it may be difficult for the state-of-the-art optimization techniques.
In this paper, we adopt a suboptimal approach that hierarchically merges two
words while maximally maintaining the class separability at each level.

4 A Fast Algorithm of Hierarchically Merging Visual
Words

To make the hierarchical merging approach efficient, we need: i) Once two visual
words are merged, the resulting class separability can be quickly evaluated; ii)
In searching for the best pair of words to merge, the search scope has to be as
small as possible. In the following, we show how these requirements are achieved
with the scatter-matrix based class separability measure.

4.1 Fast Evaluation of Class Separability

Let xt
i = [xt

i1, · · · , xt
it] (i = 1, · · · , l) be the i-th training image when t visual

words are used, where t (t = n, n − 1, · · · , m) indicates the current level in the
hierarchy. Let Kt be the Gram matrix defined by {Kt}ij = 〈xt

i,x
t
j〉. Let Kt−1

rs

be the resulting Gram matrix after merging the r-th and s-th words at level t.
Their relationship is derived as

{Kt−1
rs }ij = 〈xt−1

i ,xt−1
j 〉 =

∑t−1
k=1 xt−1

ik xt−1
jk

=
∑t

k=1 xt
ikxt

jk − xt
irx

t
jr − xt

isx
t
js + (xt

ir + xt
is)(x

t
jr + xt

js)
=

∑t
k=1 xt

ikxt
jk + xt

irx
t
js + xt

isx
t
jr

= {Kt}ij + {At
rs}ij + {At

rs}ji

(4)

where At
rs is a matrix defined as At

rs = Xt
r(X

t
s)

�, where Xt
r is [xt

1r , · · · , xt
lr ].

Hence, it can be obtained that

Kt−1
rs = Kt + At

rs + (At
rs)

�. (5)

A similar relationship exists between the class separability measures at t and
t − 1 levels. Let Bt−1 and Tt−1 be the matrices B and T computed with xt−1.
It can be proven (the proof is omitted) that for a c-class problem,

tr(Bt−1
rs ) =

c∑

i=1

1�Kt−1
rs,i1

li
− 1�Kt−1

rs 1

l
; tr(Tt−1

rs ) = tr(Kt−1
rs ) − 1�Kt−1

rs 1

l
(6)

where Kt−1
rs,i is computed by the training images from class i. It can be verified

that Kt−1
rs,i = Kt

i +At
rs,i +(At

rs,i)
�. The li is the number of training images from
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class i, and l is the total number. Note that 1�At
rs1 = 1�(At

rs)
�1, where 1 is

a vector consisting of “1”. By combining (5) and (6), we obtain that

tr(Bt−1
rs ) =

(∑c
i=1

1�Kt
i1

li
− 1�Kt1

l

)
+ 2

(
∑c

i=1

1�At
rs,i1

li
− 1�At

rs1

l

)

= tr(Bt) + 2

(
∑c

i=1

1�At
rs,i1

li
− 1�At

rs1

l

)

� tr(Bt) + f(Xt
r,X

t
s),

(7)

where f(Xt
r,X

t
s) denotes the second term in the previous step. Similarly,

tr(Tt−1
rs ) =

(
tr(Kt) − 1�Kt1

l

)
+ 2

(
tr(At

rs) +
1�At

rs1

l

)

= tr(Tt) + 2
(
tr(At

rs) − 1�At
rs1

l

)

� tr(Tt) + g(Xt
r,X

t
s) .

(8)

Since both tr(Bt) and tr(Tt) have been computed at level t before any merging
operation, the above results indicate that to evaluate the class separability after
merging two words, only f(Xt

r,X
t
s) and g(Xt

r,X
t
s) need to be calculated.

In the following, we further show that at any level t (m ≤ t < n), f(Xt
r,X

t
s)

and g(Xt
r,X

t
s) can be worked out with little computation. Three cases are dis-

cussed in turn.

i) Neither the r-th nor the s-th visual word is newly generated at level t.
This means that both of them are directly inherited from level t+1. Assuming
that they are numbered as p and q at level t + 1, it can be known that

f(Xt
r,X

t
s) = f(Xt+1

p ,Xt+1
q ); (9)

ii) Just one of the r-th and the s-th visual words is newly generated at level t.
Assume that the r-th visual word is newly generated by merging the u-th
and the v-th words at level t + 1, that is, Xt

r = Xt+1
u + Xt+1

v . Furthermore,
assume that Xt

s is numbered as q at level t + 1. It can be shown that

At
rs = Xt

r(Xt
s)� = (Xt+1

u + Xt+1
v )(Xt+1

q )�

= Xt+1
u (Xt+1

q )� + Xt+1
v (Xt+1

q )�

= At+1
uq + At+1

vq .
(10)

In this way, it can be obtained that

f(Xt
r,X

t
s) = 2

(
∑c

i=1

1�At
rs,i1

li
− 1�At

rs1

l

)

= 2

(
∑c

i=1

1�At+1
uq,i1

li
− 1�At+1

uq 1

l

)

+ 2

(
∑c

i=1

1�At+1
vq,i1

li
− 1�At+1

vq 1

l

)

= f(Xt+1
u ,Xt+1

q ) + f(Xt+1
v ,Xt+1

q );

(11)

iii) Both the r-th and the s-th visual words are newly generated at level t.
This case does not exist because only one visual word can be newly generated
at each level of a hierarchical clustering.
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The above analysis shows that f(Xt
r,X

t
s) can be obtained either by directly

copying from level t + 1 or by a single addition operation. All of the analysis
applies to g(Xt

r,X
t
s). Hence, once the r-th and the s-th visual words are merged,

the class separability measure, tr(Bt−1
rs )/tr(Tt−1

rs ), can be immediately obtained
by two addition and one division operations.

Computational complexity. The time complexity of calculating f(Xn
i ,Xn

j ) or
g(Xn

i ,Xn
j ) is analyzed. There are n(n − 1)/2 values to be computed in total,

each of which involves computing the matrix An
ij which needs l2 multiplications.

Both terms of 1�An
ij,k1 (k = 1, 2, · · · , c) and 1�An

ij1 can be obtained by l2

additions. Finally,
∑c

i=1(
1
li

)1�An
ij,k1+ (− 1

l )1
�An

ij1 can be worked out in c + 1
multiplications and c additions. Hence, computing all f(Xn

i ,Xn
j ) or g(Xn

i ,Xn
j )

needs
n(n − 1)

2
[
(l2 + c + 1) multiplications + (l2 + c) additions

]
,

resulting in the complexity of O(n2l2). In practice, the load of computing An
ij

can be lower because the histogram xn is often sparse. Also, f(Xn
i ,Xn

j ) and
g(Xn

i ,Xn
j ) share the same An

ij . The memory cost for storing all of the f(Xn
i ,Xn

j )
and g(Xn

i ,Xn
j ) in double precision format is n(n − 1)×8 Bytes, leading to space

complexity of O(n2). When n equals 10, 000 (this is believed to be a reasonably
large size for an initial visual codebook used in patch-based object recognition),
the memory cost will be about 800 MByte, which is bearable for a desktop
computer today. Moreover, the memory cost decreases quadratically with respect
to the level because the total number of f or g is t(t − 1)/2 at a given level t.

4.2 Fast Search for the Optimal Pair of Words to Merge

Although the class separability can now be quickly evaluated once a pair of
words are merged, there are t(t−1)

2 possible pairs at level t from which we need
to find the optimal pair to merge. If an exhaustive search is used to identify
this optimal pair, the total number of pairs that are tested in the hierarchical
merging process will be

∑n
t=m+1

t(t−1)
2 . For n = 10, 000 and m = 2, this number

is as large as 1.67 × 1011. Using an exhaustive search will significantly prolong
the merging process. In the following, we propose a more efficient search strategy
by making use of the properties of the scatter-matrix based class separability
measure, which allows us to convert the search problem to a simple 2D geometry
problem. Denote f(Xt

r,X
t
s) and g(Xt

r,X
t
s) by f t and gt in short, respectively.

Recall that the class separability measure after merging two visual words is

J =
tr(Bt−1)
tr(Tt−1)

=
tr(Bt) + f t

tr(Tt) + gt
=

f t − (−tr(Bt))
gt − (−tr(Tt))

As illustrated in Fig. 1, geometrically, the value of J equals the slope of the line
AB through A(−tr(Tt),−tr(Bt)) and B(gt, f t).

The coordinates of A and B are restricted by the following properties of the
scatter matrices:
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i) From the definition in (1), it is known that

tr(Ht) ≥ 0; tr(Bt) ≥ 0; tr(Tt) = tr(Ht) + tr(Bt) ≥ tr(Bt)

As a result, the point A must lie within the third quadrant of the Cartesian
coordinate system gOf and above the line of f − g = 0. The domain of A is
marked as a hatched region in Fig. 1.

ii) The coordinator of B(gt, f t) must satisfy the following constraints:

tr(Bt−1) ≥ 0 =⇒ tr(Bt) + f t ≥ 0 =⇒ f t ≥ −tr(Bt)

tr(Tt−1) ≥ 0 =⇒ tr(Tt) + gt ≥ 0 =⇒ gt ≥ −tr(Tt)

tr(Tt−1) ≥ tr(Bt−1) =⇒ tr(Tt) + gt ≥ tr(Bt) + f t

=⇒ f t − gt − (tr(Tt) − tr(Bt)) ≤ 0

They define three half-planes in the coordinate system gOf and the point
B(gt, f t) must lie within the intersection, the blue-colored region in Fig. 1.

Therefore, finding the optimal pair of words whose combination produces the
largest class separability becomes finding the optimal point B� which maximizes
the slope of the line AB, where the coordinate of A is fixed at a given level t.

Fig. 1. Illustration of the region where A(−tr(Tt),−tr(Bt)) and B(gt, f t) reside

Indexing structure. To realize the fast search, a polar coordinate based indexing
structure is used to index the t(t − 1)/2 points of B(g, f) at level t, as illustrated
in Fig. 2. Each point B is assigned into a bin (i,j) according to its distance from
the origin and its polar angle, where i = 1, · · · , K and j = 1, · · · , S. The K is
the number of bins with respect to the distance from the origin, whereas S is the
number of bins with respect to the polar angle. In Fig. 2, this indexing structure
is illustrated by K concentric circles, each of which is further divided into S
segments. The total number of bins is KS. Through this indexing structure, we
can know which points B reside in a given bin. In this paper, the number of
circles K is set as 40, and their radius are arranged as ri = ri+1/2. The S is set
as 36, which evenly divides [0, 2π) into 36 bins.
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Fig. 2. The point A is fixed when searching for B� which makes the line AB have the
largest slope. The line AD is tangent to the second largest circle CK−1 at D, and it
divides the largest circle CK into two parts, region I and II. Clearly, a point B in region
I always gives AB a larger slope than any point in region II. Therefore, if the region I
is not empty, the best point B� must reside there and searching region I is sufficient.

Search strategy. As shown in Fig. 2, let D denote the point where the line AD is
tangent to the second largest circle, CK−1. The line AD divides the largest circle
CK into two parts. When connected with A, a point B lying above AD (denoted
by region I) always gives a larger slope than any point below it (denoted by
region II). Therefore, if the region I is not empty, all points in the region II
can be safely ignored. The search is merely to find the best point B� from the
region I which gives AB the largest slope. To carry out this search, we have to
know which points reside in the region I. Instead of exhaustively checking each of
the t(t−1)

2 points against AD, this information is conveniently obtained via the
above indexing structure. Let θE and θF be the polar angles of E and F where
the line AD and CK intersect. Denote the bins (with respect to the polar angle)
into which they fall by S1 and S2, respectively. Thus, searching the region I can
be accomplished by searching the bin (i, j) with i = K and j = S1, · · · , S2.3

Clearly, the area of the searched region is much smaller than the area of CK

for moderate K and S. Therefore, the number of points B(g, f) to be tested
can be significantly reduced, especially when the point B distributes sparsely in
the areas away from the origin. If the region I is empty, move the line AD to
be tangent to the next circle, CK−2, and repeat the above steps. After finding
the optimal pair of words and merging them, all points B(g, f) related to the
two merged words will be removed. Meanwhile, new points related to the newly
3 The region that is actually searched is slightly larger than the region I. Hence, the

found best point B� will be rejected if it is below the line AD. This also means that
the region I is actually empty.
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generated word will be added and indexed. This process is conveniently realized
in our algorithm by letting one word “absord” the other. Then, we finish the
operation at level t and move to level t−1. Our algorithm is described in Table 1.

Before ending this section, it is worth noting that this search problem may
be tackled by the dynamic convex hull [8] in computational geometry. Given
the point A, the best point B� must be a vertex of the convex hull of the
points B(g, f). At each level t, part of points B(g, f) are updated, resulting in a
dynamically changing convex hull. The technique of dynamic convex hull can be
used to update the vertex set accordingly. This will be explored in future work.

Table 1. The fast algorithm for hierarchically merging visual words

Input: The l training images represented as {(xi, yi)}l
i=1 (xi ∈ R

n, yi ∈ {1, · · · , c}).
The n is the size of an initial visual codebook and yi is the class label of xi

m: the size of the target visual codebook.
Output: The n − m level merging hierarchy

Initialization:
compute f(Xn

i ,Xn
j ) and g(Xn

i ,Xn
j ) (1 ≤ i < j ≤ n) and store them in memory

Index the n(n−1)
2

points of B(g, f) with a polar coordinate quantized into bins
Compute A(−tr(Tn),−tr(Bn))

Merging operation:
for t = n, n − 1, · · · , m

(1) fast search for the point B(g�, f�) that gives the line AB the largest
slope, where f� = f�(Xt

r,X
t
s) and g� = g�(Xt

r, X
t
s)

(2) compute tr(Bt−1) and tr(Tt−1) and update the point A:
tr(Bt−1) = tr(Bt) + f�(Xt

r,X
t
s); tr(Tt−1) = tr(Tt) + g�(Xt

r,X
t
s)

(3) update f(Xt
r,X

t
i) and g(Xt

r,X
t
i)

f(Xt
r,X

t
i)=f(Xt

r,X
t
i) + f(Xt

s,X
t
i); g(Xt

r,X
t
i)=g(Xt

r,X
t
i) + g(Xt

s,X
t
i)

remove f(Xt
s, X

t
i) and g(Xt

s,X
t
i)

(4) re-index f(Xt
r,X

t
i) and g(Xt

r,X
t
i)

end

5 Experimental Result

The proposed class separability measure based fast algorithm is tested on four
classes of the Caltech-101 object database [9], including Motorbikes (798 images),
Airplanes (800), Faces easy (435), and BACKGROUND Google (520), as shown
in Fig. 3. A Harris-Affine detector [10] is used to locate interest regions, which
are then represented by the SIFT descriptor [11]. Other region detectors [12] and
descriptors [13] can certainly be used because our algorithm has no restriction
on this. The number of local descriptors extracted from the images of the four
classes are about 134K, 84K, 57K, and 293K, respectively. Our algorithm is
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applicable to both binary and multi-class problems. This experiment focuses
on the binary case, including both object categorization and object detection
problems. To accumulate statistics, the images of the two object classes to be
classified are randomly split as 10 pairs of training/test subsets. Restricted to
the images in a training subset (those in a test subset are only used for test),
their local descriptors are clustered to form the n initial visual words by using
k-means clustering. Each image is then represented by a histogram containing
the number of occurrences of each visual word.

Fig. 3. Example images of Motorbikes, Airplanes, Faces easy, and BACK-
GROUND Google in [9] used in this experiment

Three algorithms are compared in creating a compact visual codebook, includ-
ing k-means clustering (KMS in short), the algorithm proposed in [4] (PRO in
short), and our class separability measure (CSM in short) based fast algorithm.
In this experiment, the k-means clustering is used to cluster the local descrip-
tors of the training images by gradually decreasing the value of k. Its result is
used as a baseline. The CSM and PRO are applied to the initial n-dimensional
histograms to hierarchically merge the visual words (or equally, the bins). For
each algorithm, the obtained lower-dimensional histograms are used by a clas-
sifier to separate the two object classes. Linear and nonlinear SVM classifiers
with a Gaussian RBF kernel are used. Their hyper-parameters are tuned via
k-fold cross-validation. The three algorithms are compared in terms of: i) the
time and memory cost with respect to the number of initial visual words; ii) the
recognition performance achieved by the obtained compact visual codebooks.
We aim to show that our proposed CSM-based fast algorithm can achieve the
recognition performance comparable to or even better than the PRO algorithm
but it is much faster in creating a compact codebook.

5.1 Result on Time and Memory Cost

The time and memory cost is independently evaluated on a synthetic data set.
Fixing the number of training images at 100, the size of the initial visual code-
book varies between 10 and 10,000. The number of occurrences of each visual
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Fig. 4. Time and peak memory cost Comparison of our CSM algorithm (using
the proposed fast search or an exhaustive search) and the PRO algorithm in [4]. The
horizontal axis is the size (in logarithm) of an initial visual codebook, while the vertical
axes are time and peak memory cost in (a) and (b), respectively. As shown, the CSM
algorithm with the fast search significantly reduces the time cost for a large-sized visual
codebook with acceptable memory usage.

word used in a histogram is randomly sampled from {0, 1, 2, · · · , 99}. In this ex-
periment, the CSM-based fast algorithm is compared with the PRO algorithm
which uses an exhaustive search to find the optimal pair of words to merge. We
implement the PRO algorithm according to [4], including a trick suggested to
speed up the algorithm by only updating the terms related to the two words to
be merged. Meanwhile, to explicitly show the efficiency of the fast search part in
our algorithm, we purposely replace the fast search in the CSM-based algorithm
with an exhaustive search to demonstrate the quick increase on time cost. A ma-
chine with 2.80GHz CPU and 4.0GB memory is used. The result is in Fig. 4. As
seen in sub-figure(a), the time cost of the PRO algorithm goes up quickly with
the increasing codebook size. It takes 1, 624 seconds to hierarchically cluster 1000
visual words to 2, whereas the CSM algorithm with an exhaustive search only
uses 9 seconds to accomplish this. The less time cost is attributed to the simplic-
ity of the CSM criterion and the fast evaluation method proposed in Section 4.1.
The CSM algorithm with the fast search achieves the highest computational ef-
ficiency. It only takes 1.55 minutes to hierarchically merge 10,000 visual words
to 2, and the time cost increases to 141.1 minutes when an exhaustive search
is used. As shown in sub-figure(b), the price is that the fast search needs more
memory (1.45GB for 10,000 visual words) to store the indexing structure. We
believe that such memory usage is acceptable for a personal computer today.
In the following experiments, the discriminative power of the obtained compact
visual codebooks is investigated.

5.2 Motorbikes vs. Airplanes

This experiment discriminates the images of a motorbike from those containing
an airplane. In each of the 10 pairs of training/test subsets, there are 959 training
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Fig. 5. Motorbikes vs. Airplanes Comparison of classification performance of the
compact visual codebooks generated by k-means clustering (KMS), the PRO algorithm
in [4], and our class separability measure (CSM) algorithm. Linear and nonlinear SVM
classifiers are used in (a) and (b), respectively. The CSM-based algorithm still gives the
excellent classification result when the codebook size has been considerably reduced.

images and 639 test images. An initial visual codebook of size 1, 000 is created
by using k-means clustering. The CSM algorithm with the fast search hierarchi-
cally clusters them into 2 words in 6 seconds, whereas the PRO algorithm takes
6, 164 seconds to finish this. Based on the obtained compact visual codebook, a
new histogram is created to represent each image. With the new histograms, a
classifier is trained on a training subset and evaluated on the corresponding test
subset. The average classification error rate is plotted in Fig. 5. The sub-figure
(a) shows the result when a linear SVM classifier is used. As seen, the compact
codebook generated by k-means clustering has poor discriminative power. Its
classification error rate goes up with the decreasing size of the compact code-
book. This is because k-means clustering uses the Euclidean distance between
clusters as the merging criterion, which is not related to the classification perfor-
mance. In contrast, the CSM and PRO algorithms achieve better classification
performance, indicating that they well preserve the discriminative power in the
obtained compact codebooks. For example, when the codebook size is reduced
from 1000 to 20, these two algorithms still maintain excellent classification per-
formance, with an increase of error rate less than 1%. Though the classification
error rate of our CSM algorithm is a little bit higher (about 1.5%) at the initial
stage, it soon drops to a level comparable to the error rate given by the PRO
algorithm with the decreasing codebook size. Similar results can be observed
from Fig. 5(b) where a nonlinear SVM classifier is employed.

5.3 Faces Easy vs. Background Google

This experiment aims to separate the images containing a face from the back-
ground images randomly collected from the Internet. In each training/test split,
there are 100 training images and 1, 498 test images. The number of initial visual
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Fig. 6. Face-easy vs. Background Google Comparison of classification perfor-
mance of the small-sized visual codebooks generated by k-means clustering (KMS),
the PRO algorithm in [4], and our proposed class separability measure (CSM). Lin-
ear and nonlinear SVM classifiers are used in (a) and (b), respectively. As shown, the
CSM-based algorithm gives the best compact and discriminative codebooks.

words is 1, 000. They are hierarchically clustered into two words in 6 seconds by
our CSM algorithm with the fast search and in 1, 038 seconds by the PRO al-
gorithm. Again, with the newly obtained histograms, a classifier is trained and
evaluated. The averaged classification error rates are presented in Fig. 6. In this
experiment, the classification performance of the PRO algorithm is not as good
as before. This might be caused by the hyper-parameters used in the PRO al-
gorithm. Their values are preset according to [4] but may be task-dependent. In
contrast, our CSM algorithm achieves the best classification performance. The
small-sized compact codebooks consistently produce the error rate comparable to
that of the initial visual codebook. This indicates that our algorithm effectively
makes the compact codebooks preserve the discriminative power of the initial
codebook. An additional advantage of our algorithm is that the CSM criterion
is free of parameter setting. Meanwhile, a short “transition period” is observed
on the CSM algorithm in Fig. 6, where the classification error rate goes up and
then drops at the early stage. This interesting phenomenon will be looked into
in future work.

6 Conclusion

To obtain a compact and discriminative visual codebook, this paper proposes
using the separability of object classes to guide the hierarchical clustering of
initial visual words. Moreover, a fast algorithm is designed to avoid a lengthy
exhaustive search. As shown by the experimental study, our algorithm not only
ensures the discriminative power of a compact codebook, but also makes the
creation of a compact codebook very fast. This delivers an efficient tool for patch-
based object recognition. In future work, more theoretical and experimental
study will be conducted to analyze its performance.
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