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Abstract. 3D depth sensors such as LIDARs and RGB-D cameras have
become a popular choice for indoor localization and mapping. However,
due to the lack of direct frame-to-frame correspondences, the tracking
traditionally relies on the iterative closest point technique which does
not scale well with the number of points. In this paper, we build on top
of more recent and efficient density distribution alignment methods, and
notably push the idea towards a highly efficient and reliable solution for
full 6DoF motion estimation with only depth information. We propose
a divide-and-conquer technique during which the estimation of the rota-
tion and the three degrees of freedom of the translation are all decoupled
from one another. The rotation is estimated absolutely and drift-free by
exploiting the orthogonal structure in man-made environments. The un-
derlying algorithm is an efficient extension of the mean-shift paradigm
to manifold-constrained multiple-mode tracking. Dedicated projections
subsequently enable the estimation of the translation through three sim-
ple 1D density alignment steps that can be executed in parallel. An ex-
tensive evaluation on both simulated and publicly available real datasets
comparing several existing methods demonstrates outstanding perfor-
mance at low computational cost.

1 Introduction

3D depth sensors are a powerful alternative to cameras when it comes to au-
tomated localization and mapping. They perform especially well in man-made
indoor environments, which are often composed of homogeneously colored pla-
nar pieces, and thus provide sufficient well-defined 3D structures for depth sen-
sors, but insufficient texture for a reliable application of classical image-based
localization techniques. Further advantages of active sensing are given by abso-
lute (metric) scale operation (and therefore absence of scale drift) and resilience
against illumination or appearance changes in the environment, ultimately even
permitting operation in complete darkness. Depth sensors are an engineering an-
swer to the inverse problem of structure-from-motion, and ubiquitous success is
demonstrated by numerous successful applications in robotics [1, 2], autonomous
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driving (e.g. Google Chauffeur), and—more recently—consumer electronics (e.g.
Google Tango, Meta Glass).

Depth sensors produce point cloud measurements. The fundamental prob-
lem behind incremental motion estimation with depth sensors therefore is the
registration of two 3D point sets A and B. The most popular technique by
far is given by the Iterative Closest Point (ICP) method [3]. The basic idea is
straightforward: We find approximate correspondences between pairs of points
between A and B by simply associating the spatially nearest neighbor of set B
to each point of set A. We then minimize the sum of squared distances over a
euclidean transformation in closed form. We finally iterate over these two steps
until convergence. The complexity of the algorithm is an immediate consequence
of the need to find the closest point for each point in each iteration. Even the
fastest implementations [4, 5] therefore fail to deliver real-time performance on
CPU as soon as we consider modern sensors returning dense depth images at
VGA resolution. Distance-transform based ICP variants such as the ones used
in KinectFusion [6] and Kintinuous [7] achieve real-time performance, however
only by leveraging the power of a GPU.

A more efficient alternative registration principle transforms the data into
lower dimensional, spatial density distribution functions [8]. The general ad-
vantage of density alignment based methods is that they do no longer depend
on the establishment of one-to-one or even weighted, fuzzy one-to-many point
correspondences [9]. Our work lifts this concept to a general, real-time motion
estimation framework for 3D sensors. The key of our approach consists of ex-
ploiting the structure of man-made environments, which often contain sets of
orthogonal planar pieces. We furthermore rely on efficient dense surface normal
vector computation in order to estimate the rotation independently of the trans-
lation. As we will show, the exploitation of this prior furthermore allows us to
split up the translational alignment of the density distribution functions into
three independent steps, namely one along each direction in the corresponding
cartesian coordinate frame.

In summary, we present a highly efficient motion estimation framework for
popular 3D sensors such as the Microsoft Kinect, based on alignment of density
distribution functions. Our contributions are listed as follows:

– Efficient, decoupled estimation of camera rotation using mean-shift for multi-
mode tracking in surface normal vector distributions.

– Estimation of absolute rotation by exploiting the properties of Manhattan
Worlds, thus resulting in manifold-constrained multi-mode tracking.

– Efficient decoupled estimation of individual translational degrees of freedom
through 1D kernel density estimates.

– Integration into a real-time framework able to process dense depth images
with VGA resolution at more than 50Hz on a laptop with only CPU re-
sources. The result is an attractive 6 DoF tracker for autonomous mobile
systems, which often have limited computational resources or energy supply.

We conclude the introduction by reviewing related work. Section 2 then in-
troduces our main idea for motion estimation in Manhattan Worlds based on



Efficient Density-Based Tracking of 3D Sensors in Manhattan Worlds 3

3D sensors. The decoupled estimation of rotation and translation are presented
in Sections 3 and 4, respectively. Section 5 finally presents our extensive exper-
imental evaluation on both simulated and real data. We test and evaluate our
algorithm against existing alternatives on publicly available datasets, showcasing
outstanding performance at the lowest computational cost.

Related work: 3D Point set registration is a traditional problem that has
been investigated extensively in the computer vision community. We are limiting
the discussion to methods that process mainly rigid, geometric information. The
most commonly used method is given by the ICP algorithm [3], which performs
registration through iterative minimization of the SSD distance between spatial
neighbors in two point sets. The costly repetitive derivation of point-to-point
correspondences can be circumvented by representing and aligning point clouds
using density distribution functions. The idea goes back to [10] and [11], who
represent point clouds as explicit Gaussian Mixture Models (GMM) or implicit
Kernel Density Estimates (KDE), and then find the relative transformation (not
necessarily Euclidean) by aligning those density distributions. [8] summarizes
the idea of using GMMs for finding the aligning transformation, and notably
derives a closed-form expression for computing the L2 distance between two
GMMs. Yet another alternative which avoids the establishment of point-to-point
correspondences is given by [12], which utilizes a distance transformation in order
to efficiently and robustly compute the cost of an aligning transformation. The
distance transformation itself, however, is again computationally intensive.

Classical ICP or even density alignment based methods are prone to local
minima as soon as the displacement is too large. In order to tackle situations
of large view-point changes, [13] investigated globally optimal solutions to the
point set registration problem. This method is however inefficient and thus not
suited for real-time applications, where the frame-to-frame displacement anyway
remains small enough for a successful application of local methods.

From a more modern perspective, the ICP algorithm and its close derivatives
[4–7] still represent the algorithm of choice for real-time LIDAR tracking. The
upcoming of RGB-D cameras has however led to a new generation of 2D-3D
registration algorithms that exercise a hybrid use of both depth and RGB infor-
mation. [14] for instance uses the depth information along with the optimized
relative transformation to warp the image from one frame to the next, thus per-
mitting direct and dense photometric error minimization. [15–18] apply a similar
idea to RGB camera tracking. More recently, [19] even applied ICP and distance
transforms to semi-dense 2D-3D registration.

The special structure of man-made environments can be exploited to sim-
plify or even robustify the formulation of motion estimation with exteroceptive
sensors. [20] and [21] introduce planar surfaces into the mapper which are often
contained in our man-made environments. [22] combines point and plane features
towards fast and accurate 3D registration. In our work, we additionally exploit
the fact that indoor environments such as corridors frequently contain orthogo-
nal structure in the surface arrangement. [23] coined the term Manhattan World
(MW) to denote such an environment, and they estimated the camera orienta-
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Fig. 1. Overview of the proposed, decoupled motion estimation framework for 3D sen-
sors in Manhattan World.

tion through Bayesian vanishing point estimation in a single RGB image. [24]
presents a video compass using a similar idea. Tracking the Manhattan Frame
(MF) can be regarded as absolute orientation estimation, and thus leads to sig-
nificant reduction or even complete elimination of the rotational drift. Silberman
et al. [25] improve VP-based MW orientation estimation by introducing depth
and surface normal information obtained from 3D sensors. More recently, [26]
proposes the inference of an explicit probabilistic model to describe the world
as a mixture of Manhattan frames. They employ an adaptive Markov-Chain
Monte-Carlo sampling algorithm with Metropolis-Hasting split/merge moves to
identify von-Mises-Fisher distributions of the surface normal vectors. In [27],
they adapt the idea to a more computationally friendly approach for real-time
tracking of a single, dominant MF. Our work is closely related, except that our
mean-shift tracking scheme [28] is simpler and more computationally efficient
than the MAP inference scheme presented in [27], which depends on approxi-
mations using the Karcher mean in order to achieve real-time performance. We
furthermore extend the idea to full 6DoF motion estimation.

2 Overview of the Proposed Algorithm

Our method is summarized in Figure 1, and consists of three main steps. Note
again that we use only depth information:

– We first start by extracting surface normal vectors ni from the measured
point clouds, which later allows us to compute the orientation of the sensor
independently of the translation. Our method is a hyper-threaded CPU im-
plementation of the approach presented in [29], which can efficiently return
normal vectors for every pixel in a dense depth image. In order to get smooth
and regularized surface normal vectors, the depth map is pre-processed by
a smoothing guided filter [30].
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– We then rely on the assumption that there is a dominant MF in the environ-
ment. This allows us to simply track a number of modes in the density distri-
bution of the surface normal vectors, which can be done in a non-parametric
way by employing the mean shift algorithm on the unit sphere. It prevents
us from having to identify the parameters of a complete explicit model of the
density distribution function. We present a manifold-constrained mean-shift
algorithm that takes the orthogonality prior into account. Note that the op-
timization of the rotation is not a classical registration step, but a simple
tracking procedure that uses information of a single frame only to produce
a drift-free estimate of the absolute orientation.

– By knowing the absolute orientation in each frame, we can easily unrotate
the point clouds of a frame pair and assume that the transformation that
separates them is a pure translation. A further benefit is that the principal
directions of a Gaussian Mixture Model of the point cloud can be constrained
to align with the basis axes. In other words, the covariance matrices become
diagonal by which the purely translational alignment cost can effectively be
split up into three independent terms, namely one for each dimension. We
are therefore allowed to simply solve for each translational degree of freedom
independently. We notably do so by extracting kernel density distributions
of the point clouds projected onto the basis axes, and by performing three
simple 1D alignments. Again note that—due to the unrotation—the obtained
relative displacement is immediately expressed in the world frame.

We will in the following explain the details of the rotation and translation
alignment.

3 Absolute Orientation Estimation Based on
Manifold-Constrained Mean-Shift Tracking

We estimate the absolute orientation by tracking a dominant MF in the surface
normal vector distribution of each frame. We will start by introducing the mean-
shift tracking scheme that operates under the assumption that a sufficiently close
initialization point is known. We then conclude by explaining the initialization
in the very first frame, which builds on top of our mean-shift extension.

3.1 Basic idea

For structures that obey the MW assumption, the surface normal vectors ni
have an organized distribution on the unit sphere S2, which can be exploited for
recognizing the MW orientation. It is reasonable to assume that the unit vectors
ni are samples of a probability density function, as they are more likely to be
distributed around the basis axes of the MW (in both directions). The process of
finding the dominant axes is therefore equivalent to mode seeking in this density
distribution (i.e. finding local maxima in the density distribution function). The
modes are additionally constrained to be orthogonal with respect to each other.



6 Yi Zhou, Laurent Kneip, Cristian Rodriguez and Hongdong Li

We therefore express the MF by a proper 3D rotation matrix R ∈ SO(3) of which
each column rj captures the direction of one of the dominant axes of the MF.
Special care however needs to be taken in order to deal with the non-uniqueness
of the representation, as each rj could in principle be replaced by its negative
(although we ensure that R always remains a right-handed matrix).

A popular, fast, and notably non-parametric method to seek modes is given
by the mean shift algorithm [31]. Given an approximate location for a mode,
the algorithm applies local Kernel Density Estimation (KDE) to iteratively take
steps in the direction of increasing density. We apply this idea to our unit normal
vectors on the manifold S2 using a Gaussian kernel over conic section windows
of the unit sphere. The result is optimal under the assumption that the angles
between the normal vectors and their corresponding mode centre have a Gaussian
distribution. We independently compute one mean shift vector for each basis
vector rj , which potentially results in a non-orthogonal updated MF R̂. We

therefore finish each overall iteration by reprojecting R̂ onto the nearest R ∈
SO(3). The following explains the update of each mode within a single mean-shift
iteration, as well as the projection back onto SO(3).

3.2 Mean shift on the unit sphere

The core of our method is a single mean shift iteration for a dominant axis given
a set of normal vectors on S2. It works as follows:

– We start by finding all normal vectors that are within a neighbourhood of
the considered centre rj . The extent of this neighbourhood is notably defined
by the kernel-width of our KDE. In our case, the window is a conic section
of the unit sphere and the apex angle of the cone θwindow defines the size of
the local window. Relevant normal vectors for mode j need to lie inside the
respective cone, and thus satisfy the condition

‖ni × rj‖ < sin(
θwindow

2
). (1)

Let us define the index ij which iterates through all ni that fulfill the above
condition. Note that—if choosing θwindow < π

2 —every ni contributes to at
most one mode.

– We then project all contributing nij into the tangential plane at rj in order
to compute a mean shift. Let

Q =
[
rmod(j+1,3) rmod(j+2,3) rmod(j+3,3)

]
. (2)

Then
n′ij = QTnij (3)

represents the normal vector rotated into the MF, with a cyclic permutation
of the coordinates such that the last coordinate is along the direction of
axis j. In order for the distances in the tangential plane to represent proper
geodesics on S2 (or equivalently angular deviations), we apply the Riemann
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Fig. 2. Illustration of our cascaded manifold-constrained mean-shift implementation.
We first compute updates sj for each mode on S2, which brings us from the black to the
blue modes. The blue modes however do no longer represent a point on the underlying
manifold SO(3). We find the nearest rotation through a projection onto the manifold
(green arrow), thus returning the red modes which are closest and at the same time
fulfill the orthogonality constraint.

logarithmic map. The rescaled coordinates in the tangential plane are given
by

m′ij =
sin−1(λ) sign(n′ij ,z)

λ

[
n′ij ,x
n′ij ,y

]
, (4)

where λ =
√
n′2ij ,x + n′2ij ,y.

Note that this projection has the advantage of correctly projecting normal
vectors from either direction into the same tangential plane.

– We compute the mean shift in the tangential plane

s′j =

∑
ij
e−c‖m

′
ij
‖2m′ij∑

ij
e−c‖m

′
ij
‖2 . (5)

where c is a design parameter that defines the width of the kernel.
– To conclude, we transform the mean shift back onto the unit sphere using

the Riemann exponential map

sj =
[
tan(‖s′j‖)
‖s′j‖ s′

T
j 1

]T
, (6)

where [·] returns the input 3-vector divided by its norm.
– The updated direction r̂j is finally obtained by reapplying the current rota-

tion with permuted axes
r̂j = Qsj . (7)

3.3 Maintaining orthogonality

After computing a mean shift for each mode rj , we effectively obtain an expres-
sion for the updated “rotation matrix”

R̂ =
[
r̂0 r̂1 r̂2

]
. (8)
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This update may however violate the orthogonality constraint on our rotation
matrix. We easily circumvent this problem by re-projecting R̂ onto the closest
matrix on SO(3) under the Frobenius norm. Each column of R̂ is re-weighted
by a factor λi which describes how certain the observation of a direction is. In
order to determine the weighting factors, we introduce a non-parametric variance
approximation by utilizing a double parzen-widow-based KDE. The method is
detailed in the supplemental material. The updated rotation matrix is finally
given by

R = UVT , where (9)

[U,D,V] = SVD(
[
λ0r̂0 λ1r̂1 λ2r̂2

]
). (10)

As illustrated in Figure 2, our method thus represents a double, cascaded
manifold-constrained mean-shift extension, where the update of each mode is
enforced to remain on the S2 manifold, and the combination of all three modes
is each time enforced to remain an element on the SO(3) manifold. In other
words, in each iteration we compute the SO(3)-consistent update that is closest
to the individual mean-shift updates.

3.4 Initialization in the first frame

We use mean-shift clustering to initialize the algorithm, and thus build on top of
our MF tracking scheme. The procedure is summarized in Figure 3. We simply
run the MF tracking procedure for 100 times, each time starting from a random
initial rotation. This returns a redundant set of candidate MFs, within which we
need to identify the most dominant cluster in order to complete the initialization.
In fact, typically only a very small number of trials will not converge to the
dominant MF if there is only one MF in the observed scene. However, the MF
estimates are not directly comparable since one and the same MF may indeed
be found or represented by any permutation or negation of individual basis
vectors, as long as the result remains a right-handed matrix. In fact, there are 24
possible representations for one and the same MF. In order to render the results
comparable and identify the dominant MF cluster, we convert the matrices into a
canonical form based on a set of simple rules. For instance, the number of possible
representations can already be reduced to 4 by simply requiring the basis vector
with the potentially highest z-coordinate to be the one corresponding to the
z-axis. To finally identify the dominant cluster, we simply group them based on
a simple distance metric between rotation matrices, as well as a fixed threshold.

4 Translation Estimation through
Separated 1-D Alignments

In this section, we show that by taking advantage of the MW properties, the
translation in each dominant direction can be estimated separately. We then
discuss the 1D alignments which rely on kernel density distribution functions. A
convergence analysis is given in Section 2 of the supplementary material.
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Fig. 3. The mechanism of the initial Manhattan frame seeking. The first figure shows
a random initial MF. As indicated by one example, each dominant direction is refined
by performing mean-shifts on the corresponding tangential plane. The second figure
shows the redundant result obtained after full MF fitting from 100 random starts. The
redundancy of the estimated rotation matrices R is removed by first converting them
into a canonical form, and then performing histogram-based non-maximum suppres-
sion. The final result is shown in the fourth figure. For the sake of a clear visualization,
the illustrated example is contaminated by a rather significant amount of uniformly
distributed noise. Note that the proposed seeking strategy is even able to find multiple
MF s in the environment, and thus come up with a mixture of Manhattan frames.

4.1 Independence of the three translational degrees of freedom

Although we are not using an explicit model for representing the density dis-
tributions, let us assume for a moment that it is given by a simple Gaussian
(i.e. a toy GMM) to see the implications of a Manhattan world and a known
absolute orientation of the Manhattan frame. A Gaussian in 3D with mean µ
and covariance Σ is simply given by

φ(x|µ,Σ) =
exp[−0.5(x− µ)TΣ−1(x− µ)]√

(2π)3|det(Σ)|
. (11)

There are two Gaussians in two frames and—using the known absolute orien-
tations to unrotate the point clouds—they are separated by a pure translation
t. By adding t to the mean of the Gaussian in the second frame, the kernel
correlation between the two Gaussians can be calculated by

D =

∫
φ(x|µ1,Σ1)φ(x|(µ2 + t),Σ2)dx

= φ(0|µ1 − µ2 − t,Σ1 + Σ2). (12)
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We now simplify the case by assuming that the unrotated point clouds can be
expressed by a 3D Gaussian distribution with a diagonal covariance matrix. This
is reasonable since the unrotated point clouds will indeed contain sets of points
that are parallel to the basis axes. Let Σd = Σ1 +Σ2 = diag(σdx, σdy, σdz), and
µd = µ1 − µ2. Then the kernel correlation becomes

D =
exp[−0.5( (tx−µdx)2

σdx
+

(ty−µdy)2
σdy

+ (tz−µdz)2
σdz

)]√
(2π)3σdxσdyσdz

= k · e
(tx−µdx)2

−2σdx e
(ty−µdy)2

−2σdy e
(tz−µdz)

2

−2σdz . (13)

The goal of the alignment in this toy example is to find t such that D is max-
imized. It is clear that the above expression involves the product of three in-
dependent and positive elements, which means that maximizing each one inde-
pendently will also maximize the overall distance between the Gaussians. Note
that—in practice—the shape of the measured distributions is also influenced by
occlusions under motion. However, we confirmed through our experiments that
this has a neglible influence on the accuracy of the translation estimation in
frame-to-frame motion estimation, as the location of the peaks in the distribu-
tion typically remains very stable.

4.2 Alignment of kernel density distributions

Our translation alignment procedure relies on implicit kernel density distribu-
tion functions. Assuming that the absolute orientation with respect to the MF is
given, each degree of freedom can be solved independently, as in our toy GMM-
based example. We therefore compensate for the absolute rotation of the point
clouds, and project them onto each basis axis to obtain three independent 1D
point sets. Inspired by popular point-set registration works, we then express the
1D point sets via kernel density distribution functions. We sample the function
at regular intervals between the minimal and the maximal value. A Gaussian
kernel with constant width is used to extract the density at each sampling posi-
tion. Finally, the alignment between pairs of discretely sampled 1D signals seeks
the 1D shift that minimizes the correlation distance between the two signals. It
is worth to note that minimizing the correlation distance is equivalent to max-
imizing the kernel correlation as discussed above. The correlation distance for
each pair of 1-D discrete signals is defined as

F =

n∑
i=1

(f(xi + t)− g(xi))
2
, xi ∈ X, (14)

where X denotes a set of sampling positions for which a density is extracted using
a Gaussian kernel. The functions f and g record the density at discrete sampling
positions. The correlation distance is the sum over the squared differences at
each sampling position. t is continuous, and we therefore obtain density values
in between the sampled positions by employing linear interpolation. Note that
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the procedure has linear complexity in the number of points. The convergence
analysis of the 1-D alignment is detailed in the supplemental material.

5 Experimental validation

This section evaluates our algorithm. We start by discussing parameter choices.
We then compare our algorithm against two other established state-of-the-art
motion estimation solutions on several publicly available datasets. We further-
more provide a reconstruction of a building-scale scene, and conclude by dis-
cussing the limitations and failure cases of our method.

Further simulation experiments and analyses are provided in the supplemen-
tal material. It contains 1) an evaluation of the robustness of our manifold-
constraint mean-shift based MF-seeking strategy and 2) the benefit of aligning
the point density distributions along the main axes of the MF.

5.1 Parameter configuration

In the initial MF seeking (i.e. the initialization of the absolute rotation from
scratch), the total number of random starts Ntrial is set to 100. The apex angle
is set to 90◦ during the initialization and 20◦ during later tracking. This reduction
of the cone apex angle is justified by the assumption that the orientation of the
MF does not change too much under smooth motion. Each iterative mean-shift
procedure terminates once the angle of the update rotation within one iteration
falls below a threshold angle θConverge, which we set to 1◦. The factor c in Eq
(5) is set to 20. Mean-shift updates are furthermore required to have a minimum
number Nmin of surface normal vectors within the dual-cone. The value of Nmin
depends on the resolution of the input depth map. For low resolution sensors
(e.g. Kinect v.1, 160× 120), Nmin = 30. For high resolution sensors (Kinect v.2,
640× 480), Nmin = 100.

The parameters for the translation estimation contain two parts. The first
part concerns the extraction of the density distributions. The sampling between
the minimum and maximum value along each basis axis is made in constant
intervals of δs = 0.01m. The standard deviation σ of the Gaussian kernel for
the KDEs is set to 0.03m. The second part concerns the actual minimization
of the correlation distance between each pair of 1D distributions. We simply
employ gradient descent with an initial step size of 0.001m. The search range is
furthermore restricted to ±0.1m.

5.2 Evaluation on real data

We compare the performance of our method against two state-of-the-art, open-
source motion estimation implementations for 3D sensors, namely DVO [14] and
KinectFusion’s ICP [6, 7]. DVO uses both RGB images and depth maps while
ICP and our algorithm use only depth information. We evaluate the methods on
several recently published and challenging benchmark datasets from the TUM
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Dataset
DVO ICP Our Method

êR êt ẽR ẽt êR êt ẽR ẽt êR êt ẽR ẽt

TUM 1 4.91 0.15 4.46 0.13 6.64 0.17 6.01 0.15 1.02 0.02 0.82 0.01

TUM 2 2.21 0.10 1.59 0.06 9.07 0.27 7.57 0.26 0.76 0.03 0.55 0.02

TUM 3 10.90 0.20 3.89 0.07 12.80 0.17 10.17 0.16 0.94 0.04 0.70 0.02

TUM 4 0.57 0.02 0.47 0.02 8.66 0.29 7.17 0.27 1.01 0.03 0.80 0.03

TUM 5 0.94 0.02 0.74 0.02 16.80 0.24 14.19 0.22 1.12 0.04 0.87 0.02

IC 1 10.91 1.36 9.37 0.88 6.78 0.15 5.42 0.10 1.55 0.13 1.12 0.09

IC 2 6.97 0.70 6.58 0.45 6.31 0.16 5.28 0.10 1.53 0.10 1.07 0.08

Table 1. Performance comparison on several indoor datasets.

RGB-D [32] and IC-NUIM [33] series. The datasets we picked for evaluation are
listed below and the results are summarized in Table 1. The selection of the
datasets is based on the existence of sufficient MW structure in the observed
scenes.

– TUM 1, 2, 3, 4, 5: fr3 (cabinet, structure notexture/ texture far/ near)
– IC 1,2: Living Room kt3, Office Room kt3.

Note that for TUM 4, IC 1 and IC 2, our algorithm cannot process the
entire sequence due to algorithm limitations that are discussed in the following
section. However, in order to remain fair, we evaluate the performance of all
algorithms on the same segments of each sequence. A detailed result of the
TUM 1 dataset is shown in Figure 4. We also evaluate each method using the
tool given by [32] and provide root-mean-square errors ê and median errors ẽ per
second for both rotation (degree) and translation (meter) estimation in Table 1.
The best performing method’s error is each time indicated in bold.

It can be seen that in most cases, once the MW assumption is sufficiently
met, our result provides very low drift in both rotation and translation. It is
outperforming both ICP and DVO in most situations though DVO achieves
better performance once there is sufficient texture in the environment. On the
other hand, our method remains computationally efficient even on depth images
with VGA resolution, and processes frames at about 50Hz on a CPU. While DVO
is real-time capable as well (about 30 Hz), ICP quickly drops in computational
efficiency as the number of points increases, and can only work in real-time with
the help of a powerful GPU.

5.3 3D reconstruction

In order to demonstrate that our algorithm can work in larger scale environments
such as corridors and open-space offices, we present a reconstruction result of
the TAMU RGB-D dataset (corridor A const) [34] in Fig 5. The trajectory is
about 40 meters long. Our algorithm robustly tracks the camera until only one
dominant direction of the MW can be observed. The reconstructed structures
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(a) RGB image. (b) Depth map.

-0.5
-1

X[m]

-1.5
-2

Trajectory

-2.5
-0.5

0

0.5

Y[m]

1

1.5

1

1.5

2

Z
[m

]

GT

result

DVO

ICP

(c) 3D Trajectory.

frame number

0 200 400 600 800 1000 1200

d
e

g

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Rotation Matrix Difference (result)

RMD

Fitting Curve

(d) ARE of our
method.

frame number

0 200 400 600 800 1000 1200

d
e
g

0

10

20

30

40

50

60

70

80

90
Rotation Matrix Difference (DVO)

RMD

Fitting Curve

(e) ARE of DVO.

frame number

0 200 400 600 800 1000 1200

d
e
g

0

20

40

60

80

100

120

140

160

180
Rotation Matrix Difference (ICP)

RMD

Fitting Curve

(f) ARE of ICP.

frame number

0 200 400 600 800 1000 1200

d
e

g

-200

-150

-100

-50

0

50

100

150

200
Roll

GT

result

DVO

ICP

(g) Estimation of roll.

frame number

0 200 400 600 800 1000 1200

d
e

g

-60

-40

-20

0

20

40

60

80
Pitch

GT

result

DVO

ICP

(h) Estimation of pitch.

frame number

0 200 400 600 800 1000 1200

d
e
g

0

50

100

150

200

250

300

350

400
Yaw

GT

result

DVO

ICP

(i) Estimation of yaw.

frame number

0 200 400 600 800 1000 1200

m

-3

-2.5

-2

-1.5

-1

-0.5

0
Translation in X direction

GT

result

DVO

ICP

(j) Translation estima-
tion in x axis.
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Fig. 4. Evaluation of our method on the TUM dataset cabinet and comparison to two
alternative odometry solutions (DVO and ICP). We provide the 3D trajectory, the
absolution rotation error (ARE), and the translational error in each degree of freedom
for each method. Our method (red curve) outperforms both DVO (blue curve) and
ICP (magenta curve) in terms of absolute drift in rotation and translation. Relative
pose errors can be found in Table 1. Note that only DVO uses RGB images.

(walls and ground, walls at the corridor corner) preserve orthogonality very well,
which demonstrates the good quality of the motion estimation. Note that only
depth information is used for the tracking. Color information is only used for
visualization purposes.
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5.4 Limitations and failure cases

Fig. 5. Reconstruction of a
corridor scene.

The existence of a MW structure in the environ-
ment is key to the proposed method. Therefore,
the effectiveness of our work currently has the fol-
lowing limitations:

– Only one mode of a MF is observed.
– If only two orthogonal planes are observed,

the tracking can continue. However, due to the
loss of structural information, the density dis-
tribution in the unobserved direction becomes
very homogeneous, and the estimation of the
respective translation becomes inaccurate.

– In the case where two MFs are very close to
each other (which could happen in so-called
Atlanta environments), our mean-shift scheme
may converge in between the two modes,
which leads to inaccurate rotation estimation
and thus also potentially wrong translation es-
timation.

6 Discussion

We present an efficient alternative to the iterative closest point algorithm for real-
time tracking of modern depth cameras in Manhattan Worlds. We exploit the
common orthogonal structure of man-made environments in order to decouple
the estimation of the rotation and the three degrees of freedom of the translation.
The derived camera orientation is absolute and thus free of long-term drift, which
in turn benefits the accuracy of the translation estimation as well. We achieve
not only competitive accuracy, but also superior computational efficiency. Our
method operates robustly in large-scale environments, even if the Manhattan
World assumption is not fully met. In summary, the presented framework has
high value in mobile robotics or industrial applications, where computational
load or the lack of texture are major concerns. Code will be released as open-
source.

Our future work consists of removing the restriction to pure Manhattan
worlds. By adding a real-time mode detection and removal module, we can
extend our work to the more general case of piece-wise planar environments.
Interestingly, the cascaded mean-shift strategy presented in this work will still
be applicable, the only difference being that the underlying manifold will no
longer be SO(3), but the manifold of all direction bundles with constant in-
scribed angles.
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