Optimising Bounds in Simple Temporal Networks with Uncertainty under Dynamic Controllability Constraints

Jing Cui
ANU&NICTA
Canberra, AU

Peng Yu and Fang Cheng
MIT
Cambridge, MA, US

Patrik Haslum
ANU&NICTA
Canberra, AU

Brian Williams
MIT
Cambridge, MA, US
Overview

• Background
 • Simple Temporal Network with Uncertainty (STNU)
 • Dynamic Controllability (DC)

• Motivation
 • Optimising STNU under DC

• Problem Formulation

• Applications and Result
 • Maximum Delay under DC
 • Chance-constraint DC

• Conclusion
Scenario Example – Evacuation Plan
Scenario Example – Evacuation Plan
STN for the Example

Region A starts to evacuate

Flow A enter the main route

Region B starts to evacuate

Flow B reach the main route

Flow A pass the entrance of the main route

[60, 70]

[30, 35]

[20, 25]

[0, 10]

Simple Temporal Network (STN)

• General temporal reasoning for temporal plan and schedules
 • Nodes:
 • time points
 • Links:
 • time constraints
STNU of the Scenario Example

Region A starts to evacuate

[60, 70]

Flow A enter the main route

Flow A pass the entrance of the main route

[30, 35]

Flow B reach the main route

Region B starts to evacuate

[20, 25]

[0, 10]

STN with Uncertainty (STNU)

• Vidal and Fargier, 1999
• Extension from STN
• Contingent (CTG)
 • Uncontrollable
 • Uncertainty
 • Unknown
Dynamic Controllability of STNU

Region A starts to evacuate

Flow A enter the main route

Observe: [60, 70]

Flow A pass the entrance of the main route

Decide: +15

Flow B reach the main route

Region B starts to evacuate

[0, 10] [20, 25] [30, 35]

• Dynamic Controllability (DC) (Vidal and Fargier, 1999)
 • Observe the Past
 uncontrollable nodes
 • Decide the Future
 controllable nodes
 • A dynamic strategy satisfying every constraint
Dynamic Strategy for the Example

Flow A enter the main route

Flow A pass the entrance of the main route

Region B start to evacuate

Flow B reach the main route

Timeline

[0, 10] [30, 35] [60, 70] [20, 25]
Dynamic Strategy for the Example

Flow A enter the main route

Flow A pass the entrance of the main route

Region B start to evacuate

Flow B reach the main route

Timeline

Observe

[0, 10]

[30, 35]

[60, 70]

[20, 25]
Dynamic Strategy for the Example

- **Flow A enter the main route**
 - [60, 70]

- **Flow A pass the entrance of the main route**
 - [30, 35]

- **Region B start to evacuate**
 - [20, 25]

- **Flow B reach the main route**
 - [0, 10]

Timeline

- Observe
- Decide +15
- T
- T + 15
Dynamic Strategy for the Example

Flow A enter the main route

[60, 70]

Flow A pass the entrance of the main route

[30, 35]

Region B start to evacuate

[20, 25]

Flow B reach the main route

[0, 10]

Observe

Decide +15

Timeline

T

T + 15

T + [30, 35]
Dynamic Strategy for the Example

Flow A enter the main route

Flow A pass the entrance of the main route

Region B start to evacuate

Flow B reach the main route

[0, 10] [30, 35] [60, 70]

Timeline

Observe

Decide +15

T

T + 15

T + [30, 35]

T + 15 + [20, 25]
Dynamic Strategy for the Example

Flow A enter the main route
- [60, 70]

Flow A pass the entrance of the main route
- [30, 35]

Region B start to evacuate
- [20, 25]

Flow B reach the main route
- [0, 10]

Timeline
- T
- T + 15
- T + 15 + [20, 25]

Observe
- T
- T + 15
- T + [30, 35]

Decide +15
- Diff=[0, 10]
DC Checking Algorithms

- Answer: Yes/No
- Time Complexity: Polynomial

- Morris, Muscettola and Vidal’s (2001)
 - Reduction Rules
 - Local and Global DC
 - Cubic Algorithm (2014)

- Other Algorithms
 - Fast IDC (Stedl and Williams, 2005)
 - Efficient IDC, cubic algorithm (Nilsson, Kvarnstrom and Doherty, 2014)
Motivation

By Checking DC, we get:
- Yes/NO
- Polynomial
- Dynamic Strategy
- Large Scale

We cannot get:
- How far?
 - DC->Not DC
 - Not DC -> DC
- Other questions

Region A starts to evacuate

Flow A enter the main route

Decide +15

Flow A pass the entrance of the main route

[60, 70]

Observe

[30, 35]

Flow B reach the main route

[20, 25]

Flow B starts to evacuate

[0, 10]
Motivation

Region A starts to evacuate

$[60, 60 + D_1]$

Flow A enter the main route

$[30, 30 + D_2]$

Flow A pass the entrance of the main route

$[0, 10]$

Region B starts to evacuate

$[20, 20 + D_3]$

Flow B reach the main route

$D = \min(D_1, D_2, D_3)$

Q How far?
DC -> Not DC

Maximum value of D under DC

robustness measure
Problem Formulation

Optimisation model of STNU under Dynamic Controllability

\[\text{opt } f_{\text{obj}} (l_{ij}, u_{ij} \mid e_{ij} \in E) \]

s.t. \[L_{ij} \leq l_{ij} \leq u_{ij} \leq U_{ij} \]

\[N(l_{ij}, u_{ij} \mid e_{ij} \in E) \text{ is dynamically controllable} \]

application - specific side constraints

- Bounds of links are \textbf{variables} (lower case)
- \textit{How to formulate DC constraints?}
Problem Formulation

How to formulate DC constraints?

\[N(l_{ij},u_{ij} \mid e_{ij} \in E) \text{ is dynamically controllable} \]

- Non-linear Programming (NLP) model
 - Wah and Xin, 2004
- Disjunctive Linear Model
 - Mixed Integer Programming (MIP): **Binary Variables**
 - Follow the **reduction rules** (Morris, Muscettola and Vidal, 2001)
Generate Constraints by Reduction Rules

A

\[[L_{AB}, U_{AB}] \]

\[[U_{AC} - U_{BC}, L_{AC} - L_{BC}] \]

\[[L_{AC}, U_{AC}] \]

\[[L_{BC}, U_{BC}] \]

C

Reduction rule
when \(L_{BC} \geq 0 \)

if \(L_{BC} \geq 0 \), then \(L_{AB} \geq U_{AC} - U_{BC} \)
and \(U_{AB} \leq L_{AC} - L_{BC} \).

Constraints for precede case

\[l_{BC} < 0 \lor \begin{cases}
 l_{AB} \geq u_{AC} - u_{BC} \\
 u_{AB} \leq l_{AC} - l_{BC}
\end{cases} \]
Applications I
Robustness with Non-Probabilistic Uncertainty

Maximum Delay (MD) under Dynamic Controllability

$$\max D = \min (D_1, D_2, D_3)$$

$$N(l_{ij}, u_{ij} \mid e_{ij} \in E)$$ is DC

Q What is the Maximum value of D for which the STNU is still Dynamically Controllable?
Applications I
Robustness with Non-Probabilistic Uncertainty

Formulation

• Maximum delay of STNU

\[
\begin{align*}
\max \quad & \min_{e_{ij} \in ctg} (d_{ij}) \\
\text{s.t.} \quad & l_{ij} = L_{ij}, \quad u_{ij} = l_{ij} + d_{ij}, \quad d_{ij} \geq 0 \quad e_{ij} \in ctg \\
& L_{ij} \leq l_{ij} \leq u_{ij} \leq U_{ij}, \quad e_{ij} \in rqm \\
& N(l_{ij}, u_{ij} | e_{ij} \in E) \text{ is DC}
\end{align*}
\]
Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3400 Partial Order Schedules (POS) for RCPSP/max</td>
<td>Generated by POSL (Banerjee and Haslum, 2011)</td>
</tr>
<tr>
<td>Number of CTG per POS</td>
<td>10-18</td>
</tr>
<tr>
<td>Number of RQM per POS</td>
<td>50-300</td>
</tr>
</tbody>
</table>

Solver

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disjunctive Linear Model (CDRU)</td>
<td></td>
</tr>
<tr>
<td>Mixed Integer Programming Model (Gurobi)</td>
<td></td>
</tr>
<tr>
<td>Non-Linear Programming Model (SNOPT)</td>
<td></td>
</tr>
<tr>
<td>Conflict-directed Search (Yu, Fang, and Williams, 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Result I Runtime

Convergence of Non-linear programming:
- Single run 70%
- repeatedly run 93%
Result II

Robustness (MD) vs. Fluidity and Flexibility

- Fluidity (average time slack)
- Flexibility (average temporal tolerance)
 - Wilson et al. (2014)
- How can fluidity/flexibility predict the robustness (MD)?

<table>
<thead>
<tr>
<th></th>
<th>Robustness (Maximum Delay under DC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase</td>
</tr>
<tr>
<td>Fluidity Increase</td>
<td></td>
</tr>
<tr>
<td>38.90%</td>
<td>44.39%</td>
</tr>
<tr>
<td>Flexibility Increase</td>
<td>40.30%</td>
</tr>
</tbody>
</table>
Other Applications of DC Constraint Model

Application List

- Relaxing Over-Constrained Problems
- Minimizing Flexibility
- Probabilistic Robustness Measure on STNU
- Dynamic Controllability with Chance-constraints
Conclusion

DC Constraint Model

• A more useful representation than DC checking process
• Measure robustness
• Other optimisation problem (DC vs. SC)

Comparison of solvers

• CDRU
• MIP
• NLP

Faster
More General Problems