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Abstract—Determining the fundamental matrix from a collec-
tion of inter-frame homographies (more than two) is a classical
problem. The compatibility relationship between the fundamental
matrix and any of the ideally consistent homographies can
be used to compute the fundamental matrix. Using the direct
linear transformation (DLT), the compatibility equation can be
translated into a least squares problem and can be easily solved
via SVD decomposition. However, this solution is extremely
susceptible to noise and motion inconsistencies, hence rarely used.
Inspired by the normalized eight-point algorithm, we show that
a relatively simple but non-trivial two-step normalization of the
input homographies achieves the desired effect, and the results
are at last comparable to the less attractive hallucinated points
method. The algorithm is theoretically justified and verified by
experiments on both synthetic and real data.

I. INTRODUCTION

The epipolar geometry of two perspective images can be
described by a singular 3 × 3 matrix. When the camera is
calibrated, the matrix is known as the essential matrix E. For
uncalibrated systems, it is known as the fundamental matrix
F. The estimation of the fundamental matrix is a classical
and thoroughly studied topic which plays an essential role in
many applications involving multiple-view geometry, such as
visual odometry (VO), structure from motion (SfM), and visual
SLAM, etc.

The most popular method for estimating the fundamental
matrix is based on sparse correspondences between local
invariant keypoints, for instance given by the popular SIFT
algorithm [12]. Seven points constitute the minimal config-
uration because the fundamental matrix has 7 degrees of
freedom (DoF). Compared to the eight-point algorithm, the
seven point algorithm needs an additional step to calculate
the linear combination factor of the obtained two-dimensional
null-space. While seven point correspondences represent the
minimum for estimating the fundamental matrix [18], the 8-
point algorithm [11] is the most popular method because of
its linear nature and thus simplicity to implement. However,
it was only after Hartley published his seminal work [10] on
using data normalization that the eight-point algorithm became
truly useful in practice.

It is believed that the reconstruction performance can be
improved by incorporating additional geometric constraints
like coplanarity of certain points. Luong and Faugeras [13, 14]

are the first who propose to estimate the fundamental matrix
with multiple homographies in a linear way. They compared
the linear solution with other non-linear ones concluding that
none of the developed methods is stable under noise. In other
words, though the direct linear method is quite simple and
straightforward, it has limited practical usefulness. Zhang [24]
gave a thorough review on the techniques of fundamental ma-
trix estimation and its uncertainty. The bad performance of the
Direct Linear Transformation (DLT) applied to the compatibil-
ity relation between the homography H and the fundamental
matrix F was however not discussed in much detail. Szeliski
and Torr [19] thoroughly discussed three methods used for
solving structure from motion (SfM) with planes. They pre-
sented an analysis of the robustness of each method and then
suggested to estimate the fundamental matrix with hallucinated
points (HP) that lie on planes instead of the compatibility
equation (and thus the homograhies directly). Anubhav et
al. [1] demonstrates that the compatibility constraint is an
implicit equation in H and F. They also concluded that an
explicit expression like F = [e′]×H is more suitable for a
computational algorithm. Vincent and Laganiere [21] proposed
a detection algorithm for planar homographies working on a
pair of uncalibrated images. They claimed that the estima-
tion of the fundamental matrix from point correspondences
derived from homographies allows to use data normalization
techniques, and thus performs much better than using the
homographies directly. A method was introduced to estimate
the fundamental matrix with a homology in [15, 17, 9].
Theoretically, a homology has two identical eigenvalues and
another unique one which is corresponding to the epipole e′.
However, in practical situations, the homographies are never
perfect, which is why a double eigenvalue is never guaranteed.
It is hard in practice to choose which eigenvalue corresponds
to the unique one; the real parts of the eigenvalues are often
equally spread and/or very close to each other.

The goal of this paper is to present a direct method for
computing the fundamental matrix from a set of homographies
estimated independently between two view-points of a rigid,
piece-wise planar scene. Key to our method is a two-step
normalization procedure leading to a rescaled linear solution
of the compatibility equation. We finally achieve comparable
results to the hallucinated points method, however without



introducing additional, virtual correspondences. The rest of
the paper is organized as follows. Section 2 quickly reviews
the three methods discussed in [19]. Our two-step linear (TSL)
method with all theoretical derivations is described in Section
3. In Section 4, we compare DLT, HP and TSL by separately
running them on synthetic and real data. An analysis of
numerical stability and algorithmic complexity is also given.

II. QUICK REVIEW OF THE THREE METHODS

Szeliski and Torr discussed three methods that can be used
for estimating the fundamental matrix given several (> 2)
homographies in [19], which are reviewed in the following.

• Hallucinating additional correspondences:
Hallucinated points refer to augmented sample points
on planes. Theses points are also called virtual control
points. Hallucinated correspondences are generated by
first creating several virtual 2D points x on image one
which are assumed to be the projection of virtual points
on the plane. Their corresponding points x′ are then
found by applying the corresponding homography to
points x. Then the fundamental matrix F is computed by
applying normalized 8-point algorithm on the obtained
hallucinated correspondences.

• Direct linear method:
The implicit compatibility relationship between inter-
frame homographies and the fundamental matrix can be
directly used for computing the fundamental matrix. The
compatibility equation FTH + HTF = 0 gives six
constraints [13] (for which only 5 are linearly indepen-
dent). Therefore, at least 2 homographies are needed for
computing the fundamental matrix. The question can be
translated to a least squares problem by DLT and can
be easily solved by SVD decomposition. However, this
straightforward method is unstable for inaccurate homo-
graphies, sometimes leading to completely meaningless
results. The reason given by Szeliski and Torr is that
using the compatibility equation directly corresponds to
sampling homographies at locations where their predic-
tive power is very weak. The samples are far from having
the normal distribution required for total least squares to
work reasonably well.

• Plane plus parallax:
Plane plus parallax techniques are always used to recover
the depth (projective or Euclidean) of the scene. To com-
pute the fundamental matrix, one of the homographies
is choosen and used to unwarp all points in the current
frame. The epipole e′ is computed by minimizing the
sum of the weighted distance between epipole and lines
passing through corresponding points xi and x′i. Then the
fundamental matrix F can be computed by F = [e′]×H.
This method cannot work well when points are evenly
distributed over several planes. The computation is also
more complicated and expensive compared to the former
two methods.

III. ROBUST TWO-STEP LINEAR SOLUTION

The compatibility equation FTH + HTF = 0 gives only
6 linear equations [13]. In fact, as shown later, only 5 of
them are independent. Therefore, at least 2 homographies are
needed for computing the fundamental matrix. Applying the
DLT transformation to the compatibility equation leads to the
least squares problem,

Af =


W1
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...
Wn

 f = 0, (1)

where f = (f11, f21, f31, f12, f22, f32, f13, f23, f33)T denotes
a vector obtained by rearranging the entries of the fundamental
matrix in a column vector. Matrix A is made up of several
sub matrices Wi of same dimension which is defined as,
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The entries of the matrix Wi originate from the homography

Hi =

hπi11 hπi12 hπi13
hπi21 hπi22 hπi23
hπi31 hπi32 hπi33

 which is induced by plane πi. As

discussed in Section 2, the least squares problem described
in Eq. (1) is seriously ill-conditioned, which means that even
under a tiny perturbation of any entry of matrix A, the solution
quickly diverges from the groundtruth result. Thus, the matrix
A should be re-conditioned in order to stabilize its null space.

We follow the idea of [10] and introduce normalization
in order to stabilize the result. However, it is not trivial
to directly normalize the matrix A as it has been done in
prior work for estimating the fundamental matrix or even the
homography from point correspondences. The reason is two-
fold. First, the normalization includes two parts, translation
and scaling. The translation operation can only be performed
by a linear transformation when the normalized object is
described in homogeneous form. Second, the normalization
should be performed to data which has the same meaning.

The key to deal with above two issues comes from the spe-
cial structure of the matrix FTH. The compatibility equation
requires that FTH is a skew-symmetric matrix, and thus is of
the form

FTH =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (3)

The diagonal entries give three equations which describe an
orthogonal relationship between corresponding column vectors
of the fundamental matrix and a homography,

fTi hi = 0, i = 1, 2, 3. (4)

fi and hi denote the ith column vector of the fundamen-
tal matrix F =

(
f1 f2 f3

)
and the homography H =



(
h1 h2 h3

)
. The other three equations enforce the skew

symmetric property. However, only two of them are indepen-
dent. This makes sense because a homography has 8 degrees
of freedom (DoF). For the uncalibrated case, the intrinsic
matrix is unknown which removes three constraints. Thus,
only five independent constraints can be obtained from one
homography, three from the orthogonal relationship described
in Eq. (4) and the other two from the skew-symmetric property.

Our two-step reconditioning method realizes the non-trivial
normalization by fully using the special structure of matrix
FTH. First, by utilizing the orthogonal relationship, we de-
compose the original least squares problem Af = 0 into
three sub least squares problems Aifi = 0, where matrix
Ai =

(
hπ1

i hπ2

i · · · hπn

i

)T
and i = 1, 2, 3. Each column

fi of F is estimated individually. The relative scale factor for
each estimated solution fi can then be recovered by using the
skew-symmetric property of matrix FTH in Eq. (3). With this
formulation, every column of matrix Ai has the same meaning.
Besides, in order to do the translation, the matrix Ai should be
extended by an additional column 1n×1 = (1 1 . . . 1)T

which leads to Ãi = [Ai|1n×1]. Accordingly, the extended

solution vector f̃i is defined as f̃i =

(
λ−1i fi

0

)
, where λ denotes

the relative scale factor of the individually estimated solution.
The mathematical proof is given after the whole algorithm is
introduced. This extension turns each row of matrix Ai into
homogeneous form.

The normalization is then performed by inserting a 4 × 4
linear transformation matrix Qi and its inverse in between Ãi

and f̃i, resulting in

ÃiQiQ
−1
i f̃i = Âif̂i = 0, (5)

where Âi = ÃiQi and f̂i = Q−1i f̃i. The linear transformation
Qi includes a translation and a scaling. We regard each h

πj

i

as a 3d point. Following the idea of [10], the coordinates
are translated such that the centroid c of the set of all such
points becomes the origin.The coordinates are then scaled by
applying an isotropic scaling factor s to all three coordinates of
each point. Finally, we choose to scale the coordinates such
that the average distance of a point h

πj

i from the origin is
equal to

√
3. The linear transformation Qi and scaling related

variables are defined as below.

Qi =


s 0 0 0
0 s 0 0
0 0 s 0
−c1s −c2s −c3s 1

 . (6)
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m

(8)

The solution of the three sub least square problems Âif̂i = 0
can be easily obtained via SVD. Then f̃i = Qif̂i. The only
remaining task is to find the scale factor λi.

The skew-symmetric property of matrix FTH can be trans-
lated into another least squares problem Aλλ = 0 via DLT,
where λ =

(
λ1 λ2 λ3

)T
and Aλ is given by

Aλ =
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. (9)

f̃i,1:3 in Aλ is defined as the first three rows of vector f̃i. h
πj

i

is defined same as before. The full two-step linear method
(TSL) is described in Algorithm 1.

Algorithm 1 Two-Step Linear Method (TSL)
1: Input: A collection of independently estimated homogra-

phies Hs

2: for i = 1:3 do
3: Ãi = [Ai|1n×1]
4: Âi ← ÃiQi

5: f̂i ← solveÂif̂i = 0
6: f̃i ← Qif̂i
7: end for
8: λ =

(
λ1 λ2 λ3

)T ← solveAλλ = 0
9: Output: F =

(
f1 f2 f3

)
It should be noted that in order to apply the normalization,

the original least squares problem is modified. However, we
will see in the following that solving the modified prob-
lem Ãif̃i = 0 is equivalent to solving the original problem
Aifi = 0. Therefore, two questions need to be answered in
order to prove this claim:

1) After extending the matrix Ai by an additional column
1n×1 = (1 1 . . . 1)T , what is the null-space con-
figuration of Ãi?

2) Why does the solution of problem Ãif̃i = 0 have the

structure as f̃i =

(
λ−1i fi

0

)
?

The answers are given by proving the following two claims:

• Property 1
Rank(Ai) = 2, 1 ≤ dim(N(Ãi)) ≤ 2 when the number
of planes m ≥ 3, , where N(·) denotes the null space of
(·)

• Property 2

N(Ãi) =

(
N(Ai)

0

)
.

Proof. Property 1
Assuming that two camera matrices are given by P1 =

[I3×3|03×1] and P2 = [B|b], each homography induced by
a plane πj = [−vT

j , 1] observed by the two cameras can be
denoted as

Hπj ' B + bvT
j . (10)



Each row of matrix Ai contains the ith column of one
homography, which gives

h
πj

i ' Bi + vj,ib, (11)

where Bi denotes the ith column of the matrix B and vj,i

the ith element of the vector vj. It is obvious to see that if
we regard each row of matrix Ai as a general 3D point, all
the points h

πj

i are lying on the line with the direction of vj,ib
passing point Bi. Thus Rank(Ai) = 2.

Since matrix Ãi is obtained by adding an additional column
13×1 to Ai, it is also obvious to see that

Rank(Ai) ≤ Rank(Ãi) ≤ 3. (12)

Because

Rank(Ãi) + dim(N(Ãi)) = 4, (13)

thus we finally have

1 ≤ dim(N(Ãi)) ≤ 2.1 (14)

Proof. Property 2
Assuming x ∈ N(Ai), and x̃ ∈ N(Ãi), we have Aix =

0, and Ãix̃ = 0.

Obvioulsy, ∀x ∈ N(Ai), Ãi

(
x
0

)
= [Ai|1n×1]

(
x
0

)
= 0.

Thus,
(
N(Ai)

0

)
∈ N(Ãi).

Necessary condition Q.E.D.

On the other hand, assume ∀x̃ =

(
x
ω

)
, ω 6= 0.

Since Ãix̃ = 0,

⇒ Aix + ω1n×1 = 0,
⇒ ω1n×1 = 0,
⇒ ω = 0,
⇒ contradiction,

Thus, N(Ãi) ∈
(
N(Ai)

0

)
.

Sufficient condition Q.E.D.

Summarizing, N(Ãi) =

(
N(Ai)

0

)
.

Above mathematical proofs explain why we can get the
solution to the original problem by solving the reconditioned
least squares problems. One drawback of the proposed method
is that at least 3 planes (homographies) are needed for comput-
ing the fundamental matrix. Otherwise additional information
is needed for determining the exact null space.

1If Rank(Ãi) = 3, Ãi has only a one dimensional null space which
is the eigen vector corresponding to the smallest eigenvalue of matrix Ãi.
Otherwise, if Rank(Ãi) = 2, the final solution of problem Ãi f̃i resides
in a two dimensional null space. However, during our experiment, we never
observed the case of Rank(Ãi) = 2.

IV. EXPERIMENTAL EVALUATION

In this section, we compare the performance of DLT, HP
and TSL on both synthetic and real data. Numerical stability
of DLT and TSL as well as algorithmic complexity of the three
methods are also discussed.

The input homographies can be derived from either point or
line features as they are dual geometric entities [6, 7, 4]. We
use line features during the synthetic experiments, and point
correspondences during the experiment on real data.

A. Synthetic experiment

For each single experiment, we construct two artificial views
observing planes in a 3D environment. Groundtruth motion
and structure (planes) is generated in the same way as in [20].
Without loss of generality, the camera pose of the first view
is assumed to be identical with the world frame. The absolute
pose of the second view is defined by motion parameters lying
within a certain range. The rotation angles along each axis
(roll, pitch, yaw) lie within (−5◦, 5◦) and the translation in
each direction (X, Y, Z) is within (−100, 100). The structure is
randomly generated by creating N = 5 planes with known ho-
mographies. 4 groups of Gaussian noise (µ = 0, σ ∈ [0, 0.5])
corrupted points2 are created on each plane, which are used
for fitting the line features. The image size is 640×480 and the
focal length is fx = fy = 250. The relative motion parameters
are extracted from the estimated fundamental matrix F (in fact
from essential matrix E = KTFK).

As shown in Fig 1, both HP and TSL outperform DLT
in the accuracy of the estimated fundamental matrix and
the motion parameters. We use max norm of the difference
between Fgroundtruth and Festimated as a criterion for
assessing the accuracy of the estimated F. The estimated
rotation matrix is compared to groundtruth by computing the
anlge Θ = arccos(

trace(RT
groundtruthRestimated)−1

2 ). And the
estimated translation is compared against groundtruth by com-
puting the angle between two translation vectors tgroundtruth
and testimated. TSL is more noise resilient in terms of fun-
damental matrix estimation in comparison to HP. Concerning
the accuracy of the extracted motion parameters, TSL and HP
perform equally well.

B. Experiment on real images

The algorithm is tested on the famous Oxford Corridor
sequence. Homographies are estimated from Harris corner
correspondences [8]. Points on each plane are grouped manu-
ally and outliers are rejected by applying the Random sample
consensus (RANSAC) technique [5].

As shown in Fig. 2, the epipole estimated by TSL (i.e. the
intersection point of blue lines) is closest to groundtuth. The
epipole e is extracted from the null space of the fundamental

2As shown in [23], when the line is close to or passing through the origin
of the coordinate frame, the quality of the estimated homographies decreases
dramatically. This problem can be solved by proceeding a prior normalization
of the line parameters. For the sake of simplicity and without losing generality,
the lines generated in our experiment are forced to be away from the origin
of the coordinate frame by at least 10 pixels.



(a) Synthetic experiment configuration. (b) Max norm of difference between groundtruth and estimated F.

(c) Error in rotation. (d) Error in translation.

Fig. 1. Figure (a) shows the configuration of the experiment. The accuracy of fundamental matrix estimation is shown in Fig (b) with max norm as assessing
criteria. Figures (c) (d) separately depicts rotation and translation error of DLT,HP,TSL.

matrix. A small error in any entry of the fundamental matrix
can easily cause the resulting epipole to severly deviate from
the groundtruth location.

We can easily see that our conclusions from the synthetic
experiment are verified, namely that the proposed method
clearly outperforms DLT and shows advantages over HP as
well.

C. Numerical stability and algorithmic complexity

It is easy to understand why the performance of DLT can
be dramatically improved by including normalization. Without
the normalization, as shown in Eq. (1) and Eq. (2), some of the
entries are smaller than the others by several magnitude which
directly causes the serious ill-conditioning of the original least
squares problem. We record the numerical stability of DLT
and TSL. As can be seen in Fig 3, the condition numbers of
the three normalized sub least squares problem are far smaller
than the one of the DLT solution. The average variance of the

condition number also demonstrates that TSL is numerically
more stable. A simple complexity is given in Tab. I. In our
experiment, N = 80 and M = 5. TSL and HP lead to similar
performance under these conditions, while TSL however needs
less computational resources than HP.

TABLE I
ALGORITHM COMPLEXITY COMPARISON

Method Input Matrix size to be solved
HP N points (not coplanar, N > 8) AN×9

TSL M planes (M > 3) 3×AM×4 +A3M×3

It is worth pointing out that, during the experiment, we
discovered that if the consistency among the inter-frame
homographies is guaranteed, the estimated fundamental matrix
is always accurate and robust no matter which method is used.
Usually, perfect consistency constraints are available only in
implicit form which can only be achieved by iterative non-
linear methods, e.g. Joint Bundle Adjustment (BA-Joint) and



(a) Grouped point features in image one (b) Grouped point features in image two (c) Epipolar lines of groundtruth and all three
methods

Fig. 2. Grouped point features which are used for estimating the homographies are shown in Fig (a) and (b). Epipolar lines obtained by DLT(yellow),
HP(green), TSL(blue) and groundtruth (red) are shown in Fig (c).

(a) Average condition number of DLT and TSL (b) Average variance of condition number

Fig. 3. The average condition number under each noise level is shown in Figure (a). TSL1, TSL2 and TSL3 are the three sub least squares problems of TSL.
Figure (b) shows the corresponding average variance of the condition number.

AML [20, 3]. Explicit methods like [16, 22, 2] use a low-rank
approximation under the Frobenius norm or the Mahalanobis
norm to enforce the rank-four constraint. However, the explicit
form is derived from a relaxed consistency constraint which
means the consistency cannot be perfectly guaranteed. This
discovery in fact gives an alternative explanation to why the
direct estimation of the fundamental matrix by the compati-
bility equation is not stable.

V. CONCLUSION

In this paper, we revisited an old topic: accurately and
robustly estimating the fundamental matrix given a collection
of independently estimated homograhies. We first review three
classical methods and then show that a simple but non-
trivial two-step normalization within the direct linear method
achieves similar performance than the less attractive and more
computationally intensive hallucinated points based method.

We verify the correctness and robustness of our method by
giving a mathematical proof and an experimental evaluation on
both synthetic and real data. The numerical stability analysis
and algorithm complexity discussion finally demonstrates our
improvement and further advantages of the proposed tech-
nique.
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