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Outline

Overview / Introduction:
= Why audio-visual speech in human-computer interaction.

= Audio-visual speech technologies.
= Potential applications.

Audio-visual speech components with emphasis on ASR:

= Visual feature representation for speech applications.
= Audio-visual combination (fusion).

Other audio-visual speech technologies:
- Speech enhancement.

- Speaker recognition.
- Speech detection.
- Speech synthesis.

Summary & Conclusions.
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Audio-visual HCI — Motivation

OVERVIEW / INTRO

= Human-computer interaction (HCI):
= Today: Part of everyday life, but far from natural!
= Future: Pervasive and ubiquitous computing.

= Next generation HCI = perceptual intelligence:
= What is the environment?
= Who is in the environment?
= Who is speaking? \'
= What is being said? =
= What is the state of the speaker?
= How can the computer speak back?

= How can the activity be summarized, indexed,
and retrieved?

Desktop

Telephony Pervasive

——

Today Future

= Operation on basis of traditional audio-only
information:
= Lacks robustness to noise.

= Lags human performance significantly, even in
ideal environments.

= Joint audio + visual processing can help
bridge the usability gap!

3 AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation



1
1
[
A
"

IBM Research — Human Language Technologies OVERVIEW / INTRO

Audio-Visual Speech — Motivation )
VELUM. CaviTY /

= Human speech production is bimodal: =)
= Mouth cavity is part of vocal tract. 4 A

VOCAL gf_.‘

= Lips, teeth, tongue, chin, and lower face muscles play conps ™
part in speech production and are visible. aRonck
= Various parts of the vocal tract play different role in the —
production of the basic speech units. E.g., lips for e

bilabial phone set B=/p/,/b/,/m/.

T G}

= Human speech perception is bimodal: wsf&

= We Iip-read in noisy environments to improve Schematic representation of speech prodgction
(J.L. Flanagan, Speech Analysis, Synthesis, and

mtelllglblllty- Perception, 2" ed., Springer-Verlag, New York, 1972.)

E.g., human speech perception experiment by
Summerfield (1979): Noisy recognition at low SNR.

= We integrate audio and visual stimuli, as demonstrated i
by the ( ).
Audio /ba/ + Visual /ga/ > AV /da/ _-
= Hearing impaired people lip-read.
R
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Audio-Visual Speech Motivation — Cont.

= Audio and visual speech observations are correlated:
Thus, for example, one can recover part of the one channel
from using information from the other.

= Although the visual speech information is less than audio ...

= Phonemes: Distinct speech units that convey linguistic
information; about 47 in English.

= Visemes: Visually distinguishable classes of phonemes: 6-20.

= ... the visual channel provides important complementary
information to audio:
= Consonant confusions in audio are due to same manner of
articulation, in visual due to same place of articulation.
=  Thus, e.qg., /t/,/p/ confusions drop by 76%, /n/,/m/ by 66%,
compared to audio (Potamianos et al., ‘01).

OVERVIEW / INTRO

AUDIO-VISUAL SPEECH PR [
FEATURE CORRELATION. -~
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Place of articulation Manner of articulation

G : Glottal ‘h/ AP : Approximant /¥, w,y/

V o Velar e k/ LA: Lateral {1/

P : Palatal Iy! N = Nasal fmyn/

PA : Palatoalveolar /r, d3, [, ¢f,3/ || PL: Plosive Ibhdgkpt/

A Alveolar fdyLm, s, t, 2/ F : Fricative Il'.,h,s,v,z,ﬂ,b,_[,;f
D :Dental 0o/ AF: Affricate {tf, dz/

1. :Labiodental v/

LV : Labial Velar /w/

B : Bilabial by p/

@ WG BA A B LB BV B
Correlation between original and estimated
features; upper. visual from audio; /ower:
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Audio-Visual Speech Technologies

ul
i

All major speech technologies can benefit from the visual modality:

= Automatic speech recognition (ASR).

Audio input  Acoustic features

Audio-Only
ASR

— SPOKEN TEXT

Audio-Visual
ASR

Visual input
= Automatic speaker

Authenticate
or recognize
speaker

Visual (labial) Face
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Audio-Visual Speech Technologies — Cont.

= Speaker localization / speech activity
detection / speech separation.

= Speech synthesis:

Video Video Video Video Video
[ B | frame E MW framec W W W frame [ W W | frame L N ] frame W |
7 S 53 56
. i ic Lartice Lattice Lattice
Sample based nry ntry niry
" 2.2 312 302 2.3-2 321

Candidates

| Audio-visual synchrony and tracking |
(Nock, lyengar, and Neti, 2000).

Viterbi search for best mouth sequence
(Cosatto, Potamianos, and Graf, 2000).

_ Least expensive 4
Transition  path after Viterbi
costs optimization

© 2006 IBM Corporation
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Examples of potential application areas of AV work at IBM

= Specially designed audio-visual ASR headset:
— Call centers, trading floors, etc.

= Audio-visual helmet for ASR.
— Motorcycles.

= Visual speech activity detection.
— Automobiles

[ when is the driver addressing the navigation system? |

AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation
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Techniques for Audio-Visual Speech Processing

= All above technologies share two main components:

= Visual processing / representation.
= Audio-visual fusion.

= In the following, we discuss these two components as relevant to
audio-visual ASR (AVASR). In particular, we concentrate on:

= Visual processing:
v Face / facial feature detection.
v Feature extraction.
v" Lip-reading results.

= Audio-visual integration:
v Feature fusion.
v" Decision fusion.
v Results.

9 AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation
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Face Detection — Algorithms

We follow a statistical, appearance based face detection approach:

= 2-class classification (into faces / non-faces).

=  “Face template” (e.g., 11x11 pixel rectangle) ordered into vectors X.

= Atrainable scheme “scores”/classifies x into the 2 classes.

= Pyramidal search (over locations, scales, orientations) provides face candidates x.

= Can speed-up search by using skin-tone (based on color information on the R,G,B or
transformed space), or location/scale (in the case of a video sequence).

Training / scoring (for face “vector” x):

Fisher discriminant detector (LDA):
= One-dimensional projection of 121-
dimensional vector x: yg =P, 15 X end’

Distance from face space (DFFS).
= Obtain PCA of training set. _
= Projected vectors y = P4,,,; x have DFFS: ratlo

DFFS=| x-yP'|

Gaussian mixture classifier (GMM):
= VectoryisaPCAorDCTy=Px.

= Two GMMs model face/non-face: Pr(y|c) = ijlwk N(ym, s, ), c e{f,?}

AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation
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Face Detection — Results

= Results on 4 in-house IBM databases, recorded in:
- Uniform background, lighting, pose.
- Varying background and lighting.
m Extreme lighting and head

pose change.
= Face detection accuracy:
III”I

n Digitized broadcast
videos, varying head-pose, background,
lighting.

i =] B

Ay py ’
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Faces - Facial Features - Region of Interest

From faces to facial features (eyes, mouth, etc):
= Similar to face detection. Score individual facial feature
templates by LDA, DFFS, GMMs, etc.

/F Facial-feature

j extraction

\ \J performance

T Lip|

Hairline
K. Eye
LEye

K Mose

R Mostrl

L Nostril |
L Mose
hlouth

L .Mouth
T.OLip
L. Lip

Features

Reqgion-of-interest (ROI):
= Assumed to contain “all” visual speech information.
= Typically, a rectangle containing mouth + lower face.

= Appropriately normalized. T
PProp y AUTOMOBILE
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Region-of-Interest = Visual Features

Three types of / approaches to feature
extraction:

Video pixel (appearance) based features:
i Lip contours do not capture oral
cavity information!
- Use compressed representation of
mouth ROI instead. ]
" E.g.: DCT, PCA, DWT, whole ROI. =

FEATLFEE [| M D |
B B [ B
] L i A -

Lip- and face-contour (shape) based:
3 Height, width, area of mouth.
3 Moments, Fourier descriptors.
i Mouth template parameters.

] E E] a = ] ]
MrME T ]

Joint shape and appearance features:
3 Active appearance models.

AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation
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Visual Features — The IBM System

Appearance based approach.

= Static features: 100-dimensional compressed representation of 64 x 64
monochrome ROI using DCT [ we’'ll revisit how to select such features later].

= Post-processing: Intra-frame + inter frame LDA/MLLT for better within and across
frame discrimination and statistical modeling; FMN and up-sampling.

= Final features: 41-dimensional at 100 Hz.

Visual front end processing — system diagram:

[

\_

LROl EXTRACTION — / \
N PROCESSING AT 60 Hz

4096 A- L5

1.. 4006 1 1...100 1...30 y’ 1
1 INTER- FEATURE 1 1 m 1 N | Bwa
DCT :’I-’POLATION _’I MEAN . :4: . d=30
: FROM 60 1 > NORMALI- 'I' |k : Id
100: 100 10 100 HZ 10 ZATION 100 30 U30 30
E

[o]
FEATURE
POST-PROCESSING
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Visual Features — Shape Based Approach

Shape based features represent speech information using lip contour information,
Require “expensive” lip-tracking algorithms, applied within the ROI, using:
= Snakes (Kass et al., 1988):

Elastic curve defined by control points.
= Deformable templates (Yuille et al., 1989):

Geometric model. Typically two or more parabolas are used.
= Active shape models (Cootes, Taylor, Cooper, Graham, 1995):

A PCA model of lip contour point coordinates is obtained.

hdode: 7

ASM modes trained on IBM data

B = ASM based tracking

= Active appearance models (AAMs- Cootes et al.,’00):

. . . Mode: B Step: 0
In addition to shape, it also builds

(credit- 1. MattheWé) AAM modes trained on IBM data

AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation



IBM Research — Human Language Technologies AV COMP. — VISUAL PROCESS

Visual-Only ASR Results — Feature Comparisons

= Comparisons are based on single-subject, connected-digit ASR experiments.

= Comparisons of various

" Appearance- are better than appearance-based features:

shape-based features:

100
Outerlip %, Word |y contour %, Word 95}
features accuracy features accuracy
h,w 5.8 Outer-only 73.4 o oo
+a 61.9 Inner-only 64.0 g
+p 64.7 2 contours 839 5 ss
[}
Q
+FD, . 73.4 <
S sof
Feature %, Word =
type accuracy el
Lip-contour based 83.9
Appearance (LDA) 97.0 T4 8 8 10 12 14 16 18 20

Number of static features [ J]

16 AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation



IBM Research — Human Language Technologies AV COMP. — VISUAL PROCESS

Visual-Only ASR Results — Video Degradation Effects

= Frame rate decimation: Limit of acceptable = Video noise: Robustness to noise only in
video rate for automatic speechreading is 15 Hz. a matched training/testing scenario.
100 100
90 1
90
80 b
80
g 70 b g
> > 70b
g 60 | g
3 50 1 B eof
Q O
< <
g 40 1 & so :
o o }
2 30 13 , ATCHED ~SNR=30dB
401 ! TRAINING-TESTING | :
20 1 *
] 30l J . .  MISMATCHED |
10F 4 , TRAINING-TESTING
0 : ‘ : : : 20 ‘ : S ‘ ‘ : : ‘
10 20 30 40 50 60 10 20 30 40 50 60 70 80 90 100 =
FIELD RATE [Hz] SNR [dB] SNR =10 dB

= Challenging visual domains: Face detection accuracy decreases -> Word error rate increases.

’!,

© 2006 IBM Corporation
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Visual DCT feature selection schemes

Recall: Appearance visual features, based on extracted 64 x 64 DCT coeffs.
Issue: How to select the appropriate number of visual features?

Appoaches:

— Energy based: Select high energy coefficients (baseline approach).

— LDA = high input dimensionality, stability problems.

— Variance - somewhat worse performance than energy based schemes.

— Mutual information (MI) = promising scheme, but computational problems.

Ml approach:
— Select DCT features x that maximize Ml wrt speech classes c.

1(c;x)=H(C)-H(C|x)=H(x)-H(x]|C)

1(X:C)=- [ p()10g(p()k + 3 p(e) [ p(xle)iog (plx|))ds

xX€eR xXeR

AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation



MI / energy values of 4096 DCT coefficients over training data:

10 20 30 40 50 60 10 20 30 40 50 60
Clearly, DCT coeffs. at odd columns have very low MlI, but still high energy



Typical Ml vs Energy feature selection “masks”:




AV COMP. - VISUAL PROCESS.

IBM Research — Human Language Technologies

= MI masks result to superior
ROI reconstruction.

= Based on 25 features:

Energy

Ml

© 2006 IBM Corporation
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DCT feat. selection — Cont.: Mutual Information vs. Energy (1V)

= Unfortunately, Ml approach produces better visual features only for low dimensions (< 30).
= Reason: Features are selected independently — due to computational issues.
= Visual only ASR results for connected digits task (studio data):

80 + temporal LDA/MLLT | 80 . + temporal derivatives |
n| \
\ \
\ \
o 1700
! A ] Energy based | A ] Energy based
\ selection selection

D
[e)
T

. 60,
\ Mutual information
‘ ¢~ based selection

. 50,

Mutual information
¢~ pased selection

a1
o
T

=N
o
T

. 40,

WORD ERROR RATE (WER), %

w
o
T

. 30,

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
NUMBER OF "STATIC" VISUAL FEATURES SELECTED
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Consider even-column DCT coeffs (this is where Ml is the highest)!

- Both even + odd DCT components used.

Subset of (a), with odd DCT components removed = more compact / no loss (?)
Same number of elements as in (a) = more information (?)
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Reconstruction
of ROI

AV COMP. — VISUAL PROCESS. ==
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Results for “STUDIO” digits ASR
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Audio-Visual Fusion for ASR

= Audio-visual ASR:

= Two observation streams. Audio, O, =[o, , € R, teT] Visual: O, =[o,, € R, teT]
= Streams assumed to be at same rate — e.g., 100 Hz. In our system,d , =60, d, =41.
= We aim at non-catastrophic fusion: WER(O ,,0,) <min[WER(O ,), WER(O,)]

= Main points in audio-visual fusion for ASR:
= Type of fusion:
v~ Combine audio and visual info at the feature level (feature fusion).
v~ Combine audio and visual classifier scores (decision fusion).
v" Could envision a combination of both approaches (hybrid fusion).
= Decision level combination:
v Early (frame, HMM state level).
v Intermediate integration (phone level — coupled, product HMMs).
v" Late integration (sentence level — discriminative model combination).
= Confidence estimation in decision fusion:
v" Fixed (global).
v Adaptive (local).
= Fusion algorithmic performance / experimental results.

AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation
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AVASR: Feature Fusion

= Feature fusion: Uses a single classifier (i.e.. of the same type as the audio-only and

visual-only classifiers — e.g., single-stream HMM) to model the concatenated audio-visual
features, or any transformation of them.

= Examples:
= Feature concatenation (also known as direct identification).

= Hierarchical discriminant features: LDA/MLLT on concatenated features (HILDA).

= Dominant and motor recording (transformation of one or both feature streams).

= Bimodal enhancement of audio features.

= HiLDA fusion advantages:
= Second LDA learns AUDIO - AV HILDA

audio-visual correlation. 24% 9

= Achieves discriminant
dimensionality reduction. VIDEO u

24 x 15

AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation
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AVASR: Feature Fusion Results

= Multiple subjects (50), connected-digits (STUDIO dataset).

- Additive babble noise .\ \_ — CONNECTED DIGITS TASK
is considered at ~Matched Training
various SNRs.

(o))
T
i

= Discriminant feature
fusion results in an
effective SNR gain
of 6 dB SNR.

ol
T

LB N\ AUDIO-ONLY

NN
T
i

w
T
i

= |s better than feature
concatenation.

WORD ERROR RATE (WER), %
N

=
T
|

SIGNAL-TO-NOISE RATIO (SNR), dB
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AVASR: Decision Fusion

= Decision fusion: Combines two separate classifiers (audio-, visual-only) to

provide a joint audio-visual score. Typical example is the multi-stream HMM.

= The multi-stream HMM (MS-HMM):
= Combination at the frame (HMM state) level.

= Class-conditional (c € C ) observation score:
Audio
0, (1)

_p ﬂAtcP Ay tie
SCOre(OAVt |C) r(OAt |C) r(Oth ) Pr(ﬂa (I)Iﬂ)

Ao ¢ State-Synchronous
h AV-MS-HMM
H Z sckN (Ost’ sc,k’ss,c,k) Pro, () ]e) (state cat )
se{d,V}| k=1 -
Video

= Equivalent to log-likelihood linear combination (product rule in classifier fusion).
= Exponents (weights) capture stream reliability: 0< 4, ., <1; Z oy

se{A,V}
= MSHMM parameters: 0=[0,,0,,A], where:

O _[(W Ck sck’ss,c,k)’ CEC’ k:]'""’KS.C]
A=[1,, ., ceCtel]

AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation
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AVASR: Decision Fusion — Cont.

Multi-stream HMM parameter estimation:

= Parameters[0,,0,] can be obtained by ML estimation using the EM algorithm.
Separate estimation (separate E,M steps at each modality):

0" =argmax, 0(6”,0,|0,), for se{4,/'}

Joint estimation (joint E step, M steps factor per modality):

0" =argmax, 0(6,”,08|0), for se{4,/'}

= Parameters A can be obtained discriminatively — discussed later.

= MS-HMM transition probabilities:
Scores are dominated by observation likelihoods.

Onecanset: a,, =a,, Or a,, = diag(a;a,/) :
where a =[Pr(c|c'), ¢,c'eC]

30 AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation
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AVASR: Decision Fusion Results

= Recall the connected- , | 3
digit ASR paradigm. TN N\ Matched Training

Separate Stream
- -\'T'r;alnlng """" :

(o)}
T

= MSHMM-based
decision fusion is
superior to feature
fusion.

6]
>
C
Y
9
O
Z
r
<

Joint
Training

N
T

= Joint model training is
superior to separate
stream training.

w
T

N
T

= Effective SNR gain:
7.5 dB SNR.

WORD ERROR RATE (WER), %

=
T

SIGNAL-TO-NOISE RATIO (SNR), dB
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AVASR: Asynchrony in Audio-Visual Integration

= So far, we have considered decision fusion with scores computed at each frame (HMM
state). This paradigm assumes state-synchrony of audio and visual observations.

= However:
v Audio and visual speech are asynchronous — voice onset time (VOT).

v Bregler et al. (1993) observe stream asynchrony of up to 120 ms (close to phone
duration).

v Grant and Greenberg (2001) observe that speech intelligibility does not suffer when
visual signal artificially proceeds audio by up to 200 ms.

= Therefore, exploring asynchrony in fusion is of interest.

= In ASR, sequences of classes (HMM states) need to be estimated. Thus, integration of
multiple classifiers (audio, visual, HILDA) does not need to occur at the state level.

= Instead, asynchronous integration is possible, by combining scores at the:

v~ Phone, syllable, or word level (intermediate integration). Allows limited, within-unit
asynchrony, whereas synchronization is forced at the unit boundaries.

v" Utterance level (late integration). Allows complete stream asynchrony, but in practice,
it requires a cascade-fusion implementation (non-real-time).

AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation




IBM Research — Human Language Technologies AV COMPONENTS — FUSION

AVASR: Intermediate Integration

= Intermediate integration combines stream scores at a coarser unit level than HMM states,
such as phones. This allows state-asynchrony within each phone.

= |Integration model is equivalent to the product HMM (Varga and Moore, 1990).

fa)

Product HMM has “composite” (audio-visual) states: ¢={c,, s€ S}, l.e, ce CH!
Thus, state space becomes larger, e.g., |C|x|C| for a 2-stream model.
Class-conditional observation probabilities can follow the MS-HMM paradigm, i.e.:

/’Ls,t,c
Score (OAV,t | c) = HseS Pr(os,t | Cs) '

If tied, the observation probabilities have same number of parameters as state-synchronous MS-HMM.
Transition probabilities may be more. Three possible models:

AUDID HMM ETATES

VISUAL HMM STATES

=/

COMPOQEITE HMM STATES

AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation
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AVASR: Intermediate Integration Results

= Recall the

34

connected-digit
ASR paradigm.

Product HMM
fusion is superior
to state-
synchronous
fusion.

Effective SNR
gain: 10 dB SNR.

WORD ERROR RATE (WER), %
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AVASR: Late Integration

= Late integration advantages:

v" Complete asynchrony between the stream observation sequences.

v No need for same data rate between the streams.

= General implementation:

v In cascade fashion, by rescoring of n-best sentence lists or lattice word-hypotheses.

v Thus, real-time implementation is not feasible.

= Typical example: Discriminative model combination (DMC).

35

v For each utterance, use audio to obtain n-best list: {hl,hz,---,hn}

v Force[ allrgn eac]h hypothesis phone sequence h, ={cl.,1,cl.,2,...,ci’Ni} per modality s
into: tl]sv i j.s

v" Then rescore:
Pr[h,] cc Pry, (h,)" Hsesl_[ | Pr(o,,,re[5, ] cl,)

v All weights are discriminatively trained to minimize WER in a held-out set.

AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation
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AVASR: Stream Reliability Modeling

We revisit the MS-HMM framework, to discuss weight (exponent) estimation.

Recall the MS-HMM observation score (assume 2 streams):

Score(OAV,t lc) = Pr(OA,t |C)/1A’t’c Pr(OV,t |C')/1V "

Stream exponents model reliability (information content) of each stream.

We can consider:

v Global weights: Assumes that audio and visual conditions do not change, thus
global stream weights properly model the reliability of each stream for all available
data. Allows for state-dependent weights.

ﬂ“s,c,t —_)ﬂ’s,c

v Adaptive weights at a local level (utterance or frame): Assumes that the
environment varies locally (more practical). Requires stream reliability estimation at
a local level, and mapping of such reliabilities to exponents.

ﬂ’s,c,tg)ﬂ’s,t — f(os,t" S E{A,V}, tle [t_twin’t+twin])'

36 AV speech — progress & challenges — NOV 06 © 2006 IBM Corporation
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AVASR: Global Stream Weighting

Stream weights cannot be obtained by maximum-likelihood estimation, as:

' 1, if s=argmax
*e 0, otherwise

se{A,V} Ls,c,F

where L, . - denotes the training set log-likelihood contribution due to the s-
modality, c-state (obtained by forced-alignment F).

Instead, one needs to discriminatively estimate the exponents:
Directly minimize WER on a held-out set — using brute force grid search.

Minimize a function of the misrecognition error by utilizing the generalized
probabilistic descent algorithm (GPD) , ,

Example of exponent convergence -

(GPD based estimation)

AV speech — progress & challenges — NOV 06
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AVASR: Adaptive Stream Weighting

= In practice, stream reliability varies locally, " | | |
due to audio and visual input degradations o b Eaaltiond: AndlyBalisiiiry Todieator I
(e.g., noise bursts, face tracking failures, etc.). gl = ® == NDispersion Andio Reliability Indicator i
- Adaptive weighting captures variations, by: | * ¢ Cptimal Audio Stream Exponent Ra(x10) Jr |
= Estimating environment reliabilities.
= Mapping them to stream exponents. 1 |
= Stream reliability indicators: 5 i
= Acoustic signal based: SNR, voicing index. A .
= Visual processing: Face tracking confidence. l |
= Classifier based stream reliability indicators:
+ Consider N-best most likely classes for & Q,_,G/E'/ i
observingo,,, ¢,,,€C, n =12,..N. 1. . _ & =@ =
+ N-best log-likelihood difference:

a0 ) 10 15 20

_ 1 log Pr(o,,|c,,1) SIGNAL-TO-NOISE RATIO (SNR), dB
" N_1n=2 Pr (Os,t |cs,t,n)
2 N XN Pr(o,,|c,,,
. N-best log-likelihood dispersion: D,,=——— > > log 0, 1610)

N(N_l) n=2 n'=n+l Pr (Os,t |cs,t,n')

Then estimate exponents as:

Ly=[L+exp (=) w d)T"
Weights w; are estimated using MCL or MCE on basis of frame error (Garg et al., 2003).
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AVASR: Summary of Fusion Results

Summary of AV-ASR results
for connected-digit recog.

70F > ... ... CONNECTED DIGITS TASK
: : Matched and Mismatched

= Multi-speaker training / test.
= 50 subjects, 10 hrs of data.

- Additive noise - many SNRs. < |

sor o o
= Two training/testing | \ |

scenarios;

S
3

L

=3

L : ‘ ‘ ‘

CoRwl N

— Matched (same noise &
@

O

0

@

a

@

O

=

in training and testing)

— Mismatched (trained in
clean, tested in noisy).

30

TN
20

= 10 dB effective SNR gain 10 T~ Ay SR N -
for both, using product AViynatcred 10dB

HMM. 0 0 5 10 1I5 20
SIGNAL-TO-NOISE RATIO (SNR), dB
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AVASR: Summary of Fusion Results — Cont.

Summary of AV-ASR results
for large-vocabulary
continuous speech
(LVCSR).

~ LVCSR TASK
- Matched Training

©
o
T

(0]
o
T

~
o
T

= Speaker-independent
training (239 subj.) testing
(25 subj.).

(o))
o
T

\AUDIO-ONLY

= 40 hrs of data. 50 -

= 10,400-word vocabulary.

= 3-gram LM. aor 1

= Additive noise at various 30- |
SNRs.

WORD ERROR RATE (WER), %

= Matched training/testing. @20} R L
. 30 _ AV-MS (AUFAV-HILDA) oy
= 8 dB effective SNR gain | |
using hybrid fusion. 0 . |

0 5 10 15 20
SIGNAL-TO-NOISE RATIO (SNR), dB
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AVASR Results — Cont.

AV COMPONENTS - FUSION

[
i

AV-ASR in challenging domains:

= Office and automobile environments (challenging) vs. studio data (ideal).
= Feature fusion hurts in challenging domains (clean audio).
= Relative improvements due to visual information diminish in challenging domains.

= Results reported in WER, %.
1

'/'4.|| l I|
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Additional Audio-Visual Speech Technologies

= So far, we have discussed the two main components of AV speech
processing, as applied to the problem of audio-visual ASR.

= These components are shared & are relevant to a number of audio-visual
speech processing applications, as discussed in the Introduction.

= We briefly discuss a few of them:

— Speech enhancement.

— Speaker identification / verification.

— Speech activity detection — visual only is discussed.
— Speech synthesis.
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Audio-Visual Speech Enhancement — Brief Overview

=  Main idea:
v" Recall that the audio and visual features

are correlated. E.g., for 60-dim audio AUDIO.VISUAL SPEECH . J-
features (0,,) and 41-dim visual (0,,): R ™ &
v" Thus, one can hope to exploit visual input s W

to restore acoustic information from the 08
video and the corrupted audio signal.

0&..-

pa.. -

= Enhancement can occur in the:
v Signal space (based on LPC audio feats.).

pe..

04

v Audio feature space (discussed here). o0

= Main techniques:
v Linear (min. mean square error est.).

CORRELATION

v" Non-linear (neural nets., CDCN).

= Result: Better than audio-only methods.
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Av Apps — SPEECH ENHANCEMENT

[
A

Linear Bimodal Enhancement of Audio (1)

1
1... 101
1 1 1
: 5 AV :
60 W o 60

V" Seek linear transform P, s.t: “m?%y’ T ofF  opC
(£) _ () ->I o™
- 41

o,,=Po,, ~o0,/, teT.

0,,=[0,,0,,] andcleanAUo'{), teT. AUDIO

= Paradigm: ':Lﬂ%m
v Training on noisy AV features Eﬂ_\.i

= Can estimate P by minimizing the mean square error (MSE) between o',0';).

v" Problem separates per audio feature dimension (i=1,...,d,):
C 2 .
p, =argmax, ZIET[ 01(4,t),i_ <P0,y, >I% i=1...d,

v Solved by d, systems of Yule-Walker equatiions:

d
Z[Z OAV,t,iOAV,t,k] Pij = Zoic,;?iOAV,t,k, k=1..d

j=1 teT teT
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Linear Bimodal Enhancement of Audio (1)

= Examples of audio feature estimation using bimodal enhancement (additive speech
babble noise at 4 dB SNR): Not perfect, but better than noisy features, and helps ASR!

60 ‘ ‘ ‘ ‘ _ 60

(AC) 1=5 i=3
—— CLEAN AU: Ot,i
N _ o™
oL  NoIsyAu: ti

—— ENHANCED AU:

AUDIO FEATURE VALUE

50 100 150 200 250 50 100 150 200 250
TIME FRAME, t TIME FRAME, t
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Av Apps — SPEECH ENHANCEMENT

Linear Bimodal Enhancement of Audio (lll)

B a1 o2} ~ (e} ©
o o o o o o
T

WORD ERROR RATE (WER), %
BN W
o o o

o

Linear enhancement and ASR (digits task — automobile noise):

v

v
v
v

Audio-based enhancement is inferior to bimodal one.

For mismatched HMMs at low SNR, AV-enhanced features outperform AV-HILDA feature fusion.
After HMM retraining, HILDA becomes superior.

Linear enhancement creates within-class feature correlation - MLLT can help.

NO HMM RETRAINING

= = -a-o AU-only
\q\\ e—o—9 (a'LAf‘tLeJr-arl\}lll\% retraining)
\ \q = o-o AV-HILDA Fusion
\i\ \h = a-o AU-only Enh.
NN > 99 AV Enh.

20

15

10

AFTER HMM RETRAINING
AU-only

AU-Enh.
AU-Enh.+MLLT
AV-Enh.
AV-Enh.+MLLT
AV-HILDA Fusion

0 5 10
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ul
i

Non-Linear Bimodal Enhancement of Audio (1)

= Codebook-dependent cepstral normalization (CDCN):
— A feature-space technique for robust ASR.

— Approximates the non-linear effect of noise on clean features by a piece-wise constant
function, defined in terms of a “codebook” {f, ;}:

(E) _ K
04, =0, _ZkzlfA,k Pr(klo,,)
— Codebooks are estimated by minimizing MSE over audio data:

D (0, -0 )Pr(k|o))
> Pr(k[0%9)

= CDCN can be extended to use audio-visual data instead (AV-CDCN):

E K
O(A t) =0, _ZkzlfA,k Pr(klo,,,)

where codebook posteriors {Pr(klo,; )}, are estimated by £V on AV data.

fA,k =
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Av Apps — SPEECH ENHANCEMENT

[
i
"

Non-Linear Bimodal Enhancement of Audio (Il)

RESULTS (Deligne et al., ‘02).

48

ASR performance using col
AVCDCN vs. audio-only o
and AV-HIiLDA features. < \
- & 201
Task: Connected digits, W .
HMMs trained on clean =3 N
audio. w 40pa.
é o_ "~
Various codebook sizes g 55|
are compared in AVCDCN. ©
o
AVCDCN outperforms L; 201
feature fusion! z
=
101

—as—a8 AU-dec.
= -0—o AV-dec.

+— 4+

- *— %

o— G-

N V— V-

- ~ f— fx

~ N A— /A

+

> % 4 O *

AVCDCN, K=2, AU-dec.
AVCDCN, K=4, AU-dec.
AVCDCN, K=16, AU-dec.
AVCDCN, K=32, AU-dec.
AVCDCN, K=64, AU-dec.
AVCDCN, K=128, AU-dec.
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Audio-Visual Speaker Recognition — Brief Overview

In case of bimodal data, the following 3 information streams can be utilized:
= Sound — audio based speaker recognition

= Static video frames — face recognition

= Mouth ROI video sequences — visual speech based speaker recognition.

Examples of fusing two or three single-modality speaker-recognition systems:

9 N — T T T T I I I
ghled crmnine e e R RO R ey ot i | = - Audio EER=1.71443%
: [ : : : ‘1o wideo EER=18221%

Audio + visual-labial (IBM:Chaudhari et al.,03) 5 ..... ....... ...... ________ __________ ':?i"dw:ﬂﬁfﬁg%iﬁfé%?mm-
= ID-error: A:2.01, V: 10.95, AV: 0.40 % I/ USRS SRS SOREE FRRTION SRS SRR i P

4]

. VER-EER: A:L71 V: 1.52. AV: 1.04 % Bn__.i. ..... _______ ...... __________ __________ ...... _

Audio +visual-face (IBM: Maison et al., 99)
= |D-error-clean: A: 7.1, F: 36.4, AF: 6.5
= |D-error-noisy: A:49.3, F: 36.4, AF: 25.3 %

Mizz prabability in %

Audio + visual + face (Dieckmann et al., 97):
= ID-err: A: 10.4,V: 11.0, F: 18.7, AVF: 7.0 %

A e L L
0102 085 1 =2 & 10 =0 40 4] an b il 95 98 99
Faka Alarm probability (in %)
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In-Vehicle Visual Speech Activity Detection (1)

= WHAT: Speech activity detection in the automobile, using
visual input from specially designed sensor, and “low-cost”
algorithms, aiming at embedded implementation.

= Thevisual sensor:
— Monochrome (visible + near IR sensitive) equipped with

synchronously flashing IR LEDs.
— Allows depth segmentation based on the near objects brightness

difference (due to the flashing IR LEDS)

» The algorithms:
v" Find driver's head.
Uses synchronous IR depth finder.
Establishes search region for eyes.
v Find eyes. |
Uses matched-filter template search.p
Establishes search region for mouth. s
v Find mouth.
Threshold patch based on eyes.
v Analyze mouth motion.
High area variability - speech.
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Visual Speech Activity Detection (1) — Alternative Head Flndlng

= Searches for central moving region:
Uses just a standard camera (B&W). head
No flashing IR lights (can be always on). limits
More tolerance for frame rate and resolution.

= Steps:
Find frame difference over interval.
Accumulate motion evidence.
Project density to find head limits. /

Projection

= Complexity:
Approximately the same complexity as the
synchronous IR version (previous slides).

motion
history
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ul
i

Visual Speech Activity Detection (Ill) — |mprOV6d Eye Detection

= Extend single-template search (per eye) to improve
eye detection.
— Use multi-bar model.
— Accounts for eyebrows and eyeglass frames.

= Steps:
— Look for strongest black bar candidate.
— Also look above and below.
— Pick eye center based on pattern.

initial —
strongest —> - + "T==7T" -F=--r - ——— - _|_ -
match —|—

+ marks
eye position

casel case 2a case 2b case 3
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Visual Speech Activity Detection (IV) — Handling Glasses

= Detection of eyes in presence of glasses needs
special handling.
= Qur algorithm utilizes a “four-eye” model.
— Glasses look like a chain of virtual eyes.

Algorithmic steps:
= Find up to four multi-bar candidates.
= Choose one candidate as an anchor.
— Prefer leftmost or rightmost.
— Prefer closest to previous eyes.
=  Pick mate with the best spacing.
— Validate separation & tip angle.
— Pick different anchor if violation.
= Adds negligible processing.

Typical response

“eye” 4 ‘“eye” 3 ‘“eye” 2 ‘“eye’1l
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Visual Speech Activity Detection (V) — Mouth Measurement

= Basic Steps:
v" Find likely mouth area based on eyes
v" Look for and track dark blotch of mouth
v Monitor change in size over time

= Refinements:
v" Uses bar-mask to re-center mouth area
v Uses gray scale average for low resolution

Mouth size (1)

-

— o

\ 4

time
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Visual Speech Activity Detection (vi) — Data & Evaluation

= AV Data:
— 10 drivers, 10 passengers, 4:45 hours total.
— Good lighting, head-pose, expression variation.

= Evaluation:
— Ground-truth and evaluation tools developed.
— Metrics: (SDER, NDER).
— Results: (17%,19%).
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Audio-Visual Speech Synthesis (1)

= The goal is to automatically generate:
— Voice and facial animation from arbitrary text; or:
— Facial animation from arbitrary speech.

= Potential applications:

Human communication and perception.

Tools for the hearing impaired.

Spoken and multimodal agent-based user interfaces.
Educational aids.

Entertainment (synthetic actors).

= For example:
— A view of the face can improve intelligibility of both natural and synthetic speech

significantly, especially under degraded acoustic conditions.

Av APPS — SPEECH SYNTHESIS

— Facial expressions can signal emotion, add emphasis to the speech and support

the interaction in dialogue.

AV speech — progress & challenges — NOV 06
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Audio-Visual Speech Synthesis (Il) - Approaches

= Model-Based (or knowledge-based)
— Face is modeled as a 3D object

— Control parameters deform the 3D structure using

v Geometric
v Articulatory models
v" Muscular

— Gained popularity due to MPEG-4 facial animation standard

* Image or Video-Based
— Segments of 2D videos of a speaker are
v Acquired
v Processed
v Concatenated

Boundaries are blurry

AV speech — progress & challenges — NOV 06
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Audio-Visual Speech Synthesis (Ill) — Concatenative Approach

Video Video Video Yideo Video

Basic components of this approach , e . . Sl . rame O L [
are similar to the AV-components 7 50

discussed earlier. Lattice Lattic Lattice Lattice Lattice
entry Y entry entry entry
2.2.2 - 3-0-2 2-3-2 3-2-1

= Analysis of database segments

(images or video snippets). *_5

— Extracts shape or appearance '-E
features to allow transition cost S
computation in concatenation.

= Synthesis stage:

— Uses dynamic programming
approach (Viterbi) to find
minimum cost path and “stich”
together the best possible s Least expensive
. . . ransiion  path after Viterbi
image/video snippets. costs optimization
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Audio-Visual Speech Synthesis (IV) — Speech Driven Animation

= Goal: Synthesize video directly from the acoustic signal.

= Approaches are classified into
—  Symbol based:

— Audio signal is first translated into an intermediate discrete representation — sequence of
phonemes.

— Regression based.
— A direct continuous association between acoustic and visual features is sought.

= Both constitute interesting cases of audio-visual fusion; Can be accomplished with
various techniques:
— HMMs (correlation HMMs).
— Regression.
— Artificial Neural Networks.
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AV Speech Processing — Conclusions

= Discussed the motivation & benefits of visual information for various speech technologies.
= Audio-visual speech processing requires visual feature extraction & audio-visual fusion.

= For visual processing, appearance-based visual features seem preferable.
— Achieve better performance.
— Are computationally inexpensive.
— Robust to video degradations.
— Require approximate only face/mouth tracking

= For audio-visual integration, decision fusion approaches are preferable:
— Draws from the classifier combination paradigm.
— Allows direct modeling of the reliability of each information stream
— Offers a mechanism to directly model audio-visual asynchrony at various levels.
= Experimental results demonstrate the huge benefit of visual modality to ASR.
— Sizeable gains in clean acoustics.
— 8-10 dB gains in effective SNR.

= Discussed additional AV speech applications.
— ldentification / verification.
— Speech enhancement.
— Speech activity detection.
— Speech synthesis.
= Many problems remain open:
— Pose modeling, compensation; pose invariant appearance visual features.
— Robust visual feature extraction for unconstrained visual domains.
— Additional work in decision fusion: Fusion functional, reliability modeling, asynchronous integration.
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