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Abstract

This paper introduces a novel strategy for real-time monocular camera tracking over
the recently introduced, efficient semi-dense depth maps. We employ a geometric it-
erative closest point technique instead of a photometric error criterion, which has the
conceptual advantage of requiring neither isotropic enlargement of the employed semi-
dense regions, nor pyramidal subsampling. We outline the detailed concepts leading
to robustness and efficiency even for large frame-to-frame disparities. We demonstrate
successful real-time processing over very large view-point changes and significantly cor-
rupted semi-dense depth-maps, thus underlining the validity of our geometric approach.

1 Introduction
Camera tracking denotes the continuous image-based computation of a camera’s position
and orientation with respect to a reference frame. This task lies at the heart of the visual
odometry and visual SLAM problems, making it the key to accuracy, efficiency, and relia-
bility in visual motion and structure estimation. Although tracking frequently exploits the
temporal order and regularity of an image sequence—for instance by employing a dynamic
motion model that imposes smoothness in the estimated camera trajectory—, we focus here
on the most general case that does not rely on such assumptions: a single image plus a
reference frame (e.g. another image) in which depth information is available. All camera
tracking instances can be reduced to this basic scenario. The present paper discusses tracking
of regular cameras. This significantly complicates the motion estimation process, as 3D-3D
registration methods applicable to RGB-D cameras are no longer an option. A tracker in our
context describes an algorithm that solves the absolute pose or 2D-3D registration problem.

The particular form of a tracker largely depends on the form of the depth information.
Traditional approaches for instance extract sparse sets of local invariant keypoints in the
images, thus leading to depth information in form of a sparse point cloud. The classical way
of dealing with such data consists of establishing 2D-3D correspondences, and then solving
the perspective n-point problem. Fischler and Bolles [7] present a prominent variant able
to handle outlier-affected data by solving the perspective 3-point problem within a robust
hypothesize-and-test architecture, followed by nonlinear refinement over the inlier subset.
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More recently, Newcombe et al. [17] have exploited dense depth maps for entire images,
in which case camera tracking can rely on photometric error criteria. That is, the tracker
attempts to find a camera pose for which the warping function leads to minimal photomet-
ric difference1. Klein and Murray [12] already presented a related concept by using depth
information of image patches along with the optimized camera pose in order to warp the
patches into neighboring frames via individual affine transformations. Engel et al. [4] re-
cently presented yet another simplified version of [17] by reducing the depth map estimation
to image regions with sufficient gradient. It leads to a set of regions in the image that cor-
respond to boundaries in the texture or along occlusions, called semi-dense region. [12] and
[4] are conceptually similar to [17], however gain computational efficiency by reducing the
computation from dense to sparse or semi-dense regions.

Experience has shown that photometric error minimization is in general a superior para-
digm compared to classical pose estimation based on sparse correspondences. Photometric
methods have the more general advantage of compensating for appearance variations caused
by perspective view-point changes, whereas classical sparse methods often rely on static
feature descriptors only (providing at most rotation and scale invariant properties [14, 15]).
Furthermore, the amount of data in dense or semi-dense methods leads to good signal-to-
noise ratio, which is why dense or semi-dense photometric error minimization has become
the state-of-the-art in camera tracking. However, photometric registration techniques inher-
ently suffer from the disability to overcome large disparities, where large sometimes means
even just a couple of pixels [16]. Many photometric registration techniques therefore depend
on pyramidal subsampling schemes in order to alleviate this problem.

The goal of the present paper is a novel 2D-3D registration paradigm for semi-dense
depth maps that relies on the Iterative Closest Point (ICP) technique, and thus a reintroduc-
tion of geometric error minimization as a valid alternative for semi-dense visual SLAM. ICP
has been used almost exhaustively in 3D-3D registration problems (e.g. with Laser point
clouds [19]). Typical issues with applying ICP are missing data, noise, outliers, and local
minima. Bouaziz et al. [1] argue that it is unreliable and difficult to address these issues by
introducing heuristics to prune or reweight individual points. Instead, they propose a new
formulation of the ICP algorithm using sparsity-induced norms. A further relevant work is
given by Fitzgibbon [8], who proposes to enlarge the basin of convergence by smoothing
the objective function. Yang et al. [24] investigate a new globally optimal strategy for Eu-
clidean registration in 3D under the L2-norm error metric. Though the above works show
an improvement in the registration result, they mostly aim at surface registration in 3D. The
works of Feldmar et al. [6], Tomono [23], and ? ] are more related to ours, as they attempt
curve or edge registration in 2D using ICP. Based on a hypothesized relative pose, they warp
a reference curve into the tracked image based on a prior 3D model (e.g. in virtual visual
servoing) or depth inside a reference frame. The quality of the 3D reference structure in
those applications is rather good, thus reducing the challenge in terms of noise, outliers,
missing data, and occlusions. Comport et al. [3] present a non-ICP based method for min-
imizing point-to-curve distances, however again relying on clean models in form of shape
primitives.

This paper introduces a novel ICP-based camera tracking procedure adapted to the case
of noisy, outlier-affected semi-dense depth maps. By employing a geometric error criterion,
we are naturally able to overcome large disparities, and avoid the need for subsampling of

1The warping function is well explained in [11], and it consists of generating an artificial image from pixel-wise
depth information in a reference frame, plus a relative pose hypothesis.
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Figure 1: Example of a semi-dense depth map. The left figure shows the original image.
The center image shows the approximate absolute image gradient derived from simple Sobel
filters. The semi-dense region in the image plane is defined by thresholding this value. Every
pixel within the region is finally tracked in a neighbor frame based on the epipolar constraint,
thus leading to the inverse depth map in the right image (hot colors=close, cold colors=far).
As can be observed, the initial depth map is typically affected by outliers, especially in new
regions of the image (left part) and on self-similar background.

images and depth maps or isotropic enlargement of semi-dense regions. Large convergence
basins and robustness with respect to outliers are furthermore supported by prior evaluation
of sparse hypotheses (cf. Section 2). We speed up the computation by employing a distance
transformation and the bin sort technique (cf. Section 3). Distance transformations have
already proven useful for 3D-3D registration based on RGB-D cameras [2], and 2D-3D
registration within the context of virtual visual servoing [9]. We conclude our work with a
successful application to real data, demonstrating real-time tracking over large disparities,
significant view-point changes, and severly corrupted depth maps (cf. Section 4).

2 Robust ICP-based camera tracking
The present section introduces our ICP-based camera tracking concept. We start with a clear
problem definition and a summary of ICP-based 2D-3D registration. The section concludes
with a sparse extension that increases the convergence basin as well as the resilience with
respect to outliers.

2.1 ICP-based tracking
LetFk be a reference camera frame for which depth information is available. Without loss of
generality, we assume that the position ofFk coincides with the origin, and that its orientation
equals to identity. Tracking of a single moving camera consists of retrieving the pose of a
subsequent frame Fk+1 given by position t and orientation R, such that sFk = R · sFk+1 + t,
where sFk represents a point in frame Fk.

Depth information in our case originates from semi-dense regions in the image, following
the approach presented in [4]. Let P = {pi} be the set of pixel locations defining the semi-
dense region. As illustrated in Figure 1, those regions are obtained by thresholding the norm
of the image gradient, which is derived from a simple convolution with Sobel kernels2. For
each pixel where the norm of the gradient is high enough, depth is estimated by tracking
along the epipolar line in a previous frame. An example result is indicated in Figure 1,

2Note that the Sobel filter may not return the most stable results. It is however acceptable in our application, as
a certain degree of variation in the edge-map is easily tolerated.
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and given by inverse depth information for each pi—denoted di—as well as its variance—
denoted σi. We assume the initialization to be given (for further details please refer to [4]),
and focus on the tracking part. We furthermore assume that the camera is calibrated, and
that we have accurate knowledge about a camera-to-world transformation function π(pi) = fi
transforming points in the image plane into unit direction vectors located on the unit sphere
around the camera center. The inverse transformation π−1(λ fi) = pi projecting any point
along the ray defined by fi onto image location pi is also known.

We propose a geometric approach for semi-dense tracking. The idea consists of finding
a camera pose for which the semi-dense depth map in Fk reprojects near the semi-dense
region extracted in 2D in frame Fk+1. We may intuitively consider the semi-dense depth
map as a curve in 3D, and its projection into Fk+1 as a curve in 2D. The goal is to minimize
the 2D distances between the reprojected curve and the curve corresponding to the semi-
dense region extracted from image gradients. The registration is not simply solved in 2D (for
instance using a 2D orthogonal procrustes technique[20]), which would ignore the projective
distortion of our semi-dense region. Instead, the incremental updates of the camera pose lead
to new, warped locations in the image plane for the reprojected semi-dense depth map. The
technique is motivated by the observation that the gradient image—and thus the extracted
semi-dense region—is typically a stable feature throughout an image sequence 3.

As in [6], [23], and [3], we propose ICP to solve this problem. Let

SFk = {sFk
i }= {(d

Fk
i )−1

π(pFk
i )} (1)

denote the semi-dense depth map in Fk. Reprojection into F k+1 gives the semi-dense region

OFk+1 = {oFk+1
i }= {π−1

(
RT
(

sFk
i − t

))
}. (2)

Now let PFk+1 = {pFk+1
i } be the set of pixels belonging to the semi-dense region ex-

tracted by thresholding the norm of the image gradient in Fk+1. We define

n(oFk+1
i ) = argmin

p
Fk+1
j ∈PFk+1

‖pFk+1
j −oFk+1

i ‖ (3)

to be a function that returns the pixel from PFk+1 that is closest to oFk+1
i (in the image

plane) under the Euclidean distance metric. ICP-based 2D-3D registration finally consists of
minimizing the sum of the distances to the closest points over the pose of Fk+1, namely t
and R. Our objective hence results in

{t̂, R̂}= argmin
t,R

N

∑
i=1

{
σ
−1
i ‖n(o

Fk+1
i )−oFk+1

i ‖
}

(4)

Note that this error criterion employs a robust L1-norm metric. Directly minimizing the
above energy therefore already leads to a successful frame-to-frame tracking mechanism
for short baselines. We employ gradient descent over the pose parameters using numerical
Jacobian computation and a line search along the gradient direction, and furthermore weight
the residuals according to the variance of the original depth estimate4.

3The contours of curved surfaces in 3D could violate the assumption of purely projective distortion, which is
however a general problem that affects all approaches (including photometric ones).

4Note that (4) is not continuously differentiable around 0. However, rather than relying on an iteratively
reweighted optimization scheme, we found that in practice, over a large number of pixels (e.g. 30000), a direct
minimization of the distances based on gradient descent still turns out to converge successfully.
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Figure 2: Illustration of our iterative sparse initialization procedure. In each iteration, the
algorithm randomly picks a small number of depth points along with the closest points to the
depth points’ reprojections into the tracked frame. They serve as 2D-3D correspondences,
which are then fed to a perspective n-point solver to update the current pose estimate.

2.2 Robust sparse initialization

The above mechanism works well in short baseline situations, in which the distance between
reprojected depth points and their closest points in the extracted semi-dense region typically
remains below a few pixels only. However, this is not always the case, and depending on
the framerate of the camera and the dynamics of the camera motion, we may have to bridge
larger distances, potentially leaving the convergence basin for a direct, iterative error reduc-
tion strategy based on all distances.

Our remedy consists of including a sparse update mechanism prior to the direct iterative
error minimization in (4), which works as follows:

• We randomly pick j depth points {sFk
i1

, . . . ,sFk
i j
} from our semi-dense depth map.

• We project them into frame Fk+1 using (2) and based on our current transformation
parameters t and R. The result is the set {oFk+1

i1
, . . . ,oFk+1

i j
}.

• We derive the closest points {n(oFk+1
i1

), . . . ,n(oFk+1
i j

)} for every such point using (3).

• We obtain approximate 2D-3D correspondences {
(

n(oFk+1
i1

),sFk
i1

)
, . . . ,

(
n(oFk+1

i j
),sFk

i j

)
}.

• We feed those points to a perspective n-point solver in order to update our pose.

• We evaluate the remaining distances, and go back to step 1 if they remain too high, or
move on to gradient descent as a final optimization step.

The strategy is illustrated in Figure 2. We chose j = 4, which is the minimum number of
2D-3D correspondences required to compute a unique hypothesis for the absolute pose, and
we use three of those correspondences to execute the P3P algorithm presented in [13], and
the remaining one to disambiguate the at most four solutions returned by this algorithm. Note
that our sparse initialization is not to be confused with RANSAC [7]. RANSAC typically
fits a model to fixed 2D-3D correspondences, whereas in our case, approximate correspon-
dences are searched within each iteration by finding closest points. Our sparse initialization
therefore is still to be understood as a robust iterative error minimization strategy (similar to
robust lmeds). We thereby avoid the need to extract and match local invariant keypoints, and
consistently use the concept of “closest points”.
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3 Towards robust real-time performance
This section introduces the important extensions to SDICP increasing both computational
efficiency and robustness against outliers. Note that it does not introduce any conceptual
changes to the pipeline, but only robust and efficient ways of evaluating the errors in the
image plane.

3.1 Preemptive scoring
We extend the sparse update strategy presented in 2.2 towards a preemptive, multi-hypothesis
scoring mechanism. The approach is inspired by [18], and consists of establishing multiple
hypotheses during each iteration, for which we then evaluate an incrementing part of the
distances to the closest points, each time pruning the worst half of the remaining hypotheses.
In our implementation, we evalute 10% of the distances for 8 hypotheses, then 5% more for
4 (i.e. 15%), then 10% more for 2 (i.e. 25%), and the remaining ones into the remaining
hypothesis (i.e. 100%). Furthermore, the remaining hypothesis is applied if and only if it
leads to a reduction of the summed distances with respect to the previous iteration.

3.2 The Chebychev distance transform
Computing the exact location of the closest points of each reprojected depth point (i.e.
n(oFk+1

i ) ∀i ∈ {1, . . . ,N}) is a time-consuming task, especially as this procedure is embedded
into an iterative optimization scheme. However, it is important to realize that for most of the
time, we are not interested in the exact location of the closest pixel within the semi-dense
region, but only in the distance to them. In fact, the exact location of the closest points is
only needed for our random samples during the sparse initialization process, which means
4× #iterations× # hypotheses

iteration times. This number typically remains below a few hundred for
the entire tracking of a single frame. As a result, we propose to compute the distances
directly based on a distance field. The distance field is an image generated for Fk+1 and
that—for each pixel in the image—indicates the distance to the closest pixel in the original
semi-dense region PFk+1 obtained by thresholding the norm of the gradients5. We propose
the use of a distance metric for which the distance field can be extracted very fast, namely
the Chebychev distance. This metric is also called the chessboard distance, as it corresponds
to the minimum number of moves a king would need to reach the semi-dense region6.

3.3 Bin sort
As mentioned earlier, our criterion for evaluating poses is given by the sum of distances to
the closest points in the semi-dense region. While this corresponds to an L1-norm metric—
and thus already provides robustness with respect to outliers—, we include an additional,
helpful robustness measure during the sparse initialization step. Instead of simply suming
up all the distances, we sort the distances and consider the value of the 95th percentile.
Assuming that the semi-dense region contains no more than 5% outliers, this eliminates all
outlier distances from the evaluation. The evaluation of the 95th percentile however requires
another precaution in the implementation, as the explicit sorting of all distances would be

5Distance transforms have already been used in various contexts, such as for instance in 3D-3D registration for
RGB-D cameras [2].

6Note that we perform bilinear interpolation when retrieving distances in the distance field.
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too computationally intensive. Instead, we solve this problem by filling a histogram with
constant number and size of bins, which can be done in linear time and with reduced memory
requirements. It has two consequences: a) The complexity of finding the value of the 95th
percentile depends linearly on the number of bins, and b) the accuracy of the 95th percentile
is limited by the bin size. In our implementation, we chose a bin-size of 0.1 pixel and 200
bins, which keeps the retrieval of the 95th percentile very efficient7, and leads to largely
sufficient accuracy for the sparse initialization step.

3.4 Finding closest points
Explicit locations of closest points are still required during our sparse initialization process.
The most straightforward solution for finding closest points in the semi-dense region consists
of simply iterating through a window around a location in the image plane starting from the
top left corner. This is however very inefficient as we potentially have to loop through half
the window even as we converge to the correct result. Our solution consists of grouping the
local neighborhood pixels into classes of increasing distance from the center of a window,
and then looping through those classes starting with the smallest distance. We furthermore
limit the search to radii below the current value of the 95th percentile, as we want to perform
updates with (approximate) inlier correspondences.

4 Experimental validation
The focus of our experimental evaluation lies on a comparison to a well established, classical
sparse alternative. Our aim is to demonstrate an improvement in robustness over traditional
methods, similar to what we have seen from recent dense or semi-dense photometric ap-
proaches. A brief direct opposition between SDICP and a semi-dense photometric error
minimizer is also provided, as well as an analysis of computational efficiency.

4.1 Robustness and accuracy
In order to demonstrate SDICP’s robustness advantage with respect to classical sparse ap-
proaches, we applied both methods to a publically available dataset for which ground truth
information is available. We use the sequence freiburg2_xyz from the TUM RGB-D SLAM
benchmark suite [22], as this one is well suited for a detailed evaluation of local tracking
performance. The dataset is captured with a Kinect sensor running at 30Hz. We use RGB
information only, converted to monochrome images within our algorithm. The VGA im-
ages in the dataset are already undistorted, and the intrinsic camera parameters are given by
fx = fy = 525, cx = 319.5, and cy = 239.5.

Our experiment consists of initializing a sparse point cloud as well as a semi-dense depth
map in one of the first frames of the sequence, and then performing both sparse and semi-
dense tracking with respect to this reference frame throughout the entire sequence. We use a
sparse method to initialize the relative pose between the very first frame in the sequence and
our chosen reference frame for the tracking. It relies on homogeneous Harris corner extrac-
tion [10], patch descriptors, and a brute-force matcher to establish 2D-2D correspondences.
We then apply the five-point algorithm [21] embedded into a RANSAC scheme [7] in order

7Note that the value of the 95th percentile is very efficiently computed by starting on the right side and subtract-
ing bin counts from the total number of elements in the histogram, rather than counting from the left side.
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to identify the initial relative pose as well as the inlier subset. We finally run two-frame
bundle adjustment to complete the initialization of the sequence8.

In order to obtain the reference point cloud for our sparse tracking scheme, we use the
optimized inlier correspondences obtained from the initialization step. We then use the same
type of features and descriptors to continuously establish sparse 2D-3D correspondences
towards our reference point cloud, and run the perspective 3-point algorithm [13] again em-
bedded into RANSAC [7] in order to track the pose of the camera. Each tracking step is
finalized by nonlinear refinement. The sparse reference point cloud is free of outliers and
contains moderate noise due to the robust two-frame initialization procedure.

The reference depth map for SDICP is obtained as explained in Section 2.1. In contrast to
keypoint matching, the simplified epipolar tracking of [5] is prone to errors, thus leading to a
significant amount of noise in the semi-dense depth map as well as a large number of outliers
being either too close or too distant with respect to the camera. However, we intentionally
use this pre-mature initialization, as this poses a more difficult challenge to our algorithm in
terms of accuracy and robustness with respect to outliers.

The results are presented in Figure 3. The first two columns show a qualitative evalua-
tion of the tracking performance by reprojecting the semi-dense depth map into the current
frame once using the pose retrieved by our novel SDICP algorithm (first column), and once
using the sparse baseline implementation (second column). The sparse tracker quickly loses
track of the reference map as we move away from the initialization spot. On the other hand,
SDICP successfully tracks throughout the entire sequence, and copes with impressive vari-
ations of the view-point pushing the reprojected semi-dense depth map into all corners of
the image. The result may also be observed in the supplemental video file. The last two
columns in Figure 3 finally show the detailed performance of both trackers in comparison to
ground truth. The plots clearly show the frequent tracking losses of the sparse implementa-
tion, as well as increased smoothness and thus accuracy in the results produced by SDICP.
Both methods suffer from the same bias in the translation estimation, which we track back
to the inaccuracy of the commonly used, initial relative pose computation. However, it is
impressive to see that SDICP still maintains an accurate orientation estimate throughout the
entire sequence, despite the presence of many outliers in the depth map. We interpret this
result as an impressive state-of-the-art improvement over traditional sparse approaches, able
to cope with large variations of the view-point as well as significantly corrupted data.

It is important to understand that our experiment aims at evaluating the accuracy and
robustness of the tracker alone. We therefore track continuously with respect to one and the
same, outlier-affected initialization. It is clear that propagating and updating the semi-dense
depth map would drastically improve its accuracy, which in turn would lead to improved
tracking results as well. It is notably for this reason that a plain comparison to the publicly
accessible framework presented in [5] would be unfair, as this framework performs continu-
ous propagation and updates.

4.2 Convergence in case of large disparities
We carried out a direct comparison to semi-dense photometric error minimization. Although
our implementation of the latter works on regular sequences, we quickly noticed that it fails
on instances of elevated frame-to-frame disparity. For example, if the actual disparity goes

8Note that there may be other possibilities for bootstrapping the sequence, such as directly using the semi-dense
regions. While this is certainly an interesting research topic, it is not the subject of this paper. We evaluate here
only the performance of the tracker.
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Figure 3: Columns 1 and 2 show a qualitative comparison between the proposed SDICP
algorithm and a sparse baseline implementation. The tracking performance is visualized by
reprojecting the semi-dense depth map into the current frame, once using the pose obtained
by SDICP (first column), and once using the pose obtained by a sparse method (second
column). It can be observed that SDICP maintains tracking throughout large view-point
changes (top and bottom rows), whereas the sparse reference implementation maintains suc-
cessful tracking only in the vicinity of the initialization spot (central row). The images also
visualize the significant amount of noise and outliers in the tracked semi-dense depth map.
The figure furthermore shows a comparison of the 6DoF trajectory estimation of SDICP and
a sparse baseline implementation with respect to ground truth (columns 3 and 4). Besides
the frequent tracking failures of the sparse alternative, the plot shows increased smoothness
in the results of SDICP, thus suggesting superior accuracy.

beyond 20 pixels for major parts of the image, we would require a width of more than ±10
pixels in the semi-dense region such that we would have a potential overlap and thus even a
chance to converge. Furthermore, it is commonly known that photometric error minimization
schemes have difficulties to overcome disparities going beyond a couple of pixels, which is
why successful convergence often requires pyramidal subsampling techniques. This in turn
poses further requirements on the minimum width of the semi-dense region. Engel et al. [4]
solve this problem by an isotropic enlargement of the semi-dense region, stating that it helps
the convergence of the tracker.

If choosing four pyramidal layers as proposed in [4] and limiting the width of the semi-
dense region to pixels with sufficient image gradient, our implementation of semi-dense
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photometric error minimization fails on instances with more than 20 pixels frame-to-frame
disparity. In contrast, SDICP naturally bridges this gap, even if completely disabling the
widening of the semi-dense region. The maximum disparity for SDICP is of course de-
pending on the structure. Simpler structures may lead to larger convergence basins, but at
the same time deliver fewer data points, and thus reduced accuracy. Intuitively spoken, the
convergence basin is limited to half the distance between neighbouring edges in the image
plane. Abundant texture may also cause failure of convergence, as this can easily lead to
wrong local minima.

4.3 Computational efficiency

Our algorithm is implemented in C++ and runs on 8 cores in parallel. All our results were
produced on a 2.5GHz Core i7 machine. The total time consumption for tracking a frame
with large disparity (> 20 pixels) is 0.12s. This however represents an extreme case with 13
iterations during the sparse robust initialization. This step usually takes only a single iteration
during regular tracking situations. Furthermore, the efficiency of the entire algorithm can be
scaled by evaluating only a part of the depth map, thus easily ensuring real-time capability.

5 Discussion

The present work is conceived as a more practial contribution in form of a novel concept for
semi-dense monocular camera tracking. In contrast to several recent works in the literature
which all rely on photometric error minimization techniques, we achieve state-of-the-art re-
sults by relying on a geometric error criterion. Our innovation lies in using ICP—a technique
which has proven successful in countless rigid registration contexts—and extending it to the
case of noisy, outlier-affected semi-dense depth maps.

While we are able to demonstrate outstanding performance with respect to large dis-
parities, large view-point changes, and significant data corruption, the present paper at the
same time reveals a number of important, fundamental questions. The most important one is
given by the question which error minimization strategy is most appropriate for semi-dense
features: geometric or photometric? Photometric error minimization requires an isotropic
enlargement of the semi-dense region, which seems unnatural given that the semi-dense
region represents a border that—from a theoretical standing—is infinitely thin. Our imple-
mentation does not require this enlargement, which is why we consider it a more natural
solution for image gradient based semi-dense registration. Another question is whether gra-
dients are a possibly more robust feature than intensity-based appearance. As an example,
consider a change in the background intensity of an occlusion. A photometric error measure
will increase, whereas our method based on thresholded gradients may see no change at all.
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