
Models of Robustness in Scheduling and Temporal Planning Based on
Optimisation with Dynamic Controllability Constraints

Jing Cui and Patrik Haslum (supervisor)
ANU & DATA61

cui.jing|patrik.haslum@anu.edu.au

Introduction
Robustness is vital in some scheduling and temporal plan-
ning problems, such as evacuation planning (Even, Pillac,
and Hentenryck 2014). However, it is hard to measure ro-
bustness directly, so some metrics measuring relative fea-
tures have been introduced (e.g., Cesta, Oddi, and Smith
1998; Aloulou and Portmann 2003; Wilson et al. 2014),
as well as algorithms for finding high-robustness schedules
(e.g., Aloulou and Portmann 2003; Policella et al. 2009;
Banerjee and Haslum 2011). The goal of my PhD thesis is to
explore and compare existing measures that measure robust-
ness or other features related to robustness, try to provide
new robustness models and try to get more robust schedules
or plans.

Robustness Measures
Among different robustness measures, we list two that are
used in the following experiments.

Flexibility A partial-order schedule (POS) consists of a set
of time constraints between activities such that any realisa-
tion that meets these constraints is also resource feasible.
Flexibility (Aloulou and Portmann 2003) counts the number
of pairs of activities that do not have any explicit or implicit
precedence relations in a POS. The definition of flex is

flex =
|{(ai, aj)|ai ⊀ aj ∧ aj ⊀ ai}|

n(n− 1)
(1)

where the precedence constraints between activities include
both explicit and implicit relations.

Fluidity In order to take slacks into account when measur-
ing robustness, Cesta, Oddi, and Smith (1998) introduced
fluidity. It represents the ability to absorb temporal devia-
tion. It is defined as

fldt =

n∑
i=1

n∑
j=1∧j 6=i

slack(ai, aj)

H × n× (n− 1)
× 100 (2)

where H is a fair bound which is large enough to allow all
activities to be executed, and slack(ai, aj) is the width of
the allowed distance interval between two activities.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Dynamic Controllability of Simple Temporal
Problem with Uncertainty
The simple (non-disjunctive) temporal problem with uncer-
tainty, or STPU (Vidal and Fargier 1999), is a widely used
model for representing schedules or temporal plans that have
both uncertainty about the timing of some events (for exam-
ple, the time needed to complete an activity) and flexibility
for the executing agent to choose the timing of other events
(for example, the time to start an activity).

Formally, an STPU consists of a set of nodes X =
XE ∪XU , representing executable (XE) and uncontrollable
(XU) time points, and a set of links E = R ∪ C, called
requirement and contingent links. Each link eij has a lower
bound Lij and upper bound Uij , representing the constraints
Lij ≤ tj − ti ≤ Uij .

Because of the uncertainty in STPU, 3-level controllabil-
ity is introduced (Vidal and Fargier 1999), among which
dynamic controllability is most interesting. An STPU
is dynamically controllable when there is a dynamic strat-
egy that schedule current controllable timepoints accord-
ing to observations of the past contingent links. Different
dynamic controllability checking algorithm are introduced
(Morris, Muscettola, and Vidal 2001; Shah et al. 2007;
Nilsson, Kvarnström, and Doherty 2013; Combi, Huns-
berger, and Posenato 2014; Morris 2014) .

Besides checking dynamic controllability, optimising
STPU with constraints representing dynamic controllability
enables different applications, such as introducing robust-
ness measures. Those robustness metrics can answer the
question what the worst, best or average case is, under which
the schedule or temporal plan with uncertainty is still dy-
namically controllable.

Controllable Conditional Temporal Problem with
Uncertainty
The concept of CCTPU extends from Conditional Tempo-
ral Problem (CTP) (Tsamardino, Vidal, and Pollack 2003)
and STPU. CTP is an extension of temporal constraint-
satisfaction problem by adding observation nodes and la-
bels to all non-observation nodes in the network. The la-
bel of a node in CTP represents the situations in which the
node will be executed. In (Yu, Fang, and Williams 2014),
a relaxation method is introduced to solve over-constrained

CCTPUs and achieve dynamically controllable solutions by
implementing dynamic controllability checking algorithms
(Morris, Muscettola, and Vidal 2001; Morris 2014) to find
conflicts. Thus the solutions consist of a set of static choices
and dynamically controllable bounds of the network associ-
ating with the choices. However, the choices are still made
before execution which can be postponed to achieve a more
flexible and dynamic strategy.

In our work, we attempt to define dynamic controllabil-
ity of CCTPU. However, due to the difficulty to project dis-
crete decisions to continuous timeline, we introduce conser-
vative assumptions. Based on these assumptions, we intro-
duce dynamic controllability of CCTPU and an approach to
check it. Additionally, we are trying to formulate optimi-
sation model with constraints of dynamic controllability of
CCTPU, which may provide robustness measures measuring
robustness of both temporal scheduling and discrete options.

Optimising STPU with Dynamic
Controllability

The problem of optimising time bounds under dynamic
controllability was previously considered by Wah and Xin
(2004), who formulated a non-linear constraint optimisation
model. In fact, dynamic controllability is a disjunctive linear
constraint, and using this insight we consider several alter-
native ways of dealing with it, including a conflict-driven
search (Yu, Fang, and Williams 2014), a formulation as a
mixed-integer linear program with 0/1 variables, and the
non-linear encoding proposed by Wah and Xin. (This work
has been published in ICAPS 2015.)

Optimisation Model
The general form of the optimisation problem can be stated
as follows: We are given the structure of an STPU, that is,
the set of time points X = XE ∪XU and links E = R∪C,
but not the upper and lower bounds on (all) links, and an
objective function. The problem is then to set those bounds
so as to optimise the objective function value:

opt fobj(lij , uij | eij ∈ E)
s.t. Lij ≤ lij ≤ uij ≤ Uij

N(lij , uij | eij ∈ E) is dynamically controllable
application-specific side constraints

The decision variables, lij and uij , represent the lower and
upper bounds on link eij . Thus, a satisfying assignment de-
fines an STPU, N(lij , uij | eij ∈ E), and this STPU must
be dynamically controllable.

Dynamic Controllability Constraints
The formulation of dynamic controllability is set of dis-
junctive linear constraints. It consists of shortest path con-
straints, precede constraints, and wait constraints. The
formulation follows the dynamic controllability reductions
rules in (Morris, Muscettola, and Vidal 2001), which con-
siders reductions within a triangle consisting a contingent
link. In a simple formulation, we can consider all triangles,
however, in a reduced formulation, some constraints can be

A C

B

[lAC , uAC]

[lAB , u
AB] [lBC

, uBC
]

Figure 1: An STPU triangle. The A–C link is contingent.

ignored since they are implied by other constraints (Wah and
Xin 2004).

In the dynamic controllability reductions rules, for every
triangle as figure 1 with one contingent link, the schedule of
timepoint B can be classified into precede, follow and un-
order cases according to the bounds of BC. Because of the
space limitation, We only illustrates constraints of precede
case as an example here. If LBC ≥ 0, then lBC ≥ 0 and
the triangle will be in the precede case. The following con-
straints must hold:

uAB ≤ lAC − lBC

lAB ≥ uAC − uBC
(3)

If the loose bounds are in unorder case, LBC < 0 and
UBC ≥ 0, the triangle can be in any case, depending on the
values given to lBC and uBC . The precede constraint then
becomes disjunctive:

(lBC < 0) ∨
(
uAB ≤ lAC − lBC

lAB ≥ uAC − uBC

)
(4)

Other reduction rules can be formulated as disjunctive
linear constraints in the same way. This disjunctive linear
constraints model can be encoded into Mixed Integer Pro-
gramming (MIP) or Non-Linear Programming (NLP) mod-
els, which can be solved by existing solvers.

Robustness with Non-Probabilistic Uncertainty

In abstract terms we may define robustness as the greatest
level of disturbance (deviation from expected outcomes) at
which the schedule is still successfully executed. Here, we
exemplify by assuming (1) that the possible disturbances are
deviations in the time taken to execute an activity from its
normal duration, and (2) a partial-order schedule with a dy-
namic execution strategy.

In the deterministic case, where the duration of each activ-
ity i is a constant di, the POS can be represented as an STN
with time points tsi and tei for the start and end, respec-
tively, of each activity. Assuming the duration of each activ-
ity can vary within some bounds, [lsi,ei , usi,ei], the schedule
can be modelled as an STPU where the link esiei from each
activity’s start to its end is contingent, while remaining time
constraints are requirement links. Thus, given a POS we can
ask, what is the maximum deviation (i.e., width of the con-
tingent bound) on any activity at which the STPU is dynam-
ically controllable. This defines our measure of robustness.

0 50 100 150 200 250

0
2

0
4

0
6

0
8

0
1

0
0

Run Time(s)

%
 S

o
lv

e
d

 P
ro

b
le

m
s

Run Time(s)

%
 S

o
lv

e
d

 P
ro

b
le

m
s

Run Time(s)

%
 S

o
lv

e
d

 P
ro

b
le

m
s

Run Time(s)

%
 S

o
lv

e
d

 P
ro

b
le

m
s

Confict−directed

MIP

NLP_S

NLP_M

increasing MD same MD decreasing MD
0

20

40

60

80

100

p
e
rc
e
n
ta
g
e
 o
f
te
st
 c
a
se
s

Increasing flex

Increasing fldt

(a) (b)

Figure 2: Result

To compute it, we solve the following problem:

max ∆
s.t. lsi,ei = di − δi ≥ 0 ∀i

usi,ei = di + δi ∀i
0 ≤ ∆ ≤ δi ∀i
POS constraints (requirement links)
dynamic controllability

We can also define a one-sided variant of this robustness
metric, accounting for delays only, by fixing lsi,ei = di (i.e.,
adding deviations only to the upper bound).

Result We compared solvers on the one-sided (maxi-
mum delay) variant of the problem. As test cases, we
use 3400 partial-order schedules for RCPSP/max problems
(e.g., Kolisch and Padman 2001) with 10–18 jobs1 The
schedules are generated by a scheduler that optimises a mea-
sure of POS flexibility (Banerjee and Haslum 2011). The
number of (given) requirement links varies from 50 to 300.

The adapted CDRU algorithm is very effective for this
problem, and the relative runtimes of the MIP and non-linear
solvers, as shown in Figure 2 (a), which are runtime distribu-
tions for three different solvers (conflict-directed relaxation
(CDRU), the MIP model solved with Gurobi and the non-
linear model solved with SNOPT) on schedule robustness
(maximum delay) problems.

We also compare this robustness measure with other two
metrics: flexibility and fluidity. The scheduler can generate
several POS with increasing flexibility (or fluidity) for one
problem. However, in some problems, the solution has the
best flexibility does not has the best maximum delay. De-
tailed result is in Figure 2 (b), around 16% pairs of POS
generated from the same problem with increasing flexibility
(or fluidity) have decreasing MD, which means the POS with
higher flexibility (or fluidity) in those problems are easier to
fail when uncontrollable events increasing delays evenly.

CCTPU with Dynamic Controllability
The Controllable Conditional Temporal Problem with Un-
certainty (CCTPU) extends the STPU with controllable dis-
crete choices. It was introduced by Yu, Fang, and Williams
(2014). We adopt their definition, but omit the reward and
cost functions since we consider feasibility only.

1Set J10 from PSPLIB (http://www.om-db.wi.tum.
de/psplib/), plus additional problems generated to have more
max time lag constraints.

Definition 1. A Controllable Conditional Temporal
Problem with Uncertainty (CCTPU) is a 5-tuple <
V,E,C,D, `E >, where

• V is the set of time points, where V = V C ∪ V U and
V U = V \V C. V C is the set of controllable time points,
V U is the set of uncontrollable time points which can be
observed,

• E is the set of constraints of form lij ≤ vj − vi ≤ uij ,
where E = EC ∪EU and EU = E \EC. EC is the set
of controllable constraints between pairs of time points,
EU is a set of uncontrollable constraints, denoted as con-
tingent links, the exact duration of euij is not controllable
but within the range [lij , uij],

• C is a set of controllable discrete variables,
• D(c) is the domain of variable c ∈ C,
• `E is a mapping that attaches to each link in E a (possibly

empty) conjunction of assignments of values to variables
in C.

Definition 2. A CCTPU is dynamically controllable if
there is a viable execution strategy 〈DT,ES〉 such that for
any two projections p1 and p2, ES(p1){≺ t} = ES(p2){≺
t} ⇒ ES(p1)(x) = ES(p2)(x), t = ES(p1)(x) for
each controllable time point x and ES(p1){≺ DT (c)} =
ES(p2){≺ DT (c)} ⇒ ES(p1)(c) = ES(p2)(c) for each
each discrete variable c and its decision timepoint DT (c).

Our assumptions are: (1) A(c) is only made once at
DT (c) and (2) DT (c) associates to a node no later than any
links can be activated by A(c).

Central to our algorithm for finding a dynamic execution
strategy is the notion of the “envelope” of a partial assign-
ment.

Definition 3. Given a partial assignment to a subset of dis-
crete variables, CAss ⊆ C, the dynamically controllable
envelope of an unassigned variable, c ∈ (C − CAss), is the
set of prehistories of c for which there exists a viable dy-
namic execution strategy.

Approach
The structure of dynamic controllability checking for
CCTPU is a tree search as figure 3. Each leaf of the search
tree is the STPU obtained from a full assignments to discrete
variables and other nodes are CCTPUs with partial assign-
ments. Besides the root which is the original CCTPU, each
node has one parent node that eliminates the assignment to
the “latest” variable. The chronological order of variables is
given in the next subsection.

From the root, the algorithm branches by assigning vari-
ables in chronological order and traverses the tree depth-
first. When arriving at a leaf, it extracts the conflict res-
olution constraints that must be satisfied to make the leaf
dynamically controllable and records those as the DC enve-
lope. When more than one child branch of a node have been
explored, their DC envelopes are combined and recorded as
the envelope of current node. The CCTPU is dynamically
controllable when a dynamically controllable node is found.
The detailed algorithm is in our incoming ICAPS paper.

root CCTPU

. . .

. . .

leaf STPU

c1 = dc11
c1 = dc12

c1 = dc1n

c2 = dc21
c2 = dc22

c2 = dc2n

A(c) Ec

Ec(dc22)Ec(dc21) Ec(dc2n)

Ec2(dc12)Ec2(dc11) Ec2(dc1n)

Figure 3: Expanding & Combining Tree of DC Checking
for CCTPU

Future Work
In the future work, we will try to remove the current as-
sumptions, which could allow a more dynamic strategy. An-
other possible extension is to see how much improvement
can be made in solving optimisation problems of CCTPU
when considering making choices dynamically. With the op-
timisation model, we can provide other robustness measures
that can measure both temporal robustness and dynamic op-
tions. Additionally, some other constraints such as resource
constraints in scheduling problem can be represented as al-
ternations of time constraints (Banerjee and Haslum 2011).
Therefore, more robust schedules can be achieved by apply-
ing those optimising robust measures on those schedulers.

References
Aloulou, M. A., and Portmann, M.-C. 2003. An efficient
proactive reactive scheduling approach to hedge against
shop floor disturbances. In Proc. 1st Multidisciplinary In-
ternational Conference on Scheduling: Theory and Appli-
cations (MISTA), 337–362.
Banerjee, D., and Haslum, P. 2011. Partial-order support-
link scheduling. In Proc. 21st International Conference on
Automated Planning and Scheduling (ICAPS), 307–310.
Cesta, A.; Oddi, A.; and Smith, S. F. 1998. Profile-based
algorithms to solve multiple capacitated metric scheduling
problems. In Proc. 4th International Conference on Artifi-
cial Intelligence Planning and Scheduling (AIPS), 214–223.
Combi, C.; Hunsberger, L.; and Posenato, R. 2014. An al-
gorithm for checking the dynamic controllability of a condi-
tional simple temporal network with uncertainty - revisited.
In Proc. 5th International Conference on Agents and Artifi-
cial Intelligence (ICAART), 314–331.
Even, C.; Pillac, V.; and Hentenryck, P. V. 2014. Nicta
evacuation planner: Actionable evacuation plans with con-
traflows. In Proceedings of the Twenty-first European Con-

ference on Artificial Intelligence, ECAI’14, 1143–1148.
Amsterdam, The Netherlands, The Netherlands: IOS Press.
Kolisch, R., and Padman, R. 2001. An integrated survey of
project scheduling. OMEGA International Journal of Man-
agement Science 29(3):249–272.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proc. 17th
International Conference on Artificial Intelligence (IJCAI),
494–499.
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In Proc. 11th Integration of AI and OR Tech-
niques in Constraint Programming (CPAIOR), 464–479.
Nilsson, M.; Kvarnström, J.; and Doherty, P. 2013. Incre-
mental dynamic controllability revisited. In Proceedings of
the 13th International Conference on International Confer-
ence on Automated Planning and Scheduling (ICAPS), 337–
341.
Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2009.
Solve-and-robustify. Journal of Scheduling 12:299–314.
Shah, J. A.; Stedl, J.; Williams, B. C.; and Robertson, P.
2007. A fast incremental algorithm for maintaining dis-
patchability of partially controllable plans. In Proceed-
ings of the Seventeenth International Conference on Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS), 296–303.
Tsamardino, I.; Vidal, T.; and Pollack, M. E. 2003. CTP:
A new constraint-based formalism for conditional, temporal
planning. Constraints 8(4):365–388.
Vidal, T., and Fargier, H. 1999. Handling contingency
in temporal constraint networks: From consistency to con-
trollabilities. Journal of Experimental and Theoretical AI
11(1):23–45.
Wah, B. W., and Xin, D. 2004. Optimization of bounds
in temporal flexible planning with dynamic controllability.
In Proc. 16th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), 40–48.
Wilson, M.; Klos, T.; Witteveen, C.; and Huisman, B. 2014.
Flexibility and decoupling in simple temporal networks. Ar-
tificial Intelligence 214:26–44.
Yu, P.; Fang, C.; and Williams, B. C. 2014. Resolving
uncontrollable conditional temporal problems using contin-
uous relaxations. In Proc. 24th International Conference on
Automated Planning and Scheduling (ICAPS), 341–349.

