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Abstract— Low-drift rotation estimation is a crucial part of
any accurate odometry system. In this paper, we focus on the
problem of 3D rotation estimation with dense depth sensors in
environments that consist of piece-wise planar structures, such
as corridors and office rooms. An efficient mean-shift paradigm
is developed to extract and track planar modes in the surface
normal vector distribution on the unit sphere. Robust and piece-
wise drift-free behavior is achieved by registering the bundle
of planar modes from the current frame with respect to a
reference frame using a general `1-norm regression scheme.
We furthermore add a memory scheme to the regular birth
and death of modes, which further compensates accumulated
rotational drift when previously discovered modes are revisited.
We discuss the robustness issue and evaluate our algorithm
on both custom synthetic as well as real publicly available
datasets. Our experimental results demonstrate high robustness
and effectiveness of the proposed algorithm.

I. INTRODUCTION

3D depth sensors such as RGB-D cameras are a popular al-
ternative to classical cameras for the purpose of autonomous
navigation and robotic perception. Active sensors are par-
ticularly advantageous when it comes to structures with
homogeneously colored surfaces, textureless environments,
or even operation in darkness. The point clouds produced
by these sensors come in metric scale. They can be used
directly to perform point registration via the iterative closest
point method (ICP) [1], thus resulting in motion estimation
in absolute scale. However, ICP-based motion estimation
is either too easy to get trapped in local minima, or too
computationally expensive to meet the requirements of real-
time application. Considering the fact that rotational drift is
an important part of the inaccuracy of position estimation,
the goal of this paper is to develop an efficient and piece-
wise drift-free 3D rotation estimation method for RGB-D
cameras operating in man-made environments.

Our approach relies on surface normal vectors, which
can be extracted directly from point clouds, and convey
rich geometric information for applications like scene seg-
mentation and object classification [2], structure and pose
estimation [3], [4], and even grasping or manipulation [5].
Normal vector distributions typically contain a special struc-
ture due to the vast availability of planar surfaces in man-
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Fig. 1. Overview of the proposed 3D rotation estimation algorithm for
depth cameras in piece-wise planar environments.

made environments. These structural regularities notably lead
to modes in the normal vector density distribution.

Rotation estimation for depth cameras by exploiting the
organized structure of surface normal vector distributions has
been studied previously. However, existing works are limited
to either strict Manhattan World (MW) environments [6], [7]
or the further relaxed Mixture of Manhattan Frames (MMF)
case [8]. Following the idea of [7], [8], we also exploit
surface normal vector distributions, but extend it to the more
general case of piece-wise planar environments with arbitrary
pieces of slanted planes.

The contribution of this paper is three-fold:
• Assuming that there are several dominant planes in the

environment, we present a non-parametric method for
discovering and tracking planar modes in the density
distribution of the surface normal vectors. It is a mean-
shift algorithm that operates on the unit sphere, and
avoids the need of estimating the parameters of a com-
plete explicit model of the density distribution function.

• Second, we present a robust and piece-wise drift free
rotation estimation method which solves the joint reg-
istration of pairs of corresponding planar modes in
a general `1-norm regression scheme. This algorithm
works robustly with up to 50% of badly tracked modes.

• We introduce a basic memory scheme that remembers
dying planar modes. We show that the memory is
capable of further compensating drift when previously
visited planar structures are reobserved. This function-
ality has similarities with loop closures in classical
SLAM.

The result is a simple but accurate, robust and highly



efficient strategy for online tracking of the rotation of a depth
camera. Our paper is organized as follows: We conclude
the introduction by reviewing the related work. Section II
declares all mathematical notations used in this paper as well
as all underlying assumptions. Section III presents the core
of our method. Section IV finally gives a performance and
robustness analysis on both synthetic and real datasets. We
conclude with a summary and a discussion about potential
future work.

Related work: Online rotation estimation is related to
odometry or motion estimation in general. We limit the
discussion to solutions that utilize active sensors such as
LIDARs and RGB-D cameras because we only use depth
information in this work. The most commonly used method
is given by the ICP algorithm [1] which performs registra-
tion through iterative minimization of the sum of squared
distances between spatial neighbors in two point clouds.
Classical ICP based methods are prone to local minima as
soon as the displacement increases and thus the point cloud
structure is subjected to too intensive changes. In order to
tackle situations of large view-point changes, the community
has therefore investigated globally optimal solutions to the
point set registration problem, such as [9]. These methods are
however inefficient and thus not suited for real-time applica-
tion on CPU. Even the most recent local ICP methods [10],
[11] achieve real-time frame rate for sub-VGA resolution
only (e.g. 320× 240 pixel).

The upcoming of RGB-D cameras has however led to
a new generation of 2D-3D registration algorithms that
exercise a hybrid use of both depth and RGB information.
[12] for instance uses the depth information along with the
optimized relative transformation to warp the image from
one frame to the next, thus permitting direct and dense
photometric error minimization. We evaluate our algorithm
on datasets captured by a Microsoft Kinect. We include a
comparison of our results to the method presented in [12].

There are some recent works that directly build on top of
surface normal vectors. By exploiting the structural regularity
of man-made environments, [7] presents a real-time maxi-
mum a posteriori (MAP) inference of the local Manhattan
Frame (MF). This work heavily relies on GPU resources
for a real-time inference of a parametric model, and is
furthermore strictly limited to the Manhattan world scenario.
More general, non-parametric model estimation is presented
in [8], which can handle the arbitrary piece-wise planar case.
While strongly related to our work, the method in [8] is more
computationally expensive and aims at scene understanding
and segmentation rather than accurate rotation estimation.

II. PROBLEM DEFINITION AND PREREQUISITES

Our main assumption is that the environment is static and
consists of multiple pieces of planar structures. Under this
assumption, the surface normal vectors NC = [n1, . . . ,nM ]
distribute in an organized and distinctive manner on the unit
sphere1. Given surface normal vectors extracted from point

1Superscript C denotes that the surface normal vectors are described in
the coordinate system of the sensor.

clouds by using the method in [13], our goal is two-fold:

• Discover and keep track of the planar modes F :=
[f1, f2, ..., fN ] on the unit sphere. F is a 3 ×N matrix
which defines a bundle of planar direction vectors fi.
For simplicity, we call F a bundle.

• Estimate the relative rotation R between the reference
and the current frame such that Fcur ' RFref . '
means that the equality is valid up to noise or outliers.

By a reference frame, we understand a frame that is

• the very first frame in the sequence where planar modes
are initially discovered.

• a frame further in the sequence selected upon a bundle
update. During tracking, existing modes may die or new
modes may be discovered which leads to a so-called
bundle update.

III. NORMAL-VECTOR BASED ROTATION ESTIMATION

The surface normal vectors NC of piece-wise planar
structures always have some organized distribution on the
unit sphere S2 which can be exploited for tracking the
orientation of the depth camera. It is reasonable to assume
that these unit vectors ni are samples of a probability density
function, as they are more likely to be distributed around the
normal vectors of the plane pieces. The process of finding
these planar direction vectors is therefore equivalent to mode-
seeking in this density distribution (i.e. finding local maxima
in the density distribution function).

A popular, fast, and notably non-parametric method to
seek modes is given by the mean shift algorithm [14]. Given
an approximate location for a mode, the algorithm applies
local Kernel Density Estimation (KDE) to iteratively take
steps in the direction of increasing density. We apply this
idea to our unit normal vectors on the manifold S2 using
a Gaussian kernel over conic section windows of the unit
sphere. The result is optimal under the assumption that the
angles between the normal vectors and their corresponding
mode centre have a Gaussian distribution. We track the bun-
dle by simply tracking each individual mode independently.
Each mode is tracked by starting from its previous position
on the unit sphere. While this means that we allow inter-
mode angle variation during tracking the bundle Fcur, we
follow the mode-tracking by registering the entire bundle
with respect to a fixed bundle Fref in a reference frame,
thus avoiding drift-effects.

A. Mean-shift on the unit sphere

The core of our method is a single mean shift iteration
for each planar mode given a set of normal vectors on S2.
It works as follows:

• We start by finding all normal vectors that are within a
neighbourhood of the considered centre fj . The range
of this neighbourhood is notably defined by the width
of our kernel for the KDE. In our case, the window is
a conic section of the unit sphere and the apex angle of
the cone θwindow defines the size of the local window.



Relevant normal vectors ni for mode j need to lie inside
the respective cone, and thus pass the condition

6 (ni, fj) <
θwindow

2
. (1)

Let us define the index ij which iterates through all ni
that fulfill the above condition.

• We then project all contributing nij into the tangential
plane at fj in order to compute a mean shift. Let Q
represent the rotation matrix that rotates fj to [0, 0, 1]T .
Q can be obtained by

Q = I + [v]× + [v]2×
1− c
s2

, (2)

where v = fj × [0, 0, 1]T , s = ‖v‖, c = fTj [0, 0, 1]T ,
and [v]× is the skew-symmetric matrix of v. Then

n′ij = Qnij (3)

represents the normal vectors rotated such that the last
coordinate is along the direction of fj . In order for
the distances in the tangential plane to represent proper
geodesics on S2 (or equivalently angular deviations), we
apply Riemann exponential map. The rescaled coordi-
nates in the tangential plane are given by

m′ij =
sin−1(λ) sign(n′ij ,z)

λ

[
n′ij ,x
n′ij ,y

]
, (4)

where λ =
√
n′2ij ,x + n′2ij ,y.

Note that—due to the factor sign(n′ij ,z)—this projection
has the advantage of correctly projecting normal vectors
from either direction sense into the same tangential
plane.

• We compute the mean shift in the tangential plane

s′j =

∑
ij
e−c‖m

′
ij
‖2m′ij∑

ij
e−c‖m

′
ij
‖2 . (5)

c is a design parameter that defines the width of the
kernel in the tangential plane. It can be derived from
θwindow.

• To conclude, we transform the mean shift back onto
the unit sphere using the Riemann logarithmic map. The
update mode f?j is finally obtained by compensating the
rotation Q.

f?j = QT
[
tan(‖s′j‖)
‖s′j‖ s′

T
j 1

]T
, (6)

where [·] returns the input 3-vector divided by its norm.

B. Robust rotation estimation

Once the new location of each mode of the bundle F has
been tracked, the rotation from the reference frame to the
current frame can be obtained by applying a least-squares
fitting method [15]. Each mode of Fref and Fcur is regarded

Fig. 2. Illustration of the geometry of the problem. Three modes exist
in both the reference view (left) and the current view (right). The chordal
distance di between each corresponding pair of modes is indicated with
a black line segment. The relative rotation from the reference view to the
current view is the solution that minimizes the sum of the chordal distances
(in a general sense of `1-norm regression).

as a 3D point. This reduces the problem to finding a rotation
R that minimizes the cost function

Σ2 =

N∑
i=1

(f curi −Rfrefi )T (f curi −Rfrefi )

=

N∑
i=1

(f curi
T f curi + frefi

T
frefi − 2f curi

TRfi
ref )

(7)

This cost function has a geometric meaning as shown in
Fig. 2. Each item of the cost function is the square of the
chordal distance between a pair of corresponding modes on
the unit sphere. Minimizing Σ2 therefore is equivalent to
finding the closest bundle near Fcur that has same inter-
mode angles than Fref , and notably under an `2-metric (i.e.
squared chordal distances).

We apply Arun’s method [15]. Minimizing Σ2 is equiva-
lent to maximizing the third cost term because the previous
terms are constant. The original minimization problem there-
fore turns into maximizing

L =

N∑
i=1

f curi
TRfi

ref

= Trace(

N∑
i=1

Rfi
ref f curi

T ) = Trace(RH)

(8)

where H :=
∑N
i=1 fi

ref f curi
T . Let the SVD of H be H =

UΛVT . The best rotation matrix is R = VUT . A reflection
check is necessary for the case of det(R) = −1. Readers
can find the detailed mathematical proof in [15].

For the sake of robustness, we replace the least-squares
method with a robust general `1-norm regression scheme.
The new optimization problem becomes

R = argmin
R

n∑
i=1

|f curi −Rfrefi | (9)

where |·| returns the length of a given vector. The most
common tool for solving `p-norm regression problems with



Fig. 3. Initialial mode seeking. The first figure shows the pattern that defines the starting coordinates for the mean-shift clustering. The second figure shows
a mean-shift in a tangential plane starting from a given coordinate. The histogram-based non-maximum suppression is shown in the third figure. It splits
off mode centres by picking one mode and creating a histogram of rotation distances with respect to all other modes. The final result after non-maximum
suppression is shown in the last figure. Four planar modes are found and highlighted with different colors.

an objective function format like Eq. 9 is the iteratively
reweighted least squares (IRLS) method [16]. In our case,
iterative reweighting is easily done by iteratively finding the
rotation matrix Rk that maximizes

L = Trace(

N∑
i=1

wiRkfi
ref f curi

T ), where (10)

wi = |f curi −Rk−1f
ref
i |−1.

As this remains a linear problem in each iteration, Arun’s
method [15] remains applicable. Section IV-B illustrates
the benefit of the `1-extension. The pseudo code of bundle
tracking and robust rotation estimation is given in Alg. 1.

C. Initialization and bundle update

We use mean-shift clustering to initialize the algorithm,
and thus build on top of our planar mode tracking scheme.
The procedure is summarized in Fig. 3. In order to guarantee
that the mode-seeking covers the whole space, the unit sphere
is divided equally along longitudes and latitudes which gives
a set of starting coordinates for the mean-shift tracking.
Mean-shift iterations starting from neighboring coordinates
may converge to the same mode, which is why we clean the
identified set of modes by a histogram-based non-maximum
suppression.

New modes may appear or disappear as view-point
changes. If the density of surface normal vectors in one
mode decreases to less than a designed threshold, the mode
is dying and removed from the reference bundle Fref . We
find new modes by a mode discovery module, and update the
reference bundle Fref each time a new mode is found2. The
mode-discovery module continuously monitors the number
of surface normal vectors in each cell of the above mentioned
grid. If a new mode appears, the number of the surface
normal vectors in that direction will grow substantially, thus
triggering mean-shift tracking from the center of the cell.
Note that this operation is much more expensive than simple
mode tracking. We therefore run this monitoring in a separate
thread and at a lower frame rate, thus maintaining real-time
performance for the actual rotation estimation.

2Note that—in order to reduce drift—we simply rotate persisting modes
forward rather than replacing them by their tracked equivalent.

Algorithm 1 Bundle tracking and rotation estimation.
1: function BundleTracking(NC,Fref ,Ft)
2: Ft+1 = ∅
3: for each f ti do
4: if f ti is not dying then
5: f t+1

i ← Mean-shift based mode update.
6: Push back f t+1

i to Ft+1

7: end if
8: end for
9: if numel(Ft+1) < 2 then

10: return []. . Tracking lost.
11: end if
12: wi = 1, i = 1, 2, ..., N . N = number of mode pairs.
13: while R does not converge do
14: H =

∑N
i=1 wif

ref
i f t+1

i

T

15: URΣRVt
R ← svd(H)

16: R = VRUR
T . Validity Check, see [15].

17: wi = 1
max(δ,|f t+1−Rfref | ), i = 1, 2, ..., N . δ is a

small number
18: end while
19: if New born mode appears then
20: Push back f? to Ft+1

21: Update Fref ← Ft+1

22: end if
23: return R,Ft+1,Fref .
24: end function

D. Memory function

Instead of simply removing dying modes, we keep fore-
casting their direction in the current frame using the es-
timated rotation (even if no normal vectors are currently
associated to it). We call the set of inactive modes a mode
memory. If a new planar piece is discovered, and the new-
born mode is close to an inactive mode in the memory,
we reactivate this mode rather than replacing it with a
new one. This association compensates drift since the mode
became inactive (and notably about the axis that this mode
corresponds to). We will see in Section IV-C that this reduces
long-term drift.
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(a) 2 modes case.
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(b) 3 modes case.
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(c) 4 modes case.
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(d) Anti-outlier performance.

Fig. 4. Robustness of the rotation estimation. (a) (b) and (c) compare the performance of the least-squares and the `1-norm regression based methods for
the case of 2, 3 and 4 modes, respectively. Note that in (a), the red line and the green line coincide with each other. The horizontal axes of (a), (b), and
(c) denote the standard deviation of the noise that is imposed on the ”badly tracked mode”. (d) demonstrates the outlier resilience of the two methods for
an increasing outlier fraction (10 modes in total). All the results (rotation error under each noise level and outlier number) are the average of 1000 trials
with combination of arbitrary bundle structure and groundtruth rotation.

IV. EXPERIMENTAL EVALUATION

Now we proceed to the evaluation of the presented algo-
rithm. We start by explaining the parameter values chosen in
our experiments. Then a dedicated simulation experiment is
presented showing the importance of the general `1-norm
regression scheme towards the robustness of the rotation
estimation. We also test the algorithm on a custom synthetic
dataset which demonstrates the piece-wise drift-free property
and long-term drift resilience with activated memory func-
tion. Finally we evaluate the proposed algorithm on a set
of publicly available, real datasets and compare our results
directly to another two state-of-the-art depth camera tracking
solutions.

A. Parameter configuration

The apex angle of the conic section corresponding to the
width of the kernel for the mode tracking is set to 40◦ during
initialization, and 20◦ during tracking. By using a larger apex
angle in initialization, it is more likely that more seeking
trials starting from different coordinates in a neighborhood
would converge to the same local maximum which will be
picked as a mode in the following. The reduction of the
cone apex angle in tracking is justified by the assumption
that the orientation of the bundle does not change too much
under smooth motion. Each iterative mean-shift procedure
terminates once the angle between two successive updates
falls below a threshold angle θconverge, which we set to 1◦.
The factor c in Eq. 5 is set to 20. Mean-shift updates are
furthermore required to have a minimum number Nmin of
surface normal vectors within the conic window, which is set
to 10% of the total number of surface normal vectors. Nmin
is also the threshold for checking dying modes.

B. Simulation experiments

We provide a dedicated simulation to show that our
algorithm can work robustly in a situation where some of
the modes are badly tracked. The first part of this simulation
consists of a series of 3 experiments during which we
perform a registration of bundles with 2, 3, and 4 modes. In
each experiment, all the modes are perturbed by Gaussian
noise. In addition, an elevated amount of noise is added

to one of the modes only, which simulates a situation in
which the tracking of that particular modes fails. The case of
disturbed surface normal vector measurements may happen
for various reasons, including heavily inclined planar pieces,
a reflection on a smooth surface, or a moving element in the
scene. We each time compare the performance of our general
`1-norm regression scheme to that of the original least-
squares method in [15]. It can be seen in the Fig. 4(b) and
(c) that our method maintains robustness while the original
method deteriorates. It is worth noting that the general `1-
norm regression based method cannot help if only two plane
pieces are present in the scene (cf. Fig. 4(a)). It is not possible
to solve for the rotation with less than two robustly perceived
planar modes being observed, as this represents the minimal
case.

The second part of our simulation experiments is shown
in Fig. 4(d), where we register bundles of 10 modes. This
experiment evaluates the overall outlier-resilience by per-
turbing an increasing amount of modes by heavy noise. We
compare the performance of our `1-extension against Arun’s
original solution. As can be observed, the rotation error stays
rather low if at least 50% of the modes are tracked with
moderate noise only. This phenomenon confirms the common
observation that the `1-norm scheme can resist up to about
50% of outliers.

C. Evaluation on a synthetic dataset

We created a synthetic dataset using the open-source 3D
computer graphics software Blender to demonstrate two
important properties of our algorithm:

1) Piece-wise drift-free performance between bundle or
reference updates.

2) Ability to compensate drift when a previously discov-
ered mode is revisited.

The scene in the dataset is composed of a pyramid with four
faces on a ground plane. Two types of sensor motion are
added to individually confirm the above two properties. In the
first case, the sensor orbits in a back-and-forth fashion around
the pyramid while the principal axis of the depth camera
keeps pointing towards the centre of the pyramid. In the
second case, the sensor orbits smoothly and continuously for
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Fig. 5. Performance evaluation on the synthetic dataset “Pyramid”. (a) shows the synthetic scene which contains a ground plane and the four faces of a
pyramid. The rotation estimation error is shown in (b). The estimated roll, pitch, and yaw angles are shown in (c).

several complete loops around the pyramid. The groundtruth
depth map and the trajectory of the camera are given each
time. Realistic noise is added to the depth map before
extracting the surface normal vectors.

The dataset and the results concerning the first property
are shown in Fig. 5. The blue dashed lines in Fig. 5 (b) divide
the sequence into three parts. They represent the time instants
where reference bundle updates happen. We can see that our
algorithm returns piece-wise drift free performance in parts
1 and 3 during which no bundle updates happen, meaning
that modes are neither dying nor discovered. The drift keeps
increasing in the middle part between the dashed lines, where
only one planar mode is robustly tracked. As explained in
Section IV-B, even the general `1-norm regression scheme
cannot help in this situation because only one planar mode
is tracked without gross errors.

The results of the long-term drift experiment are illustrated
in Fig. 6. The two subfigures show the rotation estimation
performance of the proposed algorithm without and with
the mode memory scheme, respectively. In the first figure,
the stair-behaviour again shows the piece-wise drift-free
performance, however, an accumulated drift over a longer
term exists. In the second figure, we can clearly see that the
long-term drift stays bounded as soon as at least one of the
pyramid surfaces has been revisited for the first time (i.e.
after the completion of the first loop).

D. Evaluation on real data

We compare the performance of our method against two
state-of-the-art, open-source motion estimation framework
for depth cameras, namely DVO [12] and FastICP [10]. All
methods are evaluated on two published and challenging
benchmark datasets from the ETH RGBD [10], [11] and
TUM RGBD [17] series. A qualitative evaluation on the
TAMU RGBD [18] dataset is also given (no groundtruth
provided). The datasets we picked for evaluation are listed
below and the results are summarized in Table I as well as
illustrated in Fig 7.
• ETH 1: 0low 0slow 0fly.
• TUM 1: freiburg3 cabinet.
• TUM 2: freiburg4 structure texture near.

• TUM 3: freiburg3 structure notexture near.
• TUM 4: freiburg3 structure notexture far.
• TAMU 1: corridor A const.
• TAMU 2: corridor B const.

It is necessary to mention that in some cases our algorithm
cannot process the entire sequence.This is due to algorithm
limitations that are discussed in the following section. In
order to remain fair, we evaluate the performance of all
algorithms on the same segments of each sequence. We
provide root-mean-square (RMS) and median errors ẽ per
second for the rotation estimation. The best performing
method’s error is each time indicated in bold. It can be
seen that our method outperforms both FastICP and DVO
in most situations. The relatively bad performance of our
method on the ETH 1 dataset is related to the low resolution
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Fig. 6. The rotation estimation performance of the proposed algorithm
without and with the mode memory scheme. An obvious step-like curve
in the top figure again demonstrates the piece-wise drift-free behavior. The
long-term drift compensation is shown in the bottom figure, where the blue
dashed lines denote the time instants when planar modes are revisited and
accumulated rotational drift gets compensated.



Fig. 7. Illustration of the proposed algorithm running on a set of real datasets. Five short sequences are extracted from each dataset to show the algorithm
progress. A unit sphere in the bottom-left corner of each image illustrates the planar mode bundle. Corresponding planes in each image of each sequence
are denoted with the same color (e.g. the ground plane is always shown in red). We do not show results of TUM 3 because it has a similar scene as TUM
4. We also don’t show images for the ETH 1 dataset because it provides only point clouds.

TABLE I
PERFORMANCE COMPARISON ON SEVERAL INDOOR DATASETS.

Dataset DVO FastICP Our Method
rms(eR) ẽR rms(eR) ẽR rms(eR) ẽR

ETH 1 × × 2.030 1.749 2.892 1.920
TUM 1 4.911 4.456 2.849 1.816 1.582 1.054
TUM 2 0.938 0.740 × × 1.572 1.292
TUM 3 10.898 3.888 8.885 4.920 1.233 0.968
TUM 4 2.209 1.590 3.674 2.497 0.983 0.683
Average 4.379 2.669 4.360 2.746 1.652 1.183



of this dataset, which leads to a low-quality surface normal
vector result. DVO returns a slightly better performance on
the TUM 4 sequence, in which plenty of distinctive texture
can be observed. Missing numbers in Table I indicate that the
algorithm was not able to successfully process the sequence.
Our method handles most of the cases, and remains computa-
tionally efficient even on depth images with VGA resolution.
Our real-time C++-implementation processes frames at 50
Hz on a laptop with 8 cores. While DVO is real-time capable
as well, FastICP quickly drops in computational efficiency as
the number of the points increases, and ultimately operates
far from real-time on VGA imagery (1 Hz).

E. Limitations and failure cases

As with any method, the proposed algorithm cannot work
in any case. Limitations and failure cases are listed as
follows:
• The initialisation takes about 1 s. The sensor should not

be subjected to substantial motion during this period.
• When only one planar structure is present or can be

recognized, the registration of the planar modes based
rotation estimator does not work.

• When two planar modes have a small inscribed angle,
the mode seeking may converge to the centre of these
two modes and mis-recognize them as a single mode.
Such bad initialization can affect the sub-sequent mode
tracking iterations as well as the rotation estimation.

V. DISCUSSION

This paper presented a highly efficient 3D rotation es-
timation algorithm for depth cameras in piece-wise planar
environments. It shows that by using surface normal vectors
as an input, planar modes in the corresponding density
distribution function can be discovered and continuously
tracked using efficient non-parametric estimation techniques.
The relative rotation from the reference view to the current
view can be estimated by registering entire bundles of planar
modes. Robustness of the bundle registration process is
achieved by performing a general `1-norm regression instead
of simply solving a least-squares problem. Piece-wise drift-
free performance is achieved as long as no bundle updates
happen. The paper furthermore shows that by introducing a
mode memory scheme, drift can be avoided even if certain
modes are temporally unobserved. Extensive evaluations on
simulated, synthetic and real data demonstrate the robustness
and effectiveness of the proposed algorithm. Note that our
synthetic dataset as well as our code are ready for public
release.

The present work unseals an interesting analogy between
classical 6 DoF simultaneous localization and mapping
(SLAM) of 3D points, and our 3 DoF rotation estimation
scheme which shows that—given surface normal vectors—
we are able to perform decoupled, simultaneous orientation
estimation and mapping of planar modes. In SLAM, long-
term drift is eliminated as soon as the 3D points are no longer
updated. This corresponds to our drift-free performance in
case the reference bundle stays unchanged. Furthermore,

our mode-memory scheme has analogies with loop-closure
in SLAM, which is well-known to compensate for long-
term drift. The analogy with SLAM suggests immediate
directions for interesting future work around efficient normal-
vector based, decoupled rotation estimation. For instance,
we plan to rely on graph-optimization methods leading to
a more accurate, multi-frame mode-initialization procedure.
Furthermore, the inclusion of appearance information would
robustify the reactivation of modes from the memory even
in the presence of more significant drift.
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