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Abstract. This is the supplemental material for the paper ”Divide and
Conquer: Efficient Density-Based Tracking of 3D Sensors in Manhattan
World”. We first introduce the detail about the double Parzen-window
based KDE. Then analyze the converging performance of the density
distribution alignment. Finally, several simulation experiment and cor-
responding analysis are provided to demonstrate the robustness and ac-
curateness of our method.

1 Double Parzen-window based KDE

We now explain how to describe the quality of a planar mode in our non-
parametric problem by using a double Parzen-window based KDE. We use the
1-D case as an example here.

– Uniform distribution kernel

K(x) =

{
1 |xi| < h

2
0 otherwise

– Gaussian kernel

K(x) = ce−
(x−µ)2

2σ2 (1)

For a chosen kernel, the corresponding KDE is:

pKDE(x) =
1

NhD

N∑
i=1

K(
x− xi
h

) (2)

where D is the dimension of the space which is 1 in this example and 2 in
our application, N is the total number of the surface normal vectors which is
640× 480 = 307200 and h is the window size of the kernel.

A statistical measurement λ defined in Eq. 3 is introduced in our non-
parametric problem in order to describe the quality of a planar mode. pu is

? Corresponding author.
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2 Yi Zhou, Laurent Kneip, Cristian Rodriguez and Hongdong Li

Fig. 1. Double Parzen-window used for calculating the quality of a planar mode. The
black one is a Gaussian Kernel while the red one is a uniform kernel.

a KDE with a uniform kernel which represents how likely a surface normal vec-
tor locates inside this conic window, namely how dominant a planar mode is. pg
is a KDE with a Gaussian kernel which demonstrates how compact the surface
normal vectors surround a mode. We assign c of the Gaussian kernel as 1. There-
fore, the more compact that surface normal vectors gather to the mode center
the closer that λ approaches 1. The double Parzen-windown based KDE can be
understood as a normalized Gaussian KDE which takes into account both the
dominance and the accuracy of a planar mode.

λ =
pg(x)

pu(x)
(3)

The complexity of the double parzen-window based KDE is O(2n). Compared
to the single window based KDE O(n), it is not a big increase.

2 Convergence Analysis of the Density Distribution
Alignment

In order to guarantee the convergence of the minimization of the correlation
distance between two discretely sampled distributions f and g, several issues
need to be taken into account. First, it is of course vital for f and g to provide
density information of the same structure which we call the overlap region. The
correlation distance will notably reach its minimum when the overlapping regions
align with each other. However, due to the motion of the sensor, the observed
structures in successive viewpoints are different, especially along the border of
the depth map. This leads to differences in the sampling positions and values. In
fact, it is impossible to find the exact overlapping region of a pair of successive
depth maps. In our experiment, we find the phenomenon can be greatly weakened
by constructing the distribution f and g with only 3D points whose depth is
within a proper range (0.5 m 2×mediand − 0.5 m). Besides, we truncate the
distribution f , as shown in Fig 2. This ensures that the sampling positions of
the distribution g fully include the ones of the truncated f .
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Fig. 2. The left figure shows an example of discretly sampled distribution truncated
on the left and right sides (see red dashed lines). The right figure shows the conver-
gence performance. After the truncation, the minimization problem has only one local
minimum with a reasonably large convergence basin.

The second issue occurs when the sensor moves orthogonally to the structure,
in which case the sampling density changes. A simple solution is to apply a
normalization of the distribution. As we observed during experiments on real
data, even this is not really needed, except if the sensor moves very close to the
structure.

The last issue concerns the choice of the distance function. It is well known
that the L1-distance performs better than the L2-distance in the presence of
outliers. However, there is no noticeable difference in the accuracy of the trans-
lation estimation between both norms. This can be attributed to the kernel
density distribution alignment, which is robust by nature.

3 Simulation Experiments and Corresponding Analysis

Manhattan frame (MF) seeking in difficult cases In this first simulation
experiment we show that our manifold-constrained Manhattan frame tracking
(including the initialization) can work robustly in challenging cases that may
occur on real data as well:

– In the first experiment, the sensor observes additional planar structures for
which the normal vector does not align with any of the Manhattan frame’s
dominant directions. In this case, there will be more than three modes in the
distribution on the unit sphere, as shown in Fig 3 (a). The three cyan modes
represent the MF structure while the red one represents an additional slanted
plane. Due to the underlying SO(3) manifold-constrained mean-shift up-
dates, which enforce orthogonality in the mode directions, our algorithm ig-
nores the additional mode and converges to the dominant Manhattan frame.

– Another challenging case is that when only two dominant directions of the
MF can be observed. In this case, the lost direction can be recovered by
exploiting orthogonality and right-handedness between all dominant direc-
tions. Fig 3 (b) shows an example of such a situation. Only the two cyan
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(a) (b) (c)

Fig. 3. Robust MF seeking performance in several challenging cases. (a): Seeking the
dominant MF when an additional mode/slanted plane exists. (b): Seeking the dominant
MF in the case where only two modes can be observed. (c): The success rate of MF
seeking under different levels of noise.

modes are found by the algorithm, the third direction (indicated with a blue
dotted line) is hallucinated.

– In Fig 3 (c), we finally demonstrate how the tracking of a MF from a random
initial rotation performs under increasing levels of noise. The horizontal axis
indicates the overall proportion of noisy normal vectors. It can be observed
that as the noise increases, the success rate of the algorithm gradually drops
(averaged over many trials). During our initialization procedure, the initial
MF orientation is selected from a peak in a histogram over 100 trials. If the
overall success rate lies above this peak threshold (0.2 in our experiments),
the initial MF is likely to be picked up. Therefore, with 100 trials, our algo-
rithm can successfully initialize the MF even if 90% of the normal vectors
represent uniformly distributed noise.

Translation estimation in the Manhattan frame Here we demonstrate
the benefit of performing the 1D distribution alignment in the Manhattan frame
rather than an arbitrary frame. Without loss of generality, we imagine the two-
dimensional example shown in Figure 4 (a). It shows the observation of a simple
structure which is perturbed by noise. The structure aligns with the x or y axis of
the Manhattan frame. The observation of two arbitrary sensor viewpoints can be
simulated by rotating the original structure inside the plane. Figures 4 (c) and (d)
show the discrete density distribution along the x-axis of the sensor frame, once
from a view-point that is aligned with the Manhattan frame, and once with a
rotation of 0.6 rad. It is obvious to see that the distribution inside the Manhattan
frame conveys more distinct information than that in an arbitrary sensor view,
which is essential for accurate estimation of the translational displacement. The
groundtruth displacement in this experiment is 0.1m. Figure 4 (b) illustrates the
mean alignment error for different sensor frame orientations (each time averaged
over various noise levels). It can be observed that error-free estimation can be
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performed if the sensor frame is aligned with the Manhattan frame. In other
words, the point cloud needs to be unrotated into the Manhattan frame before
establishing the 1D density distribution signals and estimating the translation.
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(a) Gaussian noise perturbed struc-
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(c) Density distribution along x-axis
of the Manhattan frame.

Sensor X [m]

-1 -0.5 0 0.5 1

In
te

n
s
it

y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d) Denstity distribution along x-
axis of a rotated sensor frame.

Fig. 4. Simulation to demonstrate the benefit of performing the distribution alignment
in the MF.


