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Abstract

The performance of SVM-based image retrieval is often
constrained by the scarcity of training samples. The total
number of image samples labelled by users in a retrieval
session is very limited, and these small number of labelled
samples cannot effectively represent the true distributions of
positive and negative image classes, especially for the neg-
ative image class. This paper proposes a novel approach to
deal with this problem. Instead of treating it as a problem,
the mere existence of the small number of labelled images
and their desired distribution in the kernel space is con-
sidered as prior knowledge from image retrieval to aid the
design of the kernel used by SVMs. This is achieved by max-
imizing a criterion, such as one based on scatter matrices,
through gradient-based search methods, incurring very lit-
tle computational overhead to real-time retrieval process.
Experimental results on two benchmark image databases
demonstrate the improved retrieval performance by the dy-
namically designed kernel and hence the effectiveness of the
proposed approach for SVM based image retrieval.

1. Introduction

In recent years, Support Vector Machines (SVMs) have
been used in Content-Based Image Retrieval (CBIR) to
learn the high-level concepts encapsulated in user feed-
back [2, 8, 9, 10]. In the process, a user is often asked to
provide some “positive” and “negative” image examples via
relevance feedback. These labelled image samples are then
used as training data to train an SVM classifier to perform
a bi-class classification of positive (relevant) and negative
(irrelevant) images. Those images having the larger pos-
itive decision values are retrieved as positive images. In
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SVMs, through a kernel, the training data are implicitly
mapped from a low-level visual feature space to a kernel
space, and an optimal separating hyperplane is determined
therein. This mapping is often nonlinear, and the dimen-
sionality of the kernel space can be very high or even in-
finite. The nonlinearity and the high dimensionality help
SVMs achieving excellent classification performance, espe-
cially for linearly nonseparable patterns. This is very useful
for image retrieval in which the positive and negative im-
ages are identified by a user based on high-level concepts,
and they are often not linearly separable in a low-level vi-
sual feature space.

However, the number of labelled images is often small
because a user cannot bear to label too many images. As
a result, this small number of labelled images cannot ef-
fectively represent the true distributions of the positive and
negative image classes. Especially, in the case of small
sample, the representation of the negative class is much
poorer due to its much more complex distribution. After all,
the positive images share a common concept in the user’s
mind, leading to some degree of aggregation when reason-
ably good visual features are used. However, negative im-
ages have heterogeneous concepts except in that all of them
are not positive. The excellent classification performance of
SVMs largely depends on sufficient number of representa-
tive training samples. Due to the scarcity of training sam-
ples in image retrieval, SVMs cannot produce the expected
retrieval performance. This is often called the small sample
problem in image retrieval.

The present literature handles this problem by the fol-
lowing ways. In [9], an active learning mode is used. How-
ever, to ensure effective active learning, the user has to label
more images before retrieval starts. In [2], Euclidean search
is combined to correct SVM’s decision instead of improv-
ing the performance of SVMs. In our previous work [10], a
transductive SVM is used by incorporating unlabelled data.
Nevertheless, it is also observed that the retrieval perfor-
mance is not stable enough. In [7], three techniques of
random sampling, random space, and bagging are used to

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 



combine multiple SVMs to address the small sample prob-
lem. As seen, different kinds of approaches have been used
by collecting more samples from users, incorporating unla-
belled samples, or combining other techniques. However,
the SVM classifier itself is often ignored there. This is es-
pecially true for the kernel function, which plays a crucial
role in SVMs. The above work simply takes a commonly
used kernel into SVMs, and does not explore its potential
for improving the retrieval performance by SVMs.

It has been well recognized in machine learning that,
when designing an SVM classifier, incorporating prior
knowledge into the employed kernel is important because
this often improves its classification performance, espe-
cially when training samples are scarce [5]. Also, this is a
very efficient way because it needs the minimum change on
the SVM classifier itself. In this paper, instead of taking the
small sample as a problem, we think of it as a prior knowl-
edge from image retrieval with relevance feedback, and in-
corporate this knowledge into the kernel function. Note
that each kernel induces a kernel space. Incorporating prior
knowledge into a kernel is to reflect this prior knowledge in
its kernel space. In the small sample case, the negative sam-
ple should not be treated as a class that forms a cluster. In-
stead, what we can do is to push the negative samples away,
as far as possible, from the positive samples while keeping
the positive ones well clustered. This is also the motiva-
tion behind the Kernel based Biased Discriminant Analy-
sis (KBDA) [12]. We thus develop a criterion based on
the above thinking in the kernel space, through which such
prior knowledge of small sample is reflected therein. Given
a set of labelled samples collected through user feedback,
the kernel incorporating the prior knowledge is considered
as the one whose kernel space has this criterion maximized.
Once the labelled sample set is expanded with new feed-
backs, this criterion is maximized again over the new sam-
ple set, and the kernel is refreshed accordingly. Because
this criterion is differentiable, the maximization is accom-
plished through a gradient-based search method, incurring
very little computational overhead to the real-time retrieval
process. To our best knowledge, few papers have addressed
incorporating prior knowledge from image retrieval to boost
the retrieval performance by SVMs1.

Compared with the existing reported ones, this approach
has the following advantages: (1) It is simple and effi-
cient. It improves the retrieval performance of SVM and
needs the minimum modification. It does not involve com-
bination with other methods or collection of more labelled
data, which may increase the computation load or incon-
venience to users. Furthermore, since the retrieval perfor-
mance of SVM is improved, a better result can be expected
when it is combined with other techniques or when more

1Our recent paper [11] has discussed this problem but the approach is
not based on kernel design.

data are available; (2) This approach can be conveniently
realized. As shown in the experiments later, a commonly
used Gaussian RBF kernel is converted to the one incorpo-
rating the prior knowledge by simply tuning its parameter
according to the proposed criterion; (3) Kernel parameter
optimization of SVMs is seldom considered in practical re-
trieval although it is very important. This is because im-
age retrieval requires quick response while the commonly
used techniques such as leave-one-out cross-validation [3]
are often time-consuming, and cannot be used to dynami-
cally optimize the kernel parameters in real time. This ap-
proach solves this problem. By incorporating prior knowl-
edge, it can even achieve better performance than the SVM
using a kernel whose parameter is optimized by cross-
validation. Moreover, this approach incurs very little com-
putational overhead and does not significantly affect the re-
trieval speed; (4) This approach leads to an open framework
for incorporating the retrieval prior knowledge into kernel-
based classifiers. It provides better scope to boost the per-
formance of image retrieval. (5) This approach is also a
contribution to the method of KBDA. It can be shown that,
by using the kernel designed with the proposed approach,
KBDA can achieve its best possible retrieval performance.
That is, this approach solves the kernel selection problem in
KBDA. It will be seen in the experiments later that, with this
designed kernel, SVM and KBDA show high retrieval per-
formance among the compared methods. However, SVM
with this kernel has the advantage in that it achieves this
good performance readily rather than specially developing a
new algorithm. Furthermore, SVMs have been widely used
and have shown many elegant properties. These advantages
are preserved by using the proposed approach. Experimen-
tal results of retrieval on two benchmark image databases
demonstrate the effectiveness of the proposed approach.

2. Support Vector Machines and The Kernel

Let D be a training data set and D = {(x, y)} ∈
(Rn × Y)|D|, where R

n denotes an n-dimensional feature
space, Y = {±1} denotes the label set of x, and |D| is the
size of D. Given D, SVM finds an optimal separating hy-
perplane which classifies the two classes by the minimum
expected test error. Let 〈w∗,x〉+ b∗ = 0 denote this hyper-
plane, where w∗ and b∗ are normal vector and bias, respec-
tively. w∗ and b∗ can be found by minimizing

Φ(w) = 1
2‖w‖2 + C

∑|D|
i=1 ξp

i

subject to : yi (〈w,xi〉 + b) ≥ 1 − ξi, i = 1, · · · , |D|
(1)

where ξi (ξi ≥ 0) is the i-th slack variable and C is the
regularization parameter controlling the trade-off between
function complexity and training error. p = 1 or 2 cor-
responds to the case of L1 or L2-norm based soft margin,
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respectively. The solution can be given as{
w∗ =

∑|D|
i=1 αiyixi

b∗ = 1 − 〈w∗,xs〉 (2)

where αi is a non-negative coefficient of xi, and xs denotes
a support vector. In this way, the optimal separating hyper-
plane can be expressed as

〈w∗,x〉 + b∗ =
|D|∑
i=1

αiyi〈xi,x〉 + b∗ = 0 (3)

In the classification stage, f(x) = 〈w∗,x〉 + b∗ is used
as the decision function, and a test sample is labelled as
sgn [f(x)], where sgn(·) denotes the sign function. The
kernel trick can be conveniently embedded into SVMs to
handle the linearly nonseparable patterns. A kernel, k, is
defined to be k(x,y) = 〈φ(x), φ(y)〉, where φ(·) is the
associated mapping from a feature space, R

n, to a kernel
space, F . This mapping is often nonlinear, and the dimen-
sionality of F can be of high or even infinite dimensions.
The linearly nonseparable patterns in R

n can become lin-
early separable in F with high probability. Hence, the op-
timal separating hyperplane is sought in F instead of R

n,
and it is

f(x) =
|D|∑
i=1

αiyi〈φ(xi), φ(x)〉+b∗ =
|D|∑
i=1

αiyik(xi,x)+b∗

(4)
The commonly used kernel functions consist of Gaussian
RBF kernel, polynomial kernel, and sigmoid kernel.

3. Incorporating Prior Knowledge in Kernel
Design for Image Retrieval

3.1. The basic idea

Image retrieval with relevance feedback is known to suf-
fer from the small sample problem. Treating it as a prior
knowledge, we know that the positive images should be
clustered while the negative images should be pushed away
from the positive ones. We explore to incorporate this in-
formation into a retrieval algorithm to improve its perfor-
mance. With no exception, this also applies to the design
of an SVM classifier for image retrieval. Better is that
SVMs really provides a basis to conveniently accommodate
the prior knowledge of a learning task, that is, the kernel
function (or kernel matrix in general). Kernel is the soul of
SVMs. Based on the same training data set, very different
classification results can be obtained by simply changing
the employed kernel function or its parameters. As men-
tioned in Section 2, SVMs learn classification rules solely
based on training samples and the kernel, k. It will result in

poor performance if training samples are insufficient. How-
ever, the situation can be remedied by using a well-designed
kernel. The proposed approach can be extended as a general
framework, and other prior knowledge and domain theories
can also be incorporated once suitable criteria are found
to represent them. The following presents a novel way of
incorporating the prior knowledge of the small sample in
SVM-based image retrieval.

3.2. The proposed approach

Figure 1 illustrates the idea we discussed above. The
knowledge of the small sample problem is reflected in a ker-
nel space by requiring that the positive samples be tightly
clustered while the negative samples be pushed far away
from the positive ones. We design a criterion in the kernel
space to measure whether this requirement is well met.

Figure 1. This figure shows how the positive
samples and negative samples should be dis-
tributed in the kernel space. The center clus-
ter represents the positive class, and the four
surrounding clusters represent the negative
class

Let xi (xi ∈ R
d) denote a d-dimensional visual fea-

ture vector of an image i (similarly, xj for an image j),
where R

d denotes the visual feature space. kθ(xi,xj) =
〈φ(xi), φ(xj)〉 denotes the employed kernel function,
where 〈·, ·〉 is the dot product, φ(·) represents the associ-
ated mapping, and θ is the kernel parameter set. K denotes
the kernel matrix and {K}i,j = kθ(xi,xj). Let A and
B be two data sets, and KA,B is the kernel matrix where
{KA,B}i,j = kθ(xi,xj) with the constraints of xi ∈ A
and xj ∈ B.

Let’s define a criterion in the kernel space, F , to design
a kernel incorporating the prior knowledge. Sφ

np and Sφ
p are

two scatter matrices in F . Sφ
np describes the scatter of nega-

tive image samples with respect to the mean of the positive
ones while Sφ

p describes the scatter of positive ones with
respect to this mean.

Sφ
np =

∑
xi∈Dn

[
φ(xi) − mφ

p

] [
φ(xi) − mφ

p

]�
Sφ

p =
∑

xj∈Dp

[
φ(xj) − mφ

p

] [
φ(xj) − mφ

p

]�
(5)

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 



where Dp and Dn denote the sets of the labelled positive
and negative image samples, respectively. mφ

p denotes the
mean vector of the labelled positive samples in F . Since
the high dimensionality of F often makes both Sφ

np and Sφ
p

singular, their determinants cannot be used here. Hence, the
proposed criterion is developed based on the traces of Sφ

np

and Sφ
p instead. Let Sum(·) denote the summation of all

elements in a matrix therein. The traces are derived as

tr(Sφ
np)

= tr
��

xi∈Dn
(φ(xi) − mφ

p )(φ(xi) − mφ
p )�

�

=
�

xi∈Dn

�
φ(xi)

�φ(xi) − 2φ(xi)
�mφ

p + mφ
p
�
mφ

p

�

=
�

xi∈Dn
kθ(xi,xi) − 2

|Dp|Sum(KDn,Dp)

+ |Dn|
|Dp|2 Sum(KDp,Dp)

(6)

tr(Sφ
p )

= tr
��

xi∈Dp
(φ(xi) − mφ

p )(φ(xi) − mφ
p )�

�

=
�

xi∈Dp

�
φ(xi)

�φ(xi) − 2φ(xi)
�mφ

p + mφ
p
�
mφ

p

�

=
�

xi∈Dp
kθ(xi,xi) − 1

|Dp|Sum(KDp,Dp)

(7)
The criterion is then defined as

J (k, θ) =
tr(Sφ

np)

tr(Sφ
p )

(8)

It measures the ratio of the scatter of negative images to
that of positive ones. This criterion is used in this paper to
reflect whether the positive images have been well clustered
and the negative ones have been pushed away from the pos-
itive ones as far as possible in F . The optimal kernel func-
tion, k∗, or the optimal parameter set, θ∗, for a pre-selected
kernel function can be expressed as

(k∗,θ∗) = arg max
k∈K,θ∈Θ

[
tr(Sφ

np)

tr(Sφ
p )

]
(9)

where K denotes the set of possible kernel functions while
Θ denotes the parameter space for a pre-selected kernel
function. The SVMs with L2-norm based soft margin is
used. This helps the criterion J avoiding the numerical in-
stability in maximization.

The computational load of kernel design should not be
heavy because image retrieval task requires quick response.
For a given kernel function, the criterion J has continuous
first and second derivatives with respect to the kernel para-
meters as long as the employed kernel function has. The
maximization of J (or the minimization of −J ) is solved
by applying a nonlinear optimization technique. The BFGS
Quasi-Newton method [4] is often favored because of its
less number of iterations for convergence. The computa-
tional load in each iteration is largely due to evaluating J ,
which involves calculating KDp,Dp

and KDn,Dp
, and the

complexity is O(max{|Dp|2, |Dp| · |Dn|}) for a given vi-
sual feature vector. In image retrieval, both |Dp| and |Dn|

often remain small even after several rounds of feedback.
In addition, they are independent of the number of images
searched. Hence, it can be expected that the optimization
procedure will not take much time, and it will not signifi-
cantly slow down the response required. This can be seen
from the experimental results later.

Finally, the retrieval procedure is briefly described as fol-
lows. At the beginning, an initial retrieval result is obtained
based on a query given by a user, for example, through the
simple Euclidean search around this query. Afterwards, the
labelled image samples are collected via relevance feed-
back. After each round of feedback, treating the labelled
samples as training data, maximize the criterion J to carry
out kernel design, and then perform retrieval by the SVM
with the dynamically designed kernel. Those images hav-
ing the larger positive decision values are retrieved as posi-
tive images. It is expected that this knowledge-based kernel
helps SVMs achieving improved retrieval performance.

4. Experimental Results

4.1. Image databases and visual features

In this experiment, two benchmark image databases are
used. One is selected from a subset of 20, 000 Corel Stock
Photos. This selection removes the image classes with very
abstract concepts like “Thailand” or “Autumn” because they
cannot be learned by the retrieval algorithms at the present
stage. After this selection, a database including 4,800 gen-
eral color images is constructed. These images form 48
classes, and each class has 100 image samples. The ground
truth is based on the labels of CDs by Corel. Even with
generally agreeable semantics, these image categories still
exhibit sufficient intra-class variations and inter-class over-
lap in the visual feature space. A perceptually uniform color
space, CIE−Lab, is used, and a feature vector of color mo-
ments is defined for each image [6]. It consists of the mean,
variance, and skewness of the pixel values in an image along
L, a, and b axes, respectively. The other database is selected
from the aerial photo image database provided by the Vi-
sion Research Lab of UCSB [1]. The original database in-
cludes 40 large aerial photos. Each of them is divided into
128 × 128 sub-images and 40 image classes are formed. In
this experiment, 100 sub-images are taken from each class
and a database of 4,000 images is constructed. The Gabor
based texture feature described in [1] is used as the visual
feature for retrieval here. The two pre-defined image data-
bases are the ground truth for performance evaluation. The
commonly used Recall is used to measure the performance
against the rounds of feedback. Recall of top k for the r-th
round is the percentage of true positive images retrieved so
far among the total positive ones in an image database when
the top k images are retrieved at the r-th round.
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4.2. Experimental setting and procedure

In the experiment, the commonly used Gaussian RBF
kernel is optimized to incorporate the prior knowledge of
small sample. Gaussian RBF kernel is defined as k(x,y) =
exp

(
−‖x−y‖2

2σ2

)
, where σ is the Gaussian width. The in-

corporation is achieved through optimizing its parameter, σ,
by maximizing the proposed criterion, J . Thus, the prob-
lem of kernel design is now simplified to the one of find-
ing an optimal kernel parameter. The proposed approach,
called SVM with the designed kernel, is compared with
the following five retrieval methods: (1) SVM with LOO.
There, in each round of relevance feedback, a brutal search
of σ on the training data set is performed through Leave-
One-Out (LOO) cross validation technique. The σ corre-
sponding to the minimum LOO test error is selected and
used in the Gaussian RBF kernel to train an SVM classifier
for retrieval; (2) Kernel based Biased Discriminant Analy-
sis (KBDA) [12] with the designed kernel; (3) SVM active
learning [9] with LOO; (4) Query refinement with Euclid-
ean search, in which the mean of labelled positive samples
is taken as the query; (5) Euclidean search around the ini-
tial query only. The commonly used “Query by example”
retrieval model is adopted, and the initial retrieval result is
obtained by an Euclidean search around the given query ex-
ample. In each round of relevance feedback, the top twenty
retrieved images are labelled and excluded from the data-
base for the next retrieval. Five feedbacks are performed in
total. To achieve robust statistics, these methods will not be
used until at least five positive and five negative image sam-
ples are labelled. In this place, the Euclidean search around
the initial query is used instead. The BFGS Quasi-Newton
method is used to find the σ for the designed kernel. The
initial value of σ is set to σ0 = 1.0, and the stopping crite-
rion is |J(σi+1) − J(σi)| ≤ 10−6J(σi).

The procedure of the experiment is described as follows.
(1) Treat the i-th image class as the positive and the remain-
ing as the negative; (2) Select a sample from the positive
class as a query to launch retrieval, and perform the Euclid-
ean search; (3) Sort the images in the database according to
the corresponding similarity distances; (4) According to the
ground truth, label the top twenty images to simulate user
feedback. After that, these labelled images are added into
the current training data set and removed from the database
for the next retrieval; (5) Based on the available training
data, use the proposed method to find the optimal σ w.r.t.
the criterion J . Also, run the LOO cross validation to find
the σ corresponding to the minimum LOO test error; (6)
Perform all the compared methods, and evaluate retrieval
performance; (7) Redo steps 3 to 6 five times to simu-
late five user feedbacks; (8) To accumulate statistics, redo
steps 2 to 7 thirty times. The obtained retrieval performance
and the criterion values are averaged, respectively; (9) Redo

steps 1 to 8 for each image class in the database, and the ob-
tained retrieval performance is averaged.

4.3. Results and discussions

Figure 2(a) - (c) show the Recall of top 20, 50 and 100
against the rounds of feedback, respectively. The Corel
photo image database is used. It can be seen that SVM with
the designed kernel achieves the performance comparable
to that obtained by a brutal search of σ at the first 1 to 2
rounds of feedback, and increasingly outperforms the latter
with more rounds of feedback. This result shows the better
performance of the proposed method. As the designed ker-
nel incorporates prior knowledge, which directs the map-
ping into the kernel space where the negative image sam-
ples are pushed far away from the positive ones, it gives
rise to the performance better than the best one obtainable
via a brutal search of σ on the training data, which does not
include prior knowledge of how the two classes should be
separated and treats them equally as default.

Figure 2(d) and (e) plot the retrieval time. A Linux sys-
tem with Pentium Xeon 2.8GHz and 2G memory is used.
Compared with the time taken by the retrieval process, the
time taken by the process of kernel design is insignificant.
In contrast, if a brutal search of σ is performed, the time
used can be longer than the time taken by the retrieval
process by hundreds of times. Such a long search time
confirms the unsuitability of the brutal search approach for
practical SVM-based image retrieval. Moreover, the time
taken by the kernel design process is mainly affected by the
number of labelled image samples rather than the size of
the pool of images. Hence, even if a larger pool of images
is used, it can be expected that this time still holds.

Figure 3 plots the experimental results on the aerial
photo image database. As shown in the sub-figures (a) -
(c), the SVM with the designed kernel achieves better per-
formance than a brutal search against σ at more rounds of
feedback. The sub-figures (d) and (e) illustrates the retrieval
time. Again, it is confirmed that the time taken by the pro-
posed method for parameter optimization is much less than
that taken by the SVM retrieval process while the time taken
by a brutal search based optimization is still much longer.

Beside these, the proposed method is also compared with
another four retrieval methods, namely, KBDA, SVM ac-
tive learning, Query refinement with Euclidean search, and
Euclidean search only. The original KBDA method also
lacks a method to choose the kernel parameters, which
again can be solved by our proposed method. Thus, in the
experiment, the σ optimized by our proposed method is also
used in KBDA (We will show that the σ obtained through
this approach can help KBDA attaining the best possible re-
trieval performance in Figure 6 and present more discussion
on it later). All the methods take the same retrieval proce-
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Figure 2. Retrieval performance and retrieval time (Corel photo image database)
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Figure 3. Retrieval performance and the retrieval time (Aerial photo image database)

dure as described in Section 4.2. For SVM active learning,
a leave-one-out cross validation for the optimal σ is also
carried out to get its best possible performance for compar-
ison. Note that σ cannot be well tuned like this in practice
because this procedure is very time-consuming. Instead, it
is often heuristically or empirically set. All the six retrieval

methods are compared and the retrieval Recall of top 20,
50 and 100 against 4 rounds of feedback are plotted in Fig-
ure 4 for the Corel photo image database and in Figure 5
for the aerial photo image database. Here, from each class,
ten images are randomly selected one by one to launch ten
retrieval sessions. The retrieval performance values are av-
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eraged over all these sessions. It can be seen that the de-
signed kernel makes SVM and KBDA leading among all
the methods for the Corel image database. In aerial photo
image database, SVM with the designed kernel leads all the
others, while the performance of KBDA with the designed
kernel is slightly worse than SVM with LOO optimization.
A browse through the aerial database shows very large over-
lapping between different classes, which may explain the
overall lower retrieval performance on the aerial database
and the different ordering of the performance of these meth-
ods on this database.

It is also observed that SVM active learning does not
show any advantage in both databases over SVMs, at least
in the top four rounds of feedback. As discussed in [9],
in order to ensure effective SVM active learning, instead
of performing Euclidean search, the user is asked to label
twenty images randomly sampled from the database to ex-
pand the training set. In our experiment, the most common
retrieval setting is used, in which Euclidean search is ap-
plied at the initial retrieval. As expected, SVM active learn-
ing cannot produce good performance.

As mentioned earlier, our method can also be used in
kernel parameter optimization for KBDA. Through the ker-
nel trick, KBDA maps the training samples from a feature
space to a kernel space. Afterwards, it finds an optimal lin-
ear projection from this kernel space to a lower-dimensional
subspace such that the positive images are well separated
from the negative ones therein. However, it cannot find the
optimal kernel parameters itself. We compare the retrieval
performance using our proposed criterion with that using
a brutal search against possible values of σ. As shown in
Figure 6, our method achieves the performance compara-
ble to the best one obtainable by a brutal search against σ,
on both Corel photo image database and aerial photo image
database.

In summary, the above experimental results demonstrate
the effectiveness of the designed kernel and the excellent
retrieval performance of the SVM with it. The procedure
of kernel parameter optimization incurs a small fractional
computational overhead, and it does not significantly in-
crease the response time. Compared with the well-tuned
SVM-based retrieval methods, the SVM with the designed
kernel achieves better or at least comparable retrieval per-
formance, especially as the number of feedback increases.

5. Conclusion

This work aims to improve the retrieval performance of
SVMs by incorporating retrieval prior knowledge into the
employed kernel, and a criterion is developed to achieve
this. This criterion measures the goodness of a kernel space,
and the optimal kernel is obtained by maximizing this crite-
rion. The best kernel space is judged to be one that tightly

clusters the positive images and pushes away the negative
images from the positive ones therein. The computational
load incurred by kernel design is light and the fast response
requirement in image retrieval is maintained. Experimen-
tal results on two benchmark image databases demonstrate
the effectiveness of the proposed criterion in optimizing the
kernel parameters. The comparison with the state-of-the-
art retrieval methods shows the advantage of our proposed
approach.

6. Acknowledgements

This work is partially supported by the grants LIT 2002-
4 of A-STAR and RGM 14/02 of NTU, Singapore.

References

[1] http://vision.ece.ucsb.edu/datasets/.
[2] G. Guo, A. K. Jain, W.-Y. Ma, and H. Zhang. Learn-

ing similarity measure for natural image retrieval with rel-
evance feedback. IEEE Transactions on Neural Networks,
13(4):811–820, 2002.

[3] S. Haykin. Neural Networks A Comprehensive Foundation
(Second Edition). Prentice Hall International, Inc, 1999.

[4] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipes in C: The Art of Scientific Com-
puting. Cambridge University Press, 1988.

[5] B. Schölkopf, P. Simard, A. Smola, and V. Vapnik. Prior
knowledge in support vector kernels. Proceedings of the
1997 conference on Advances in neural information process-
ing systems 10, Denver, 1997.

[6] M. Stricker and M. Orengo. Similarity of color images. Pro-
ceedings of SPIE Storage and Retrieval for Image and Video
Databases, 2420:381–392, 1995.

[7] D. Tao and X. Tang. Random sampling based SVM for
relevance feedback image retrieval. Proceedings of IEEE
International Conference on Computer Visiona and Pattern
Recognition (CVPR), 2:647–652, 2004.

[8] Q. Tian, P. Hong, and T. S. Huang. Update Relevant Image
Weights for Content-Based Image Retrieval using Support
Vector Machines. IEEE International Conference on Multi-
media and Expo (II), pages 1199–1202, 2000.

[9] S. Tong and E. Chang. Support Vector Machine Active
Learning for Image Retrieval. Proceedings of ACM Interna-
tional Conference on Multimedia, pages 107–118, Ottawa,
Canada, Oct, 2001.

[10] L. Wang, K. L. Chan, and Z. Zhang. Bootstrapping SVM Ac-
tive Learning by Incorporating Unlabelled Images for Image
Retrieval. Proceedings of IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2003.

[11] L. Wang, P. Xue, and K. L. Chan. Incorporating Prior Knowl-
edge into SVM for Image Retrieval. Proceedings of Interna-
tional Conference on Pattern Recognition (ICPR), UK, 2004.

[12] X. S. Zhou and T. S. Huang. Small Sample Learning during
Multimedia Retrieval using BiasMap. Proceedings of IEEE
International Conference on Computer Visiona and Pattern
Recognition (CVPR), Hawaii, Dec, 2001.

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 



1 2 3 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Round of relevance feedback

R
et

rie
va

l r
ec

al
l o

f t
op

 2
0

SVM with the designed kernel
KBDA with the designed kernel
SVM with LOO
SVM active learning with LOO
Query refinement with EU
Euclidean search

1 2 3 4
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Round of relevance feedback

R
et

rie
va

l r
ec

al
l o

f t
op

 5
0

SVM with the designed kernel
KBDA with the designed kernel
SVM with LOO
SVM active learning with LOO
Query refinement with EU
Euclidean search

1 2 3 4
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Round of relevance feedback

R
et

rie
va

l r
ec

al
l o

f t
op

 1
00

SVM with the designed kernel
KBDA with the designed kernel
SVM with LOO
SVM active learning with LOO
Query refinement with EU
Euclidean search

(a) (Recall of top 20) (b) (Recall of top 50) (c) (Recall of top 100)

Figure 4. Comparison of six retrieval methods (Corel photo image database)
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Figure 5. Comparison of six retrieval methods (Aerial photo image database)
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Figure 6. Retrieval performance by KBDA using the designed kernel ( 1st row: Corel image database;
2nd row: Aerial photo image database)
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