Towards a Unified Framework for
Network Analytics

Minjian Liu

A thesis submitted in partial fulfillment of the degree of
Master of Computing at
The Department of Computer Science
Australian National University

October 2015

© Minjian Liu

Typeset in Palatino by TgX and I&TEX 2.

Except where otherwise indicated, this thesis is my own original work.

Minjian Liu
25 October 2015

To my parents, for supporting me all the way.

Acknowledgements

First and foremost, an enormous thank you to my supervisor, Qing Wang for giving
me an opportunity to do this research project with you, even though you know my
bachelor degree is about medicine. Without your wealth of knowledge in network an-
alytics and your dedicated assistance, I would never get the current achievement for
this project. In this year, we met, we discussed, we argued and finally we consented
for every point in this project. Thank you for imparting me knowledge like a teacher,
thank you for giving me encouragement like a friend , and thank you for showing me
patience like a sister.

Thank you to Peter Christen, Dinusha Vatsalan, Jeffrey Fisher, and Thilina Ranbaduge
for spending time to listen to my presentation rehearsal and giving me so many great
advices about the slides and the presentation skills.

Thank you to John Slaney for organising all honours cohort meetings and honours
talks. It was interesting and exciting to communicate with other honours students
about their projects.

Thank you to the trainers of Uplooking Technology Co,.Ltd for training and teach-
ing me how to be a Linux Architect and Server Developer in the year before I came
to ANU. Without this training, it is difficult for me to survive in the computer science
field with a medicine background.

Thank you to my fiancee, Wen, for making delicious food for me when I was tied
up with the project and giving me courage when I was stressed and frustrated.

Finally, thank you to my parent and my sister for understanding me to give up five-

year medicine study to pursue my real interest and dream in computer science field
and giving me supports all the way:.

vii

Abstract

Network analytics has started to become increasingly popular and various specialised
graph systems for network analytics have been proposed in recent years. However,
most network data is still collected and managed in relational databases and the use
of relational databases for network analytics is largely ignored.

This situation then raises a question of whether or not relational databases have lim-
itations for network analytics. The relational model is indeed inefficient for some
network analysis tasks which often require multiple expensive joins for tables and the
SQL query language also makes it difficult to express network analysis operations.
Even so, relational databases are already used for a variety of other analysis tasks and
they are filled with many great features, such as query optimisation, fault tolerance,
secure transaction, integrity constraints and so on.

In this thesis, we present a unified framework for network analytics, which provides
a data model that extends relational databases with network analysis capability and a
query language to manipulate data for relational analysis, network analysis or a mix
of them. In addition, this unified framework also includes a query engine that is built
with an open-source relational database (PostgreSQL) for processing queries that are
written in the query language of this framework. The experimental result indicates
the query engine is flexible to process different types of queries and is able to achieve
comparable or better performance in most cases.

ix

Contents

Acknowledgements

Abstract

1 Introduction
1.1 Objectives
1.2 Contributions e
1.3 Outline e e e

Background and Related Work

2.1 Vertex-centric and Neighbourhood-centric Systems
22 GraphDatabases
23 SQL-based Systems
24 SUMMATY . . . o vt

Data Model and Query Language

3.1 DataModel
3.1.1 RelationalCore
3.1.2 Graphical Views o o oL
3.1.3 Relation-GraphMappers
32 QueryLanguage
3.21 Create Graphical Views
322 UseGraphOperators.
33 Summary
Query Engine
41 QueryProcessing
42 Architecture e
43 Query Optimisation.
44 Summary

Performance Evaluation

51 Experimental Environment,
52 Performance of Graph Analysis Tools
53 Performance ofthe RGEngine.
531 Datasets e e
532 Queries. e e e e
533 ExperimentalResults

xi

vii

ix

10
11

13
13
13
16
17
19
19
21
26

27
27
28
33
35

xii Contents

54 Summary
6 Conclusion
Appendices
A ER Diagrams and Relation Schemas
B Experimental Data
C Experimental Queries

Bibliography

49

51

53

57

75

83

List of Figures

2.1
2.2
23
24
2.5

3.1
3.2
3.3
34

4.1
4.2
43
44
4.5

51
52
5.3

Al
A2
A3
A4
AS5
A6

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8

Data Model Example for Vertex-centric Systems
Data Model Example for Neighbourhood-centric Systems
Data Model Example for Property Graph
RDF Triple Store Model
Data Model Example for SQL-based Relational Systems

Overviewof DataModel
The Relational Core of ACM Bibliographical Network
Graphs of ACM Bibliographical Network
RG Mappers of ACM Bibliographical Network, we use relational alge-

bra to represent an RG mapper in this section.

RG-SQL Query Processing
Architecture of the RGEngine
Query Tree Example for a Query of the ACM Bibliographical Network .
Plan Tree Processing for a Query of the ACM Bibliographical Network .
Query Tree Example for Sub-query Equivalence

Time Performance of the Graph Analysis Tools
Memory Performance of the Graph Analysis Tools
Time Performance of three Query Engines

The Entity-Relationship Diagram of ACM Bibliographical Network . . .
The Relation Schema of ACM Bibliographical Network
The Entity-Relationship Diagram of Stack Overflow Network
The Relation Schema of Stack Overflow Network
The Entity-Relationship Diagram of Twitter Network
The Relation Schema of Twitter Network

Time Performance Data of Query Engines
Time Performance Data of SNAP —Part1
Time Performance Data of SNAP —Part2
Memory Performance Data of SNAP —Part1
Memory Performance Data of SNAP —Part2
Time Performance Data of NetworkX —Part1
Time Performance Data of NetworkX —-Part2
Memory Performance Data of NetworkX -Part1.

xiii

xiv LIST OF FIGURES
B.9 Memory Performance Data of NetworkX -Part2. 65
B.10 Time Performance Data of Graph-tool (1 Core) —Part1 66
B.11 Time Performance Data of Graph-tool (1 Core) —Part2 67
B.12 Memory Performance Data of Graph-tool (1 Core) —Part1 68
B.13 Memory Performance Data of Graph-tool (1 Core) —Part2 69
B.14 Time Performance Data of Graph-tool (4 Cores) —Part1 70
B.15 Time Performance Data of Graph-tool (4 Cores) —Part2 71
B.16 Memory Performance Data of Graph-tool (4 Cores) —Part1. 72

B.17 Memory Performance Data of Graph-tool (4 Cores) —Part2 73

List of Tables

3.1
3.2
3.3

4.1

5.1
52
5.3
54
55
5.6

Measures of the RANK Operator 22
Measures of the CLUSTER Operator 23
Examples of Path Expression 24
Algorithm Support L 32
Software Information 37
Algorithm Support of Graph AnalysisTools 38
Erdos-Renyi Random Graphs 39
Dataset Characteristics 0 i i i 43
Queries Used in Our Experiment 44
Queries Processed by three Query Engines 45

XV

xvi LIST OF TABLES

Chapter 1

Introduction

“Network analytics” is a broad term that is widely used in various areas such as social
networks, transportation systems, bioinformatics, communication networks and so
on. From the computer science perspective, it can be subsumed under “applied graph
theory”, since the structural and algorithmic aspects of abstract graphs are the preva-
lent methodological determinants in many applications of network analytics [26].

Nowadays, more and more large networks become available. Analysing these net-
works to derive key insights for business is critical for many enterprises and organi-
sations. As a result, in recent years, network analytics has started to become increas-
ingly popular. In response to the growing popularity for network analytics, a deluge
of specialised graph systems have been developed, including Pregel [39], Giraph [6],
GraphLab [38], Giraph++ [49], NScale [44], AllegroGraph [2], and Neo4;j [14].

For many enterprises and organisations, these specialised graph systems are typi-
cally used in conjunction with relational databases because network data are often
stored and managed in relational databases in the first place. As a result, within two
separate systems, a common usage pattern for network analytics is described as fol-
lows: (1) exporting data from a relational database to text files (e.g. CSV, XML, TXT),
(2) importing those text files into graph systems, (3) running analysis and getting re-
sults from those graph systems, (4) possibly reloading results into relational databases
for further processing [36]. In this pattern, data analysts need to move data around,
which is an expensive step. It is also cumbersome to learn and maintain two separate
systems.

Currently, most network analysis tasks follow this pattern. This is because relational
databases have limitations for network analytics. For example, it is difficult to use
SQL, the query language of relational databases, to express network analysis oper-
ations. Even for simple operations such as neighbourhood accesses, a SQL query
would require multiple joins and become complex. Moreover, even if we can write
an SQL query for network analysis operations, relational databases are inefficient for
running iterative algorithms (e.g. PageRank, finding shortest paths) [36].

2 Introduction

However, in real-world networks, vertices and edges are often accompanied by some
attributes. For example, in a social network, vertices may have attributes to describe
the properties of each person, such as name, gender and location. Edges may also
be of different types, such as friends, classmates and colleagues. Accessing these at-
tributes is typically about relational analysis.

Therefore, we come up with a question: “what if we can perform network analyt-
ics directly with relational databases?”. If it is convenient and efficient to perform
network analytics with relational databases, the following benefits can be derived:

* We do not need to export or import data between two kinds of systems.

* We can combine network analysis and relational analysis to retrieve more valu-
able and interesting information.

¢ We can inherit many great features of relational databases, such as query opti-
misation, fault tolerance, secure transaction, integrity constraints and so on.

Furthermore, some existing works indicate relational databases, via using some opti-
misation techniques, can achieve a better or comparable performance than specialized
graph systems for some network analysis tasks, such as triangle counting [36], sub-
graph pattern matching [35], and weakly connected component [32].

Therefore, unlike those graph systems, the motivation of this thesis is to develop a
unified framework which is able to extend relational databases with network analysis
capability.

1.1 Objectives

The goal of this thesis is to develop a unified framework for network analytics. This
framework aims to provide users a unified method to deal with network analysis
tasks, relational analysis tasks, and even a mix of them. The specific objectives are
described as follows:

¢ Develop a data model that supports data analysis over both relations and graphs.

¢ Design a query language that enables users to write queries for network analysis
operations, relational analysis operations and even a mix of them.

¢ Implement an efficient query engine that is able to efficiently process different
types of queries.

1.2 Contributions

This thesis has four main contributions:

§1.3 Outline 3

* We have developed a new data model for network analytics, called Relation-
Graph (RG) model. This RG model takes a relational core in the center and
the relation core is surrounded by a number of graphical views. Between the
relational core and the graphical views, there are a number of Relation-Graph
mappers (RG mappers) that take a number of relations to generate a graph. Us-
ing the RG model, users are able to manage data in a relational database and
perform network analytics with it.

¢ Wehave designed a SQL-like query language for network analytics, called Relation-

Graph Structured Query Language (RG-SQL). It extends SQL with ranking, clus-
tering, path finding and graph constructing operations. In essence, RG-SQL is
a relation-graph interactive query language. Users can use traditional SELECT-
FROM-WHERE statements to extract a sub-graph or use aggregate and join op-
erations for further processing network analysis results. It also supports nested
queries for advanced network analysis tasks that involve analysis over both
graphs and relations.

* We have designed an implementation architecture for a query engine, called
RG engine, and have implemented it with an open-source relational database
(PostgreSQL). This architecture allows us to incorporates different graph analy-
sis tools as plug-ins for supporting network analysis algorithms. It is flexible to
add, modify or delete algorithms within this architecture.

* We have conducted two experiments. One experiment is to evaluate the perfor-
mance of three existing graph analysis tools (SNAP [21], NetworkX [16], Graph-
tool [7]). In this experiment, we use the Erdos-Renyi methods [31] to create
random graphs as inputs, run different network analysis algorithms using these
tools and evaluate their time performance and memory performance. Another
experiment is to compare the RG engine with the query engines of a relational
database (PostgreSQL) and a graph database (Neo4j) to indicate the efficiency of
the RG engine.

1.3 Outline

The rest of this thesis is divided into the following 6 chapters:

¢ Chapter 2 introduces three typical types of existing systems for network ana-
lytics. We discuss the advantages and limitations of these existing systems and
explains why a unified framework is needed.

¢ Chapter 3 presents the formal definition of the RG model and introduces the
main features of RG-SQL. We use the ACM bibliographical network as an exam-
ple to illustrate the key concepts of our data model and to demonstrate how to
write queries using RG-SQL.

Introduction

¢ Chapter 4 discusses the main phrases in the query processing, presents the ar-
chitecture of our query engine and proposes some query optimization strategies
that can be incorporated into the implementation of the query engine.

¢ Chapter 5 presents our experimental results. One experiment we have con-
ducted is to evaluate the performance of three graph analysis tools. Another
experiment is to compare our query engine with the query engines of a rela-
tional database (PostgreSQL) and a graph database (Neo4j).

¢ Chapter 6 concludes the thesis and discusses the future work.

Chapter 2

Background and Related Work

In this chapter, we introduce three types of systems that have been proposed in the
past few years. In Section 2.1, we first present vertex-centric systems (e.g. Pregel [39],
Giraph [6], GraphLab [38]) and neighbourhood-centric systems (e.g. Giraph++ [49],
NScale [44]). These two kinds of systems are closely related because neighbourhood-
centric systems are developed upon the concepts of vertex-centric systems. In Sec-
tion 2.2, we introduce the embryonic-but-growing-significantly graph databases such
as Neo4j [14] and AllegroGraph [2]. Then Section 2.3 describes two SQL-based sys-
tems, GraphiQL [36] and Grail [32], which are built upon the traditional relational
databases. We will discuss how our work is different from these SQL-based systems.
A summary for different types network analysis systems is given in Section 2.4.

2.1 Vertex-centric and Neighbourhood-centric Systems

Vertex-centric systems were developed for efficiently processing large-scale graphs in
a distributed environment. In vertex-centric systems, generally, a large-scale graph is
divided into several partitions. Each of them has vertices and outgoing edges that are
stored distributively. Figure 2.1 shows an example data model used in vertex-centric
systems. In Figure 2.1, an input graph is divided into three partitions (P1, P2, P3) and
each partition contains a set of vertices. One vertex has a unique ID (e.g. V1), a set of
values (a vertex has one value about out-degree in this example) and a set of outgoing
edges for finding targets to pass messages.

In vertex-centric systems, each vertex is considered as an independent computing unit
and users are required to express their network analysis algorithms in the so-called
“thinking like a vertex” programming mode [39]. The algorithm computation is pro-
cessed at the vertex level but the computation models of different systems are slightly
different. The representative vertex-centric systems include Pregel [39], Giraph [6] (an
open source implementation of Pregel) and GraphLab [38]. For Pregel and Giraph,
their computation models are both based on message passing which enables vertices
to be computed in parallel. Each vertex is associated with two states — active and
inactive. At the beginning, all vertices are active. Then following a sequence of iter-
ations, called supersteps, messages are passed from one vertex to anther vertex. In

5

6 Background and Related Work

Input Graph Partition Vertex Values

[o]
c
)
@
e
3
@
m
[
Q
[}
(7]

V1

N e
N -
i ..

V5
/ \ P2 Ve

N
<
n
<
w

o EN

N

<
©

<
[« ©
<

V6 €«— V7

i \ = B

V7)) — P3

][]

Figure 2.1: Data Model Example for Vertex-centric Systems

a superstep i, each active vertex receives messages from other vertices in the super-
step i-1, updates its values and sends messages to other vertices in the superstep i+1.
When passing messages among vertices, the states of vertices will be changed from
active to inactive. When all vertices become inactive, the overall program terminates.
For GraphLab, unlike Pregel, the computation is a stateless function that operates
on the values of vertices which are associated with small neighbourhood in a graph.
A vertex reads and updates its values or values of its neighbours. Hence, without
passing message, GraphLab allows asynchronous iterative computation. Moreover,
GraphLab requires the graph structure to be static while Pregel supports graph muta-
tion during computation. In addition to the systems mentioned above, there are other
vertex-centric systems such as Trinity [48], GRACE [50], Kineograph [28] and so on.

Neighbourhood-centric systems were developed soon after vertex-centric systems
were proposed. This is because the vertex-centric model hides the subgraph informa-
tion via using a collection of unrelated vertices instead of a proper subgraph of the
original input graph. So the vertex-centric model restricts optimization for some algo-
rithms (e.g. connected component and PageRank) [49]. The typical neighbourhood-
centric systems include Giraph++ [49] (developed upon Giraph) and NScale [44]. Fig-
ure 2.2 shows an example data model for neighbourhood-centric systems based on
the concepts of Giraph++. In Figure 2.2, the neighbourhood-centric model divides the
original input graph into partitions as subgraphs (G1, G2, G3). The subgraph stores
the information about vertices and their connections. Each vertex has a unique id (e.g.
V1) and a set of values (this example considers the out-degree value). The model cate-
gorises vertices into two types —internal vertices and boundary vertices. The vertices
that are used to divide the input graph are the boundary vertices (V4 in G2 and V6 in

§2.1 Vertex-centric and Neighbourhood-centric Systems 7

G3 are boundary vertices). A vertex is an internal vertex in an exactly one subgraph
and this subgraph is called the owner of the vertex (G1 is the owner of vertex V4 and
G2 is the owner of vertex V6), but this internal vertex can be a boundary vertex in zero
or more subgraphs. The vertices V1, V2, V3 and V4 are the internal vertices in G1, The
vertices V5, V6 and V7 are the internal vertices in G2 and the vertices V8, V9 are the
internal vertices in G3. For all internal vertices in a subgraph, the owner subgraph
stores all the values. But for a boundary vertex, the vertex value is just a temporary
local copy and its primary information resides in its owner subgraph.

Input Graph Subgraph Values

V1 vi
/ \ /\ ‘ V12 H V31 |
V2 V3§ G1 V2 v3§
\ / \/ ‘ V21 H V41 |
' V4 0

V4
V5 ¢ V6:2
/ \ i G2 V5
: / \ V5:2 ‘ | V71 ‘
V6 €—— V7) ! V6 «— V7
V8 ———> Vo)i G3 l

Figure 2.2: Data Model Example for Neighbourhood-centric Systems

In terms of the computation model of neighbourhood-centric systems, it is similar to
the message passing model, but the messages are only sent from boundary vertices to
their corresponding internal vertices. As message passing through internal vertices is
cheap and immediate, this model can reduce the number of messages passing through
cross-partition edges so as to improve the efficiency.

The vertex-centric model is simple-to-use for programming and has been proved to
be useful for many network analysis algorithms. The neighbourhood-centric model
is not intended to replace the vertex-centric model, instead, it can be implemented
in the same system such as Giraph and Giraph++ for achieving better performance.
Our concern for both vertex-centric and neighbourhood-centric systems is that they
require users to do imperative programming as they do not provide any declarative
languages for querying data. Moreover, some recent works indicate that simply using
a SQL-based system can achieve a better or comparable performance than vertex-
centric systems for some network analysis tasks, such as PageRank, triangle counting,
connected components and single source shortest path [32] [36].

8 Background and Related Work

2.2 Graph Databases

Graph databases emphasise on efficiently managing and processing data as graphs
for network analytics. For example, for the network analysis tasks like finding friends
of friends, relational databases need to use expensive join operations on tables. The
key idea of data model in graph databases is to include all connections between ob-
jects so as to generate a cohesive picture of the whole data. As a result, there are two
typical data models used in graph databases — Property graphs and RDF triple stores.

Property graphs are often said to be “whiteboard-friendly” by data analysts because
when they draw a picture to describe data, it is often naturally a property graph [40].
Figure 2.3 shows an example property graph. A standard graph structure consists of
vertices and edges, denoted by G = (V, E) where V represents vertices and E rep-
resents edges. However, a current popular property graph structure also contains
properties in addition to vertices and edges, denoted by G = (V,E,A) where A rep-
resents properties. In Figure 2.3, vertices contains properties in the form of arbitrary
key-value pairs where keys (e.g. T1, U5) are strings and values (e.g. Name, State,
Comment Count) have various data types (e.g. string, integer). An edge (e.g. Tweets,
Follows, Re-tweets) that connects two vertices is directed and labelled. Like vertices,
edges can also have properties (e.g. Date, Time) which is useful for providing ex-
tra metadata for network analysis algorithms and adding semantics to relationships
such as quality and weight [46]. Some typical graph databases that are using prop-
erty graphs include Neo4j [14], Titan [24] and OrientDB [15]. Although these graph
databases use the same data model, they have different query languages for data ma-
nipulation. Neo4j has its exclusive Cypher query language for graph traversal and Ti-
tan uses Gremlin as its graph traversal language. As OrientDB supports both schema-
less (OrientDB graph model) and schema-based model (OrientDB document model),
it not only uses Gremlin for graph traversal but also uses SQL on top of Gremlin for
querying structured data.

RDF (Resource Description Framework) triple stores, created in 1999 [41], were de-
signed to support the semantic web by adding semantic markup to the links that con-
nect web resources. In fact, a typical RDF triple is a subject-predicate-object data
structure and RDF databases do not store data as a graph. So RDF databases do not
support index-free adjacency [40]. As noted in [40], the reason why RDF triple stores
fall under the category of graph databases is that they do offer optimised graph query
capabilities when connected structures are created for different independent triples
(refer to Figure 2.4). Some representative graph databases include AllegroGraph [2],
Stardog [22], and Apache Jena [3] and SPARQL is the standard query language for
RDF triple store.

Unlike vertex-centric and neighbourhood-centric systems, graph databases provide
different kinds of declarative query languages to retrieve information. In some net-

Isource: http:/ /franz.com/agraph/support/documentation/current/agraph-introduction.html

§2.2 Graph Databases 9

Us — Follows = U8 Date=2015/09/30

\ Time=9:00
\ \ Tweets
Date=2015/09/28

Time=20:30 Tweets Follows Follows

Comment Count=2
Favorite Count=0

Mentions
Comment Count=3
Favorite Count=1 Ul2 <€—Follows U13
Re-tweets Tweets @ Vertex
Date=2015/09/28
Time=5:08 > Edge

Comment Count=129
Favorite Count=53

Figure 2.3: Data Model Example for Property Graph

work analysis tasks, particularly in “friends of friends” queries [30], they are able
to achieve far better performance than relational databases that have to use expen-
sive multiple joins on tables. However, relational databases are still widely used by
enterprises or organisations and they provide a number of sophisticated optimiza-
tion technologies (e.g. indexing, materialised views) for managing and processing
schema-based data. So relational databases are still our preference for some tasks
such as accessing attributes of entities, using aggregate functions and so on.

Science English Grammar
Animal owns
subclassOf subProperty
1
Mammal €—rahge— hasPet
Jans sameAs Mr.Asaman Jans’s Home Page /ﬂ *
subclassOf .
Robbie petOf Jans Jans’s Home Page -~ / inverseOf
Dog ’
petOf inverseOf hasPet English Grammar type petOf sameAs
/ oy 4
Dog subClassOf Mammal Science / St - 7~
Y - ,
petOf sameAs
Robbie » Jans <€ Mr.Asaman
- T
S et T
Jans's Home Page owns

Figure 2.4: RDF Triple Store Model

10 Background and Related Work

2.3 SQL-based Systems

As various specialised systems for network analytics have been created in recent
years, the use of SQL-based systems for network analytics is largely ignored since
users have an impression that systems with a graph model (graph systems) are in the
nature of better performance for network analysis tasks. Then some researchers come
up with a natural question — "Is it really bad to simply use a SQL-based relational sys-
tem for both managing and processing network data?”. Recently, using SQL-based
relational systems for network analytics becomes popular in the research field and
some papers demonstrate SQL-based relational systems, compared with graph sys-
tems, do have better or competitive performance in some network analysis tasks. The
work in [51] shows that Oracle database can achieve better performance for finding
shortest paths. The work in [35] proposes query optimization techniques for efficient
subgraph pattern matching in PostgreSQL. The works in [37] and [32] both indicate
that SQL-based systems are competitive in queries for PageRank, finding single source
shortest paths and calculating connected components.

Vertex Edge Graph Table
A .. 100 A B 1 Vi VERTEX Alice ACT
B 100 A c 2 V2 VERTEX Bob NSW
c .. 100 B D 2 V3 VERTEX Carl vic
D 100 c D 3 E1 EDGE Vi V2
(a) (b)

Figure 2.5: Data Model Example for SQL-based Relational Systems

Figure 2.5.(a) shows an example data model for Grail [32], one SQL-based relational
system with a syntactic layer for network analytics. This data model consists of a
vertex table and an edge table. In Figure 2.5.(a), id (e.g. V1, V2) in the vertex table
represents the unique identifier of a vertex, src and dest in the edge table respectively
represent the source vertex id and the destination vertex id, data in both tables contain
vertex or edge properties that are irrelevant to the computation and val in both tables
represents the properties that are relevant to the computation.

Then Figure 2.5.(b) shows an example data model for GraphiQL [36], another SQL-
based system with a graph intuitive query language. Unlike the data model of Grail,
GraphiQL includes all graph elements in one table called Graph Table with a purpose
that helps users to easily access neighbourhood of vertices and edges without joining
tables. In Figure 2.5.(b), every element (either vertex or edge) in a graph table has
the default properties id (e.g. V1, V2) and type (e.g. VERTEX, EDGE) and a number
of associated properties (e.g. property 1, 2 for vertices respectively relate to name and
state whilst for edges they respectively relates to the source vertex and the destination
vertex.).

§2.4 Summary 11

In terms of the computation model of these systems, they are similar but with differ-
ent implementation methods. Computation of Grail and GraphiQL are vertex-centric
with the message passing model (refer to Section 2.1). They translate a vertex-centric
program to SQL by creating some intermediate tables and using different relational
operators to implement the program. For Grail, it creates temporary tables, such as
next table and message table, to simulate the message passing model. Next table
contains id and values for vertices in the next superstep and message table contains
id of the target vertices and messages that change vertices’ values. For GraphiQL, it
creates computation tables that store computation values for vertices and edges, but
they are not temporary. In each superstep of the message passing model, old compu-
tation tables are replaced by new computation tables with latest values.

In essence, these SQL-based systems (e.g. Grail and GraphiQL) are vertex-centric
but they provide declarative query languages for users to do vertex-centric program-
ming and then translate the program into SQL. As these systems need to translate
their query languages into SQL, there is a gap between two levels of query languages,
which indicates these query languages lack of capability to well interact with SQL,
such as using SQL joins or aggregate functions for further querying. In addition, since
they use SQL and relational operators for vertex-centric programming, it should have
limitations or poor performance for running some network analysis tasks (e.g. find
friends-of-friends) which are inefficient via using relational systems.

2.4 Summary

In this chapter, we have introduced three types of systems for network analytics. For
vertex-centric and neighbourhood-centric systems, they do not provide declarative
languages for users to retrieve data easily. In terms of graph databases, we have de-
mands on not only querying data in graphs but also querying schema-based data.
Moreover, most of applications are still using relational databases to manage and pro-
cess data. As a result, we want a system which is SQL-based, provides a declarative
query language and has competitive performance for network analysis tasks. Cur-
rently, existing SQL-based relational systems still have limitations: (1) the query lan-
guages lack of capability to interact with SQL so we want a declarative query language
that is able to well interact with SQL (e.g. using SQL to create graphs or subgraphs,
combining the analysis results with SQL joins and aggregate functions to get more
information). (2) they can achieve competitive performance for only a few network
analysis tasks so we want a flexible way to cope with most of network analysis tasks
(e.g. for some tasks we can leverage the graph model and graph computing engines to
efficiently get the results, for other tasks we can take advantage of SQL optimization
techniques to achieve better performance). Therefore, we propose the our data model
and query language in Chapter 3 to meet these requirements.

12

Background and Related Work

Chapter 3

Data Model and Query Language

In this chapter, we describe our data model and query language. In Section 3.1, we
first define our data model. Then based on our data model, in Section 3.2, we intro-
duce a new query language for network analytics. A summary of our data model and
query language is given in Section 3.3.

3.1 Data Model

Our data model consists of a relational core, graphical views and relation-graph
mappers. A relational core that contains different relations is in the center of our data
model and surrounded by a number of graphical views. Relation-graph mappers are
used to map relations to graphical views. As our data model allows to build graphs
upon relations, we call it Relation-Graph data model (RG model). Figure 3.1 gives
an overview of the RG model based on the ACM bibliographical network !.

3.1.1 Relational Core

In the RG model, a relational core consists of a collection of relations. Each relation
is described by a relation schema, and contains a number of tuples. Each tuple rep-
resents a fact about objects in real-life applications. Now, we define the following
concepts for the relational core.

e Let D = {D;} where i € N be a family of possibly infinite domains and each D;
is referred to one domain. For instance, we could have domains such as string,
integer, boolean and so forth.

¢ A relation schema R consists of a relation name R and a finite set of attributes
{A1, ..., An} together with an assignment of domains, dom : R — D, such that
each A, is associated with a domain dom(A;) where i € [1,n]. We use attr(R) to
refer to the set of attributes of R, i.e., attr(R) = {A1,..., As}.

IProvided by ACM Digital Library (http://dl.acm.org/)

13

http://dl.acm.org/

14 Data Model and Query Language

Qus) e Graph A Graph B AU7 s

a0 AU
AR3 / / \
AU9 (AR1 Au2 AU6) (AU9
AR2 AU2
Q < AUTHOR \ / AUL—
N
as) on oo T auia | Frame | name | Lrame | astiaion | Emai | % X
ézg 2, Aus) (Au4——Aus
‘s .
&L L R
CITES ARTICLE WRITES &

e CIETNCTEEYEET gy

PROCEEDING

o e st | s [con-ty | con- st con-cuny | Pttt

JOURNAL PUBLISHER

i e i s ottt e 2ot s cour

o
@ @)&%Z" The Relation Core
(o) —Goa—009)

Figure 3.1: Overview of Data Model

Graph D

e A tuple over R (or an R-tuple for short) is a mapping, t : R — D, with t(A) €
dom(A) for all A € attr(R). We use t(A) indicates the value that corresponds to
the attribute A in tuple .

¢ A relation over R (or an R-relation for short) is a finite set of R-tuples.
* A relational core C is a set of relation schemas, i.e., C = {R1,Ry,..., Ry }.

In the relation core, there are two types of domains: D;; C D is a set of identifier do-
mains and D,, C D is a set of value domains with D;; N D,, = () and D;; U D,, = D.
An identifier domain contains a set of entity identifiers. A value domain contains a set
of permissible values. All identifier domains in D;; are pairwise disjoint (the reason
will be described in Section 3.1.2). The following example illustrates these concepts of
the relational core.

Example 3.1.1 The Association for Computing Machinery (ACM) is an organization for
academic and scholarly interests in computing. It manages a large bibliographical net-
work data. In the ACM bibliographical network, each article is written by one or more
authors, an article is published in a conference proceeding or a journal, one article may
cite a number of other articles, and each journal or conference proceeding is published
by a publisher. Figure 3.2 shows a relational core for the ACM bibliographical net-
work ACM = {AUTHOR, ARTICLE, PROCEEDING, JOURNAL, PUBLISHER,
WRITES, CITES}. The underlined attributes represent primary keys and each di-
rected arc represents a foreign key. Each relation schema has one or more attributes
with an identifier domain. In this case, we have D; = {dom(AUid), dom(ARid),
dom(Cited ARid), dom(JOid), dom(PRid), dom(PUid)}.

§3.1 Data Model 15

AUTHOR
AUid | Fname | Mname | Lname | Affiliation | Email
WRITES
AUid | ARid
CITES
v G|
ARTICLE
I
PROCEEDING
(e e | suite [Prc.dose | Gon-cty | Gon-sat | Gon_county Puicton date | Ui
r 3
JOURNAL
101 | ame | peroica type | ubtaton_te | P
||
PUBLISHER
PUid | Name | Zipcode | City | State | Country
| |

Figure 3.2: The Relational Core of ACM Bibliographical Network

16 Data Model and Query Language

3.1.2 Graphical Views

Based on a relational core, a number of graphical views can be established in the RG
model. Each graphical view is a graph in which a vertex represents an entity and an
edge represents a link between two entities. Each graph can be described by a graph
schema. Informally, a graph schema describes what kinds of entities the vertices of a
graph may represent and the connections of such entities represented by the edges. In
this work, we use entity class to describe one kind of entities and link class to describe
a type of connection between entities.

Formal definitions are presented as follows:

* An entity class £ describes a set of (physical or abstract) entities that have the
same behaviour and characteristics. In the RG model, each entity class £ con-
tains a set of entity identifiers from the same identifier domain.

¢ Alink class £ describes relationships among two (possible same) entity classes
&1 and &;. For a link class £ and any two entities £; and &;, £ is symmetric if it
satisfies a condition: whenever (€1, &) € L, then we must have (&,,&1) € L. A
link class is asymmetric if it is not symmetric.

¢ A graph schema G consists of two entity classes and one link class, denoted by
G = (&1, L, &), where the link class L is defined as £ C & x &. If L is symmet-
ric, then graphs over this graph schema G are undirected graphs. Otherwise,
graphs are undirected.

e Agraph G = (V,E) over G = (&1, L, &) consists of a set of vertices & U & and
asetof edges E C L.

A standard graph structure, G = (V, E), consists of vertices and edges. V is a set of
vertex identifiers and E is a set of vertex identifier pairs. Therefore, in our data model,
only entity identifiers are stored in graphs. Other information are stored in the rela-
tional core. We also require all identifier domains in D;; must be pairwise disjoint so
as to guarantee one vertex in a graph represent exactly one entity.

Example 3.1.2 In the ACM bibliographical network, we may have two entity classes
— Equ for authors and &, for articles. &, contains the entity identifiers in dom(AUid)
in the relation schema AUTHOR and &,, contains the entity identifiers in dom(ARid)
in the relation schema ARTICLE. For example, the article AR1 is written by three
authors AU1, AU2 and AU3. The article AR2 is written by two authors AU4 and
AUS5. In Figure 3.3(a), we have an undirected graph over a graph schema G =
(Eaur Leoauthorships Eau) Where Leoqumorship is symmetric and indicates that two entities
are linked if they have co-authored at least one article. For another example, the arti-
cle AR1 cites two articles AR2 and AR3. Both AR2 and AR3 cite the article AR4. In
Figure 3.3.(b), we have a directed graph over a graph schema G = (Eu, Leitation, Ear)
where Ljtati0n is asymmetric and indicates that two entities are linked if one cites an-
other one.

§3.1 Data Model 17

AU3

\

AUI/AUZ

AU4

AU5

(a) Co-authorship Graph over (b) Citation Graph over
<5aur ['coauthorshipr guu> <gar/ Ecitutionz gur>

Figure 3.3: Graphs of ACM Bibliographical Network

3.1.3 Relation-Graph Mappers

In the RG model, we define relation-graph mappers (RG mappers), each of which
takes a set of relations as input and generate a graph as output.

We define the following related concepts for RG mappers.

e An input schema I, is a set of relation schemas, Iny; = {R1,R2,..., Rm}. A
set of relations over the relation schemas in I is denoted by Z(In).

* An output schema Outy, is a graph schema, i.e.,Outyg = (&1, L, &). A graph
over the graph schema is denoted by Z(Out).

* An RG mapper M, which is a mapping, maps a set of relations over an input
schema In y to a graph over an output schema Out pq, i.e., Z(Inpyg) — Z(Out py).

Example 3.1.3 Figure 3.4.(a) presents two RG mappers M oautnorship @nd Mitation-
In Figure 3.4.(a), the RG mappers Moauinorship generates the co-authorship graph
over the graph schema (&, L coauthorships Eau) from a relation over the relation schema
WRITES, s0 IN Meppiporssiy = {WRITES} and OUt M pputhorsiy = (Eaur Leoauthorships Eau)-
In Figure 3.4.(b), another RG mappers M _isqtion generates the citation graph over the
graph schema (Eu, Leitation, Ear) from a relation over the relation schema CITES, so
IN M ygion = {CITES} and Out pm.pion = (Ears Leitations Ear)-

18 Data Model and Query Language

WRITES
AUT ART Moauthorship = 7auid,coauia((Pw1 (WRITES)) / \
AU2 ARf X ARid=COARid AND AUid#COAUid (PwZ(COALIzd COAde)(WRI TES)) AU N AU2
A3 ART T T T T T T T 7 - —r
AU4 AR2 AU4 AUS
AU5 AR2
I(In (Mcoauthurship)) I(Out(Mcouuthorship))

(a) RG Mapper for Co-authorship Graph

CITES

ARid | CitedARi

AR1 AR2 M citation = AR Cited ARia(CITES)

ARl AR3 — — — — — — — >

AR2 AR4

AR3 AR4

Z(In(Meitation)) Z(Out(Meitaion))

(b) RG Mapper for Citation Graph

Figure 3.4: RG Mappers of ACM Bibliographical Network, we use relational algebra
to represent an RG mapper in this section.

§3.2 Query Language 19

3.2 Query Language

In this section, we present a query language that is based upon the RG model. Our
query language, called RG-SQL, extends the traditional SQL (Structured Query Lan-
guage) with the following main features..

* graphical views providing flexible choices for building graphs on-the-fly or ma-
terialising graphs.

* Incorporating graph operators to support common graph algorithms for net-
work analytics, such as vertex centrality, community detection, reachability and
shortest path.

Here, we discuss three types of graph operations which are ranking, clustering and
path finding. We also demonstrate how such operators can be incorporated into SQL
to provide a unified data analysis framework for relational analysis, network analysis
or a mix of them.

Below is the basic syntax (SQL-style syntax) of graph queries in our query language
(we will provide more details in the following subsections):

SELECT <attribute list>
FROM <graph operator>
WHERE <condition>;

e <attribute list> is a list of attribute names of a relation that contains the result
generated by a graph operation.

¢ <graph operator> indicates which operator (RANK, CLUSTER or PATH) a user
wants to use.

¢ <condition> in the WHERE clause is optional for ranking and clustering opera-
tions to construct a graph on-the-fly, but it is required for path finding operation
to specify vertex condition.

3.2.1 Create Graphical Views

In our data model, graphs can be constructed over a relational core using RG map-
pers. Thus, graphs are supposed to be dynamic, i.e., graphs change if we modify the
tuples of the relational core. In general, there are two approaches to specify graphs in
our work.

Graphs On-the-fly The first approach is to create graphs on-the-fly. In this case, graphs
are not persistently stored in the database, which provides us a flexible way to create
small graphs or different subgraphs of a large one. For graphs that are created on-the-
fly, they are stored in the main memory, so the I/O cost can be significantly reduced.
However, this approach is also limited by the size of a graph and the size of available

20 Data Model and Query Language

main memory. If a graph is too large, then it may not be able to fit into the main mem-
ory, and fails to be created on the fly. Another disadvantage of this approach is that it
is inefficient for a frequently-used graph when a RG mapper is a complex query that
is time-consuming to execute. The syntax of creating a graph on-the-fly is defined by:

SELECT <attribute list>
FROM <graph operator
WHERE <graph name> IS <graph type> AS (RG mapper);

<graph type> := UNGRAPH | DIGRAPH

If users want to create a graph on-the-fly, they need to specify the graph name, the
graph type (UNGRAPH means undirected graph, DIGRAPH means directed graph)
and the RG mapper in the WHERE clause. In Example 3.2.1, it shows how to create the
citation graph on-the-fly, where the citation graph is generated by an RG mapper (SE-
LECT ARid, CitedARid FROM CITES). Details about the VertexID, Value and RANK
operator are given in the next subsection.

Example 3.2.1 The following citation graph is created on the fly.

SELECT VertexID, Value
FROM RANK (citation, indegree)
WHERE citation IS DIGRAPH AS

(
SELECT ARid, CitedARid FROM CITES

);

Materialised Graphs The second approach is called graph materialisation which per-
sistently creates a graph in the database. The same as materialised views in relational
databases, incremental update is the technique that keeps the graph up-to-date [25].
This approach is efficient when a graph query needs to be executed multiple times, or
a graph query provides results that can be further analysed. However, we need space
to store materialised graphs. The syntax of creating a materialised graph is defined by:

CREATE <graph type > <graph name> AS (RG mapper);
<graph type> := UNGRAPH | DIGRAPH

Users can use the CREATE command to create a materialised graph in the database.
As same as creating a graph on-the-fly, users are required to specify the graph type,
the graph name and the RG mapper. We take the coauthorship graph and the RG
mapper M coauthorship mentioned in the previous section as an example to demonstrate
the syntax of creating a materialised graph:

§3.2 Query Language 21

Example 3.2.2 The following creates a coauthorship materialised graph.

CREATE UNGRAPH coauthorship AS
(
SELECT w1.AUid AS AUid, w2.AUid as CoAUid
FROM WRITES as w1, WRITES as w2
WHERE w1l.ARid = w2.ARid AND w1.AUid '=w2.AUid

);

If we do not need a materialised graph any more, we can use the DROP command to
dispose of it. We define the following syntax of dropping a materialised graph along
with an example of dropping the coauthorship graph.

DROP <graph type > <graph name>;

<graph type> := UNGRAPH | DIGRAPH

Example 3.2.3 The following drops the coauthorship materialised graph.

DROP UNGRAPH coauthorship;

3.2.2 Use Graph Operators

In our query language, graph operations are provided as building blocks in the FROM
clause for expressing queries over graphs. We have incorporated three typical opera-
tions — ranking, clustering and path finding.

Ranking In network analytics, we are interested in vertex centrality which indicate
the importance of vertices within a graph. A number of measures have been previ-
ously proposed to determine the importance of vertices such as degree, betweenness,
closeness, pagerank and so forth [26]. We develop a graph operator RANK to specify
the ranking operation with the following syntax:

RANK (<graph name>, <measure>)

<measure> := degree | indegree | outdegree |
betweenness | closeness | pagerank

Note that different measures support different graph types. When creating a graph,
we are required to specify the type of the graph. We will check the measures with
the graph type when running ranking operations on a graph. Table 3.1 shows all
measures that have been incorporated into our query language, along with their sup-

porting graph types.

22 Data Model and Query Language

Supporting Graph Types
Operator | Measures Undireclt)(fd gragh [gireczgd graph

degree Vv

indegree Vv

outdegree Vv
RANK betweenness vV
closeness vV

pagerank Vv v

Table 3.1: Measures of the RANK Operator

After running a ranking operation over a graph, the results are stored in a temporary
table which consists of two attributes — "VertexID” and ”Value”. The value of the
"VertexID” attribute in a tuple is an entity identifier of the graph. The value of the
”Value” arrtibute in a tuple is the ranking score of the vertex corresponding to the en-
tity identifier in “VertexID”. The results are sorted by a descending order of “Value”.
We can also add the LIMIT clause to return only the top k results. In the following,
we show a query that is based on the data model of the ACM bibliographical network
mentioned in the previous section.

Example 3.2.4 The following query is to find the top 3 influential articles according
to their citation counts.

SELECT VertexID, Value
FROM RANK (citation, indegree)
WHERE citation IS DIGRAPH AS

(
SELECT ARid, Cited ARid FROM CITES

)
LIMIT 3;

Clustering A large number of clustering algorithms have been developed for solv-
ing problems in different application areas [26]. In network analytics applications,
two typical clustering-related tasks are: community detection and finding connected
components. In real-life networks, the distribution of edges normally is locally in-
homogeneous, which means high concentrations of edges with special groups of ver-
tices and low concentrations between these groups. This feature is called community
structure [33]. In addition to finding community, we often want to find the biggest
connected component or find all strongly connected components in a network. We
develop a graph operator CLUSTER to specify a group of vertices by using algo-
rithms for connected components and community detection. For algorithms, we use
five keywords including CC for the algorithm of finding connected components [26],
SCC for the algorithm of finding strongly connected components [26], GN for Girvan-

§3.2 Query Language 23

Newman algorithm [34], CNM for Clauset-Newman-Moore Algorithm [29] and MC
for Peixoto’s modified Monte Carlo Algorithm [42]. The syntax of the clustering op-
eration is defined by:

CLUSTER (<graph name>, <algorithm>)

<algorithm> := CC | SCC | GN | CNM | MC

As same as the ranking operation, clustering algorithms support different graph types.
Table 3.2 shows all algorithms along with their supporting graph types.

. Supporting Graph Types
Operator | Algorithms UndirecIt)epd grash [I))irec{elzod graph
cC v v
SCC V4
CLUSTER GN Vv
CNM Vv
MC N, N

Table 3.2: Measures of the CLUSTER Operator

The result generated by a clustering operation over a graph is stored in a temporary
table which consists of three attributes — ”ClusterID”, ”Size” and “"Members”. Users
can add the ORDER BY clause with the ”Size” attribute to get the biggest connected
component or community. The value of the "Members” attribute in a tuple is an array
of entity identifiers, which indicates who are in this tuple’s cluster. Assume that we
have already created a materialised graph called coauthorship mentioned in Example
3.2.2. Example 3.2.5 shows how to find the biggest communities of authors in the ACM
bibliographical network.

Example 3.2.5 The following query is to find the biggest communities that consist
of authors who collaborate with each other to publish articles together.

SELECT ClusterlID, Size, Members
FROM CLUSTER (coauthorship, GN)
ORDER BY Size DESC

LIMIT 1;

24 Data Model and Query Language

Path Finding A pathis a sequence of pairwise disjoint vertices V1, ..., V,, where (V}, Vii1)
is an edge for i = 1,...,n — 1. Finding paths is also one of typical tasks in network
analytics and it includes two primary problems — reachability and shortest path. In
addition, users often want to add more conditions on a path such as finding a path
with a specific length or with a specific vertex in the middle of it. The syntax of PATH
graph operator is defined by:

PATH (<graph name>, <path expression>)

<path expression> :=. | V | <path expression>/ <path expression>|
<path expression>// <path expression>

where V is a vertex expression defined by conditions in the WHERE clause
(refer to the basic syntax of graph queries at the beginning of Section 3.2)
and ”.” is the do-not-care symbol which indicates any vertex is allowed.

A path expression is valid if it contains a vertex expression in the first and last po-
sitions. In path expression, ”/” represents one edge and ”//” represents any number
of edges. Table 3.3 shows some examples about path expression.

Operator Path Expression
vi/././V2
(paths between V1 and V2, where the length is 3)
V1//V2
PATH (paths between V1 and V2 with any length)

Vi/./V2/./V3
(V2 in the 3rd position of paths between V1 and V3, where the length is 4)
v1//V2//V3
(V2 in the middle of paths between V1 and V3 with any length)

Table 3.3: Examples of Path Expression

When using path finding operation, users are required to specify vertex expressions
in the WHERE clause. A temporary table that stores the results of a path finding
operation over a graph consists of three attributes — “PathID”, “Length” and “Path”.
Users can add the ORDER BY clause with the “Length” attribute to get the shortest
path and the ”//” symbol is for reachability problem between two vertices. The value
of “Path” attribute in a tuple is an array of entity identifiers, which demonstrates the
sequence of vertices in the path. Still, assume that we already have the coauthorship
materialised graph and we use Example 3.2.6 and Example 3.2.7 to illustrate queries
about reachability and finding shortest path in the ACM bibliographical network.

§3.2 Query Language 25

Example 3.2.6 The following query is to find two authors V1 and V2, where V1 and V2
are connected by a path of any length, the author V1 is affiliated at ANU (Australian
National University) and the author V2 is affiliated at Microsoft.

SELECT PathID, Length, Path

FROM PATH (coauthorship, V1//V2)

WHERE V1 AS

(
SELECT AUid FROM AUTHOR
WHERE Affiliation like '%ANU%'

) AND V2 AS

(
SELECT AUid FROM AUTHOR
WHERE Affiliation like '%Microsoft%'

);

Example 3.2.7 The following query is to find shortest paths between two authors V1
and V3, where in the middle of the shortest path there is an author V2 who is affili-
ated at Microsoft. Author V1 is affiliated at ANU and Author V3 is affiliated at NICTA
(National ICT Australia).

SELECT PathID, Length, Path

FROM PATH (coauthorship, V1//V2//V3)

WHERE V1 AS

(
SELECT AUid FROM AUTHOR
WHERE Affiliation like '%ANU%'

) AND V2 AS

(
SELECT AUid FROM AUTHOR
WHERE Affiliation like '%Microsoft%'

) AND V3 AS

(
SELECT AUid FROM AUTHOR
WHERE Affiliation like '%NICTA%'

)
ORDER BY Length ASC;

26 Data Model and Query Language

3.3 Summary

In this chapter, we have presented our data model (RG model) and query language
(RG-SQL). The RG model is a hybrid model with relations and graphs. It consists of
a relational core, graphical views and relation-graph mappers (RG mappers). A re-
lational core is similar to the relational data model in traditional relational databases
and the entity identifiers from identifier domains are used to specify the vertices of
graphs. Therefore, all identifier domains in the relational core must be pairwise dis-
joint so as to guarantee each vertex in a graph can only represent exactly one entity.
An RG mapper is a query that is used to map a set of relations to one graph. In the
RG model, a relational core provides a basis for a number of graphical views that are
generated by using a number of RG mappers. Based upon the RG model, we propose
a query language (RG-SQL) for data manipulation. RG-SQL extends traditional SQL
with creating/dropping graphs, and conducting queries over graphs. Users can use
RG-SQL to create graphs on-the-fly or materialised graphs. The ranking operation is
to sort vertices in a graph according to certain measure of vertex centrality. The clus-
tering operation is to find a group of vertices and the path finding operation is to find
a sequence of vertices in a graph.

Chapter 4

Query Engine

In this chapter, we describe the query engine developed for the RG model and RG-
SQL. As we develop our query engine with PostgreSQL, we follow the PostgreSQL
concepts when describing the query processing and each component of the query
engine. In Section 4.1, we first demonstrate how queries written in RG-SQL are pro-
cessed in our query engine. In Section 4.2, we present the architecture of our query
engine and give more details about its components. Then we propose some query op-
timisation strategies in Section 4.3. Section 4.4 gives a summary of the query engine.

4.1 Query Processing

Similar to relational query processing, a query written in the RG-SQL is processed to
follow a parser-optimiser-executor pattern. An RG-SQL query created in the query
console is first validated by the query parser and then converted into a plan tree.
The query optimiser enumerates alternative plan trees, estimates their cost and deter-
mines the best plan tree for execution. A plan tree (refer to Section 4.2 for more details)
consists of different types of operation nodes including graph operation nodes (rank
operation, cluster operation and path operation) and other relational operation nodes
(selection operation, join operation, aggregate operation). The query optimiser will
extract graph operations from the plan tree and pass them to the graph executors.

For all graph operations, they are executed by three graph executors: (1) rank ex-
ecutor is for rank operations, (2) cluster executor is for cluster operations and, (3) path
executor is for path operations. During these executions, the graph executors need to
retrieve the graph data from the data storage to generate graphs and run algorithms
over those graphs. After graph operations are executed, their corresponding execu-
tors will store the results into the data storage as the network analysis results.

After the query optimiser determines the best plan tree, the plan executor executes
the plan tree by processing its operation nodes from the bottom to the top. During
the execution, the plan executor needs to retrieve the network analytics results and
the relational data from the data storage. After the execution, the plan executor will
return the query result to the query console.

27

28 Query Engine

Next section will give more details about each component of our query engine.

; Query

Query >

|
Plan Tree

Query Optimiser

Query Rank Cluster Path
Result Operation Operation Operation

y v v

Rank Cluster Path
Executor Executor Executor
A A

) Plan Tree

Daté_l o Da:ta o Data /O for Execution

.
- - 04
- g o

.
.

v kb -

&

Network Analysis Results
. Data Plan

<& .)
Graph Relational vo Executor
Data Data

Data Storage

Query Result

Figure 4.1: RG-SQL Query Processing

4.2 Architecture

Our query engine, called RG Engine, is built for processing RG-SQL queries that
contain graph sub-queries (queries with graph operators) and relational sub-queries.
The RG engine is developed in Python programming language with the official Post-
greSQL client library — libpq [11]. We use Psycopg [17], the current mature wrapper
for the libpq, as the PostgreSQL adapter for our query engine. Figure 4.2 shows the
main components of the RG Engine.

Query Console

The query console is a user interface that allows users to submit RG-SQL queries.
The same as traditional SQL queries, each RG-SQL query ends with a semicolon. The
console also displays query result and error messages, such as graph type error, path
expression errot, and so on.

§4.2 Architecture 29

Query Console

Query Parser

Plan Generator Cost Estimator

Query Optimiser

Rank Cluster Path Plan
Executor Executor Executor Executor

Figure 4.2: Architecture of the RG Engine

Query Parser

The query parser consists of four main sub-components — Validator, Analyser, Rewriter
and Translator. Given an RG-SQL query, the validator first checks whether or not the
query syntax is correct, such as checking the keyword’s spelling, checking the num-
ber of parentheses, checking if path expressions are in correct format and so forth.
Then, the validator is involved with the system catalog to validate the query. The
system catalog is the place where PostgreSQL stores schema metadata, such as infor-
mation about tables, attributes, operators, data types and other internal information
[18]. We add a schema metadata about materialised graphs into the system catalog -
the pg_matgraph. The following describes some typical query validation tasks:

* To check whether or not the graphs and tables of the query are registered in the
system catalog. The corresponding schema metadata contain the pg_matgraph,
the pg_table, the pg_matviews and the pg_views.

¢ To ensure that the attribute references are correct. The corresponding schema
metadata is the pg_attribute.

* To examine if the operators used in the query are consistent with data types. The
corresponding schema metadata contain the pg_operator and the pg_type.

After a query is validated, the analyser starts to differentiate graph sub-queries and
relational sub-queries. There will be a query tree that indicates the query execution
order (refer to Figure 4.3, queries at the bottom will be executed first). In Figure 4.3,
the ”Graph Sub-query 1” retrieves a materialised graph and the “Graph Sub-query 2”
with a relational sub-query retrieves a graph that is created on-the-fly.

30 Query Engine

Relational Query
SELECT Fname, Mname, Lname, Affiliation S SN AT TR, R, AT
FROM AUTHOR
FROM AUTHOR WHERE AUid IN (Inner Relational Query);
WHERE AUid IN '
(
SELECT AUid
FROM WRITES AS w,

(Relational Sub-query 1
SELECT Members SELECT AUid

FROM CLUSTER (coauthorship, GN) FROM WRITES AS w, (Inner Graph Query 1) AS c, (Inner Graph Query 2) AS r
ORDER BY Size DESC

WHERE w.AUid = ANY(c.Members) AND w.ARid = r.VertexID
LIMIT 1
JASC LIMIT 3

(/ V\
SELECT VertexID

FROM RANK (citation, pagerank) Graph Sub-query 1
For Graph Sub-query 2
WHERE citation IS DIGRAPH AS Graph Sub-query 2

SELECT Members) SELECT VertexID
SELECT * FROM CITES FROM CLUSTER (coauthorship, GN) FROM RANK (citation, pagerank)

) SI?II[I)TE? BY Size DESC WHERE citation IS DIGRAPH AS (RG Mapper)
)AST

WHERE w.AUid = ANY(c.Members) AND w.ARid = r.VertexID *
LIMIT 3

); Relational Sub-query 2
SELECT * FROM CITES

Figure 4.3: Query Tree Example for a Query of the ACM Bibliographical Network

For all the graph sub-queries, the rewriter replaces the graph operators with some spe-
cific table names. These table names will be used for temporary tables to store results
after executing graph operations. For example, the “Graph Sub-query 1” in Figure 4.3
will become "SELECT Members FROM cluster_coauthorship_-1 ORDER BY Size DESC
LIMIT 1,”. These table names follow a specific format:

<graph operator>_<graph name>_<graph operator ID>

<graph operator>:= rank | cluster | path

<graph name> is the name of the graph stored in the data storage.
<graph operator ID> corresponds to the order that graph operators occur
in the query.

In our query engine, the text string of graph operators and the specific table names
are stored in the data dictionary. If a graph operator contains a graph that is cre-
ated on-the-fly, then the graph operator and its corresponding relational sub-query
will be rewritten to one specific table name. For example, the “Graph Sub-query 2”
and the “Relational Sub-query 2” in Figure 4.3 will become ”"SELECT VertexID FROM
rank_citation_2;” .

After all these steps, the translator converts the query into an internal format of the
query (i.e. a plan tree) that will be passed on to the query optimiser for optimisation
[18]. A plan tree can be represented by a relational algebra expression.

§4.2 Architecture 31

Query Optimiser

In general, what the query optimiser does are: (1) enumerating alternative plan trees
based on the plan tree that is received from the query parser (done by the Plan Gener-
ator); (2) estimating the cost for the alternative plan trees (done by the Cost Estimator);
(3) choosing the plan tree with the lowest cost for execution.

In order to identify alternative plan trees (typically a subset of all possible plan trees),
one important method used by a query optimiser is using heuristic rules that trans-
form a relational algebra expression (RA expression) into another equivalent-but-
more-efficient RA expression. Some typical transformation rules include: to decon-
struct conjunctive select operations into a sequence of individual selection, to com-
bine selections and cross-products into joins, to push selections and projections ahead
of joins and so forth [20][45]. After identifying the alternative plan trees, the query
optimiser estimates costs of each plan tree in terms of disk page fetches (I/Os) and
CPU time [1]. Then it determines the best plan tree for execution. There is one more
thing: the query optimiser extracts all graph operations from the execution plan tree,
passes them to the three graph executors.

Graph Operation Executors

All graph operations will be executed by three graph operation executors according
to their operation types, which rank executor is for rank operations, cluster executor
is for cluster operations and path executor is for path operations. For the graph op-
eration executors, we use three graph analysis tools as algorithm support, including
SNAP [21], NetworkX [16] and Graph-tool [7]. Based on the performance evaluation
for these three graph analysis tools (refer to Section 5.2), we make decisions about
algorithm support as follows:

¢ Rank Executor: choose SNAP to support algorithms for four ranking measures
(i.e. degree, indegree, outdegree and pagerank) and Graph-tool to support algo-
rithms for other two ranking measures (i.e. closeness and betweenness).

* Cluster Executor: choose SNAP to support four clustering algorithms (i.e. find-
ing connected components [26], finding strongly connected components [26],
the Girvan-Newman algorithm [34] and the Clauset-Newman-Moore algorithm
[29]) and Graph-tool to support the Monte Carlo algorithm [42].

* Path Executor: choose NetworkX to support the path finding algorithm.

32 Query Engine

Table 4.1 shows the methods that are used in our graph operation executors. More
details about those methods refer to the reference manuals of these graph analysis
tools?. After executing the corresponding operations, three graph operation executors
will store the results into temporary tables with specific table names (mentioned in
the Query Parser). These temporary tables will be stored in the data storage as the
network analysis results before the query processing terminates. The rank executor
will first sort the results according to the measure values and then store the results
into a table that consists of two columns — VertexID and Value. Likewise, the cluster
executor will store the results into a table with three columns (i.e. ClusterID, Size and
Members) and the path executor will create a table that also consists of three columns
(i.e. PathID, Length and Path).

Algorithms Methods Tools
Degree GetDegreeCentr()

Indegree GetNodeInDegV()

Outdegree GetNodeOutDegV()

Pagerank GetPageRank() SNAP
Connected Component GetWees()

Girvan-Newman CommunityGirvanNewman()
Clauset-Newman-Moore | CommunityCNM()

Betweenness centrality.betweenness()

Closeness centrality.closeness() Graph-tool
Monte Carlo community.minimize_blockmodel_dI()

Path Algorithm all_simple_paths() NetworkX

Table 4.1: Algorithm Support

Plan Executor

The basic idea of the plan executor is to execute the plan tree chosen by the query opti-
miser, to extract the required set of tuples, and to return the tuples as a query result to
the query console. The plan tree is a pipelined demand-pull graph with different types
of operation nodes and these nodes will be recursively processed by the plan executor
[18]. The bottom-level nodes produce tuples as the input for the upper-level nodes.
In general, the bottom-level nodes often relate to selection and projection operations
which require the executor to scan physical tables (e.g. sequential scan for non-index
tables and index scan for tables with index attributes) and the upper-level nodes often
relate to join operations (e.g. nested-loop, merge join and hash join). There are other
special-purpose operation nodes, such as sorting and aggregate operations [1]. Fig-
ure 4.4 shows an example about how an plan tree is processed for a query to find the
affiliations of top 10 influential authors in the co-authorship network.

2SNAP’s manual: http:/ /snap.stanford.edu/snappy/doc/reference/index-ref html;
NetworkX’s manual: http:/ /networkx.github.io/documentation /networkx-1.9.1/;
Graph-tool’s manual: http:/ /graph-tool.skewed.de/static/doc/index.html

http://snap.stanford.edu/snappy/doc/reference/index-ref.html
http://networkx.github.io/documentation/networkx-1.9.1/
http://graph-tool.skewed.de/static/doc/index.html

§4.3 Query Optimisation 33

Query Result

T Adjacent duplicated tuples removed

niqu

T Tuples sorted to bring duplicates together
Sort
Sort Column: Affiliation

SELECT Affiliation FROM AUTHOR,
rank_coauthor_1 WHERE AUid = VertexID

Nestloop Join
Target List: Affiliation
SELECT DISTINCT Affiliation Qualification: AUid = VertexID
FROM AUTHOR . o
WHERE AUid IN SELECT AUid, Affiliation \ SELECT VertexID
(FROM AUTHOR FROM rank_coauthor_1 LIMIT 10
SELECT VertexID » Index Scan Index Scan
FROM RANK (coauthorship, betweenness) Table: AUTHOR Table: rank_coauthor_1
LIMIT 10 Index: AUTHOR(AUid) Index: rank_coauthor_1 (VertexID)
) Target List: AUid, Affiliation Target List: VertexID
’ Qualification: Null Qualification: LIMIT 10

Figure 4.4: Plan Tree Processing for a Query of the ACM Bibliographical Network

4.3 Query Optimisation

In this section, we propose some query optimisation strategies for our query opti-
miser. As we adopt the query optimiser of PostgreSQL in our query engine, the spe-
cific optimisation techniques of PostgreSQL have already been used in our query en-
gine, such as the transformation rules for relational algebraic equivalence, the genetic
optimisation algorithm for searching alternative plan trees and so forth [18]. However,
our RG-SQL queries may have graph sub-queries and relational sub-queries. How to
optimise those graph sub-queries and relational sub-queries in a unified framework
is the focus of this section. We divide our optimisation strategies into two groups —
Sub-query equivalence and Query caching.

Sub-query equivalence A complex RG-SQL query always contains a number of
graph sub-queries and these graph sub-queries often contain a number of relational
sub-queries. Figure 4.5 shows a query tree example for a path finding query. In Figure
4.5, the relational sub-queries 1,2 3 are very similar, which are to select author iden-
tifiers from the AUTHOR relation. Moreover, for the relational sub-query 1 and the
relational sub-query 3, the results of them are very close because many authors who
work in NICTA are researchers in ANU.

The basic idea of sub-query equivalence is to decompose an RG-SQL query Q into a
set of sub-queries {41,492, ...,q9,},1.e. Q = {q1,92, ..., 9n }. Then we reduce or rewrite
the equivalent sub-queries to make the sub-query set smaller so as to improve effi-
ciency.

34 Query Engine

SELECT PathID, Length, Path Graph Query
FROM PATH (coauthorship, V1 // V2 // V3) SELECT PathiD, Length, Path
WHERE V1 AS FROM PATH (coauthorship, V1 // V2 // V3)
(WHERE V1 AS (Inner Relational Query 1)
SELECT AUid FROM AUTHOR AND V2 AS (Inner Relational Query 2)
WHERE Affiliation LIKE ‘%ANU%’ AND V3 AS (Inner Relational Query 3)
) AND V2 AS ORDER BY Length ASC;
(
SELECT AUid FROM AUTHOR +
WHERE Affiliation LIKE “%Microsoft%’
) AND V3 AS
SELECT AUid FROM AUTHOR
WHERE Affiliation LIKE ‘%NICTA%’ Relational Sub-query 1 RelatienallGariquery? Relational Sub-query 3

) SELECT AUid FROM AUTHOR SELECT AUid FROM AUTHOR SELECT AUid FROM AUTHOR
ORDER BY Length ASC; WHERE Affiliation LIKE ‘%ANU%’ WHERE Affiiation LIKE “%Microsoft%' WHERE Affiliation LIKE ‘%NICTA%’

Figure 4.5: Query Tree Example for Sub-query Equivalence

Query caching Similar to some existing works for caching results of relational
queries [27] [43], we can also cache the query results so as to avoid repeated com-
putation. Given a complex RG-SQL query, its sub-queries can be transformed into
a number of equivalent queries using different cached results and then this revised
query is fed to the query optimiser to generate an optimal execution plan. However,
there are some issues that need to be solved during the implementation including:

¢ Cache replacement strategy: we need to decide what kind of caches should be
replaced when the cache space is full. Should we replace the caches that are the
least recently used, or the caches that are the least frequently used, or the caches
that require the largest cache space?

¢ Cache update strategy: we need to decide how to update the outdated caches.
Should we update the caches once their base relations are changed (immediate
update), or according to certain periods (periodical update), or when the caches
are on demand (on-demand update)?

* Query matching strategy: we need to decide the requirements for two queries
that can be considered as equivalent queries. If two queries are exactly the same,
they certainly are equivalent. How about one query contains another query or
two queries are overlapped? In these situations, can we still reuse the cached
results?

§4.4 Summary 35

44 Summary

In this chapter, we have described the RG-SQL query processing and the architecture
of the RG engine. RG-SQL queries typically go through a parser-optimiser-executor
pattern in the query engine. In the query parser of the RG engine, we have a valida-
tor to check and validate queries, a analyser to differentiate graph sub-queries and
relational sub-queries, a rewriter to rewrite all graph sub-queries and a translator to
convert queries into plan trees. Given a plan tree from the query parser, the query
optimiser enumerates alternative plan trees, estimates their cost and determines the
plan tree with the lowest cost to be executed. Then three graph operation executors
execute the graph operations extracted from the execution plan tree and the plan ex-
ecutor processes each operation nodes of the plan tree from bottom to top. At last,
the plan executor returns the query result to the query console. In addition, we also
propose two query optimisation strategies for RG-SQL queries including sub-query
equivalence and query caching.

Since the RG engine is developed with the PostgreSQL, it takes advantage of the
existing PostgreSQL components to process queries including the query parser, the
query optimiser and the plan executor. The source code of the RG engine refers to
https:/ /gitlab.com /RG_Framework/RG_Engine. We extend the PostgreSQL compo-
nents with capability of processing RG-SQL queries, but we have not yet incorporated
those query optimisation strategies with the RG engine. We take the implementation
for query optimisation as one of our future work.

https://gitlab.com/RG_Framework/RG_Engine

36

Query Engine

Chapter 5

Performance Evaluation

In this chapter, before showing the results of our performance evaluation experiments,
we first describe our experimental environment including the hardware and software
information in Section 5.1. We conduct two experiments in this chapter. The first one,
in Section 5.2, is about the performance of the graph analysis tools that we use as
the RG engine’s algorithm support (i.e. SNAP [21], NetworkX [16], Graph-tool [7]). In
Section 5.3, the second experiment, we compare our RG engine with the query engines
of a relational database (PostgreSQL [19]) and a graph database (Neo4j [14]) through
running different types of queries. A summary is given in Section 5.4.

5.1 Experimental Environment

Hardware Information

All of our experiments were performed on the Dell Optiplex 9020 desktop computer
with the Intel(R) Core(TM) i7-4790 CPU 3.6GHz 8 cores processor, 16 GB of memory
and the 256GB SAMSUNG SSD PM851 disk.

Software Information

The experiment-related software information is presented in Table 5.1.

Operating System Ubuntu 14.04 LTS with Linux kernel 3.16.0-50 generic
Programming Language Python 2.7.6
Relational Database PostgreSQL 9.4.4
Graph Database Neo4j community 2.2.5
Snap.py 1.2
Graph Analysis Tools NetworkX 1.10
Graph-tool 2.9
PostgreSQL Adapter psycopg2 2.6.1
Time Measure Package timeit 2.6
Memory Measure Package | psutil 3.2.1

Table 5.1: Software Information

37

38 Performance Evaluation

5.2 Performance of Graph Analysis Tools

As we mentioned in Section 4.2, for the graph operation executors, we use three graph
analysis tools as algorithm supports, including SNAP [21], NetworkX [16] and Graph-
tool [7]. Table 5.2 shows that all three graph analysis tools can support the first six al-
gorithms including “Degree”, “PageRank”, “Betweenness”, “Closeness”, “Connected
Component” and ”Strongly Connected Component”. However, for the other five al-
gorithms, each algorithm can be supported by only one tool. Therefore, we choose
SNAP to support the "Girvan-Newman” and “Clauset-Newman-Moore” algorithms,
Graph-tool to support the "Monte Carlo” algorithm and NetworkX to support path
finding algorithms.

Algorithms SNAP | NetworkX | Graph-tool
Degree vV vV Vv
. PageRank
Ranking Betv%eenness \\? y y
Closeness Vv v v
Connected Component v V vV
Strongly Connected Component Vv Vv v
Clustering Girvan-Newman v/ - -
Clauset-Newman-Moore Vv - -
Monte Carlo - - vV
1. Shortest Path * * % %
Path Finding Path with Specific Length ok y -
Note:
* SNAP has the snap.GetShortPath() method but only returns the length of the path.
** SNAP has the snap.GetNodesAtHop() method but only returns vertex identifiers
of the destination vertices.
* x * Graph-tool has the graph_tool.topology.shortest_path() but only returns one
of all shortest paths.

Table 5.2: Algorithm Support of Graph Analysis Tools

We have first conducted an experiment to evaluate the time performance and memory
performance of the three graph analysis tools through running the first six algorithms.
For the experiment input, we used the graph generator of SNAP to create twelve
Erdos-Renyi random graphs [5] [31], rather than graphs of a specific type of network.
Table 5.3 shows the details of these Erdos-Renyi random graphs.

In the experiment, we ran each of these six algorithms over the twelve random graphs
using the three graph analysis tools. Note that Graph-tool performs some algorithms
(e.g. PageRank, Betweenness, Closeness) on multi-core architectures, which allows
parallel computation [4]. However, SNAP and NetworkX do not support multi-core
architectures. Therefore, we compare SNAP and NetworkX both with Graph-tool (us-
ing 1 core) and Graph-tool (using 4 cores). For the time performance evaluation, we

§5.2 Performance of Graph Analysis Tools 39

Number of Vertices | Number of Edges | Size (KB)

Graph 1 100 200 1
Graph 2 100 1,000 6
Graph 3 100 5,000 29
Graph 4 500 1,000 8
Graph 5 500 5,000 38
Graph 6 500 25,000 189
Graph 7 2,500 5,000 46
Graph 8 2,500 25,000 228
Graph 9 2,500 125,000 1,100
Graph 10 12,500 25,000 256
Graph 11 12,500 125,000 1,300
Graph 12 12,500 625,000 6,400

Table 5.3: Erdos-Renyi Random Graphs

have run each algorithm five times and taken the average time for plotting. The av-
erage time is the sum of graph constructing time and algorithm computation time.
For the memory performance evaluation, we also have run each algorithm five times,
taken the peak value of each time as the memory consumption, and taken the average
memory consumption for plotting.

Figure 5.1 shows the time performance comparison of the graph analysis tools. Note
that the value of the Y axis of Figure 5.1.(3) and Figure 5.1.(4) is scaled in logarithm.
Based on the plots in Figure 5.1, we have the following observations:

* For the algorithms about degree, page rank, connected components and strongly
connected component), SNAP has the better time performance than NetworkX.
This is mostly because the core library of SNAP is a C/C++ library and Net-
workX is a pure Python implementation, which in general is known to be sub-
stantially slower than C/C++ [23] [10].

¢ However, although Graph-tool use a pure C/C++ library, it requires more time
than SNAP when running the algorithms mentioned in the last bullet point.
This is because Graph-tool spends more time on constructing graphs (refer to
Appendix B for details). When constructing graphs, Graph-tool always creates
vertices starting from ID 0. Simply speaking, if Graph-tool constructs a graph
that only consists of one vertex with an identifier 100, it will create 101 vertices
from ID 0 to ID 100. So when using Graph-tool to construct graphs, we need
to create dictionaries that map vertex identifiers with the Graph-tool internal
IDs. Because of the dictionary operations, Graph-tool requires more time for
constructing graphs than the other two graph analysis tools.

¢ In terms of algorithms about betweenness and closeness, despite more graph
constructing time, Graph-tool (4 Cores) takes advantage of its multi-core archi-
tectures to achieve better performance, especially in large graphs.

40 Performance Evaluation

(1) Time Performance for Degree (2) Time Performance for PageRank
16.00 5 enAp 16.00 = =NAp
& NetworkX O NetworkX
Graph-tool (1 Core) Graph-tool (1 Core)

12.00 Graph-tool (4 Cores) 12.00 Graph-tool (4 Cores)
o)
2 2
g g
3 800 3 800
© . @
E v : E
= o . o o = ——n [

3 4.00

]
3" W 5 8 A ® o 0 AN A

B N I P N B I PPN N N N S S S N
N R R R R R R R R S P R R R R Q R R R R SF & &
&% o o o o @ o o o 0‘& O@_Q G@_Q & o o o o o o F o O@_Q 0@9 (?\@Q
(3) Time Performance for Betweenness (4) Time Performance for Closeness
10,0000 5 gNAR 1000000 ——sNAF
' NetworkX O NetworkX
Graph-tool (1 Core) Graph-tool (1 Core)
100.00 Graph-tool (4 Cores) 100.00 Graph-tool (4 Cores)
@ w
g B
8 8
8 1.00 3 1.00
(] o
E E
= F
0.01 0.01
0.00 0.00
™ A
ERIEGF S S A A M EQIE I S S g SO R
7 o® ¢ & ¥ & ¥ ¥ ¥ @F F & ¢ & ¢ ¥ & 7 & & & F & &
(5) Time Performance for Connected Component (6) Time Performance for Strongly Connected Component
1800 — s 16.00 o SNAP
¢ NetworkX @ NetworkX
Graph-tool (1 Core) Graph-tool (1 Core)
12.00 Graph-tool (4 Cores) 12.00 Graph-tool (4 Cores)
o o
° °
= c
[=} [=]
i 8.00 % 8.00
(] " @
E il M E i
= & o o & o—0—n0 = g
- 4.00 .
‘
‘

U IR
&

A
A

A

S & &
o o 9@5 c])@ 9@5

Figure 5.1: Time Performance of the Graph Analysis Tools

Figure 5.2 is about the memory performance comparison of the graph analysis tools.
From Figure 5.2.(3) and Figure5.2.(4), we can conclude that Graph-tool’s better time
performance of betweenness and closeness algorithms comes at the cost of memory
required during compilation. Due to different implementations, the memory perfor-
mance varies among the graph analysis tools. Overall, SNAP has a better memory
performance in this experiment.

§5.2 Performance of Graph Analysis Tools

41

Based on the experimental result above, we choose SNAP to support algorithms for
degree, page rank, connected component, and strongly connected component. We
choose Graph-tool to support algorithms for betweenness and closeness.

(1) Memory Performance for Degree

400.00 = SNAP
<+ NetworkX
Graph-tool (1 Core)
s0000 | = Graph-tool (4 Cores)
o
=3
£ 200.00
£
@O
=

100.00

hal
o

400.00

b “ A l N

N
RS S N N S N
£ S & fF LK K KL S

& & & & & o & & & &

(3) Memory Performance for Betweenness

< SNAP
T+ NetworkX
Graph-tool (1 Core)
300,00 # Graph-tool (4 Cores)
o
=
£ 200.00
£
@
=
100.00
'
0.001]
~ o 2 o N 3
AR S S SO S - S S SO
S N M- N . SR SR N
& & o7 ¥ ¢ & & & 7 @& F &
(5) Memory Performance for Connected Component
400.00 = SNAP
o+ NetworkX
Graph-tool (1 Core)
s0000 |~ Graph-tool (4 Cores)
o
2
g 200.00
£
@
=
100.00
0.00 =
~ 5 & A & © .9 2~ .9
S - S O - S S O
R R o
& & o o ¢ & & ¢ o (T T

(2) Memory Performance for PageRank

1,000.00 = SNAP
F NetworkX
GraphTool-1-Core
750.00 += GraphTool-4-Cores
o
=
2 500.00
E
(i)
=
250.00
0.00 — p—
EIEASE P I O P
& & & & & o o o G,tg 0‘@9 G&Q
(4) Memory Performance for Closeness
40000 o SNAR
T NetworkX
Graph-tool (1 Core)
200.00 + Graph-tool (4 Cores)
o
=
£ 200.00
E
Q
=
100.00
0.00
RN A S S S A SO S SN
& & & & ¥ & & ¥ & & & &
(6) Memory Performance for Strongly Connected Component
300.00 5 SNAP
o NetworkX
Graph-tool (1 Core)
295.00 # Graph-tool (4 Cores)
o
2
g 150.00
1=
[
=
75.00

Figure 5.2: Memory Performance of the Graph Analysis Tools

42 Performance Evaluation

5.3 Performance of the RG Engine

In this experiment, we set up different types of queries over three datasets. Through
processing these queries, we compare our RG engine with the query engines of a
relational database (PostgreSQL) and a graph database (Neo4j). We first introduce the
three datasets used in the experiment in Section 5.3.1. In Section 5.3.2, we describes
the queries processed by the query engines. Section 5.3.3 presents the experimental
results about processing these queries.

5.3.1 Datasets

In this experiment, we used three datasets: (1) ACM bibliographical network (ACM
network)® , (2) Stack Overflow network (ST network)* and (3) Twitter network (TW
network)®. The data in these three datasets can be described as follows:

¢ In the ACM network, each article is written by one or more authors, an article is
published in a conference proceeding or a journal, one article may cite a number
of other articles, and each journal or conference proceeding is published by a
publisher (refer to the ER diagram of Appendix A).

¢ In the ST network, each question and each answer is posted by one user, an
answer is accepted for one question as the accepted answer, one question can
have zero or more answers and one question can be labelled by zero or more
tags (refer to the ER diagram of Appendix A).

¢ In the TW network, each tweet is posted by one user, a tweet can be labelled by
zero or more tags, a tweet can mention zero or more users and a user can follow
zero or more other users (refer to the ER diagram of Appendix A).

The data of the ACM network and the ST network are both in the XML format and
the data of the TW network is in the TXT format. We write a Python program (refer
to https:/ /gitlab.com /RG_Framework /Data_Import) to transform the data into the
PostgreSQL relational database (refer to the relation schemas of Appendix A) and
follow the instruction [9] [8] of the Neo4j official website to transform data into the
Neo4j. Table 5.4 shows the information about the datasets.

5.3.2 Queries

Based on the three datasets mentioned in the previous subsection, we set up 12 queries
that can be divided into three categories. Table 5.5 shows more details about the
queries. In Table 5.5, Queries 1 — 3 are relational queries including join operations,
sorting operations, aggregate operations and set operations. Queries 4 — 10 are about

3Provided by ACM Digital Library (http://dl.acm.org/)
4Provided by Stanford Network Analysis Platform (http:/ /snap.stanford.edu/proj/snap-icwsm/)
SProvided by Haewoon Kwak (http:/ /an kaist.ac.kr/traces/ WWW2010.html) and

Stanford Network Analysis Platform (http://snap.stanford.edu/data/twitter7.html)

https://gitlab.com/RG_Framework/Data_Import
http://dl.acm.org/
http://snap.stanford.edu/proj/snap-icwsm/
http://an.kaist.ac.kr/traces/WWW2010.html
http://snap.stanford.edu/data/twitter7.html

§5.3 Performance of the RG Engine 43

Raw Number Number Number of
Data | of Vertices | of Edges Records in
Size in Neo4;j in Neo4;j PostgreSQ

PUBLISHER : 50
JOURNAL : 128

14.9 PROCEEDING : 6,421
ACM GB 1,128,243 2,488,849 ARTICLE : 337,006
Network | (XML) AUTHOR : 784,638

WRITES : 932,400
CITES : 1,212,894

QUESTION : 7,990,787

30.6
ST ANSWER : 13,684,117
Network (Xcl;\/IIBL) 21,713,109 | 31,747,662 TAG : 38,205
LABELLED_BY : 13,466,686
TWEET : 10,762,104
297 TAG : 210,121
™ . TW_USER : 2,277,971
Network (TC);EF) 13,250,196 | 264,368,797 FOLLOW : 259,602,970

MENTIONED_IN : 3,108,776
LABELLED BY : 1,657,051

Table 5.4: Dataset Characteristics

some typical network analytics tasks including pattern matching, triangle counting,
pagerank centrality, finding connected components, path finding and community de-
tection. Queries 11 — 12 are advanced queries that combine two different types of net-
work analytics tasks together, in which Query 11 combines pagerank centrality with
finding connected components and Query 12 combines pagerank centrality with path
finding. In terms of how to write these queries in SQL, RG-SQL and Cypher (Neo4j’s
query language), please refer to the Appendix C.

5.3.3 Experimental Results

We have evaluated all these experiment queries using 3 query engines. However,
as shown in Table 5.6, PostgreSQL cannot process Queries 6 — 12 and Neo4j cannot
process Queries 10 — 12. This is due to the limited expressive power of SQL and
Cypher: we cannot use SQL to express Queries 6 — 12 and Queries 10 — 12 cannot be
expressed using Cypher. One advantage of our work is that all these queries can be
expressed in RG-SQL and processed by the RG engine.

To compare the RG engine with PostgreSQL and Neo4j for Queries 1 -5 and compare
the RG engine with Neo4j for Queries 6 — 10, we have conducted an experiment to
evaluate their time performance. Note that for Query 6 and Query 7, Neo4j needs
to use an extension called Neo4j Mazerunner that extends Neo4j to run network an-
alytics algorithms at scale with Hadoop HDFS and Apache Spark [12]. For the time

N
=

Performance Evaluation

Query 1

Query 2

Query 3

ST
Network
Join Opera

ST
Network

Join Operation + Sorting Operation + Aggregate Operation + Set Operation

ACM
Network

tion + Sorting Operation + Aggregate Operation

Join Operation + Sorting Operation
Show the question id, the owner id and the tag label of top
10 questions that have the most view count.

Show the top 5 answerers and their latest reputation score
in an descending order based on the number of their
answers that accepted by questions.

Show the number of articles of each journal and
proceeding along with the journal name and the
proceeding title in a descending order.

Query 4

Query 5

Query 6

Query 7

Query 8

Query 9

Query 10

™
Network

ACM
Network

ACM
Network

ACM
Network

ACM
Network

ACM
Network

ST
Network

Pattern Matching
Recommend 10 twitter users for Jack who currently does
not follow these users but Jack follows somebody who are
following them.
Triangle Counting
Count the number of triangles of the co-authorship
network.
PageRank Centrality
Find the top 10 influential authors according to the
pagerank centrality in the co-authorship network.
Connected Component
Count the number of connected components of the
co-authorship network.
Path Finding
Find paths with length less than 2, which connect two
author V1 and V2 in the co-authorship network where
author V1 is affiliated at ANU and author V2 is affiliated at
UNSW.
Shortest Path
Find a shortest paths between two authors Michael
Norrish and Kevin Elphinstone in the co-author network.
Community Detection
Find a group of tags that they are often used together to
label a question.

Query 11

Query 12

Page

ACM
Network

ACM
Network

Rank Centrality + Connected Component

According to the pagerank centrality, find the top 3
authors of the biggest collaborative community in the
co-authorship network.
PageRank Centrality + Path Finding

According to the pagerank centrality, show how the top 2
authors connect with each other in the co-authorship
network.

Table 5.5: Queries Used in Our Experiment

§5.3 Performance of the RG Engine 45

PostgreSQL | RG Engine | Neo4j

Query 1
Query 2
Query 3
Query 4
Query 5
Query 6
Query 7
Query 8 -
Query 9 -
Query 10 -
Query 11 -
Query 12 -

BSOSO

HEOSOS OSSOSO

|
S S S S S

Table 5.6: Queries Processed by three Query Engines

performance evaluation, we have run each query 5 times and taken the average time
for plotting. For Queries 1 -5 and Queries 8 — 9, once a query is submitted, we started
to record the time until the result of each query was returned. For Query 6 -7, as
Neo4j is required to send an HTTP GET request to the Mazerunner extension to begin
a network analytics algorithm, the time of Neo4j for these two queries is the sum of
the request processing time and the query processing time. As shown in Figure 5.3, for
Queries 1 - 5, the RG engine has nearly the same time performance with PostgreSQL
since our query engine is developed with the official PostgreSQL library — libpq (refer
to Section 4.2). The RG engine can achieve better performance for most queries except
Queries 4, 8 and 9. This is mostly due to the following reasons.

* For Queries 1 -3, which are the relational queries, the RG engine achieves better
performance by taking advantage of the query optimisation techniques from
relational databases. For Query 5, triangle counting, it has already been proved
that relation databases can perform the triangle counting task very efficiently
through expressing a three-way self-join [36].

* For Queries 6 — 7, as Neo4j needs to rely on the Mazerunner extension, it re-
quires more time on sending the algorithm requests and waiting for the request
completion.

* Query 4 is about pattern matching. Queries 8 — 9 are about finding path. These
two types of tasks are required to navigate hyper-connectivity on graphs. Neo4j
is completely optimised for these kinds of tasks [13] [47]. We, however, have not
yet implemented the query optimisation strategies (refer to Section 4.3) for the
RG engine.

46 Performance Evaluation
90.00 25.00 3.00
PostgreSQL 81.87 PostgreSQL PostgreSQL
B RG Engine B RG Engine B RG Engine 544
B Neodj B Neodj 19.24 B Neodj
67.50 18.75 2.25
@ w @
o o o
c c c
% 45.00 E,’ 12.50 é% 1.50
] [)] @
£ E £
E = =
22,50 6.25 0.75
0.21 0.21
1.33 1.34
0.00 0.00 0.00
Query1 Query2 Query3
90.00 170.00 180.00
PostgreSQL PostgresQL . M RG Engine
M RG Engine M RG Engine : B Neodj 152.24
B Neodj H Neodj
67.50 ! 127.50 . 135.00
@ 55.59 55.65 0 @
©° o
c % g
g_ 45.00 @ 85.00 B8 90.00
@ o o
£ £ =
F F F
22,50 42.50 45.00
17.75 17.60
1.43
0.00 0.00 0.00
Query4 Querys Query6
30.00 20.00 30.00
B RG Engine B RG Engine B RG Engine
B Neodj B Neodj B Neodj
22,50 21.69 15.00 22,50
— _ —_ 19.52
[%:) v w
k] T 11.48 T
¢ g 2
g 1500 g 1000 § 1500
] [+}] @
E E E
= = F
7.50 5.00 7.50
0.00 0.00 0.00

Query7

Query8

Query9

Figure 5.3: Time Performance of three Query Engines

§56.4 Summary 47

In addition to all the queries mentioned above, we have also run queries about close-
ness centrality over the Twitter network using the RG engine and Neo4j. The RG
engine can successfully process the queries. However, Neo4; failed to process these
queries and the system reported the “OutOfMemory” error. We suspect the reason is
that the number of edges in Twitter network is too large, which exceeds the memory
limitation of Neo4;j.

5.4 Summary

In this chapter, we have conducted two experiments. One experiment is to evaluate
three graph analysis tools (as algorithm support for the RG engine) with their time
performance and memory performance. Another experiment is to compare the RG
engine with other two query engines (one is PostgreSQL, another is Neo4j) in terms
of query processing. According to the experiment results, the RG engine is able to
process more types of queries and achieve better performance for most queries. How-
ever, for pattern matching and path finding queries, the RG engine is not efficient as
Neo4j. In the future, We attempt to implement some query optimisation techniques
for RG engine to improve its efficiency.

48

Performance Evaluation

Chapter 6

Conclusion

Network analytics is one of the popular fields in computer science and its effect has
already been augmented since the “Big Data” era approaches. Nowadays, relational
databases are still widely used by enterprises and organisations to process and man-
age their data. However, because of the rigid data model of relational databases, most
of network analytics tasks do not fit well with relational databases. Therefore, the
main purpose of this thesis is to describe a unified framework for network analytics
via using data stored in relational databases. This unified framework includes a data
model, a query language and a query engine.

Our data model is called RG model, which is a hybrid model of relations and graphs.
Using the RG model, we are able to flexibly manage data in relations or in graphs.
Correspondingly, we present a novel query language, called RG-SQL, which extends
SQL with graph operators and graph construction features. RG-SQL aims to enable
users to flexibly manipulate data from relations and graphs, supporting interactive
data analysis between relational analysis and network analysis.

In terms of query processing, we leverage some components of an open-source re-
lational database (PostgreSQL) to develop a query engine called RG engine. The
main differences between the RG engine and traditional query engines of relational
databases are: (1) the query parser of the RG engine is required to validate the syntax
of graph sub-queries and differentiate between graph sub-queries and relational sub-
queries; (2) the RG engine contains three additional executors for graph operations;
(3) the query optimiser of the RG engine may incorporate some query optimisation
strategies that are specially designed for RG-SQL queries. In addition to these, the ex-
periments for performance evaluation demonstrate that RG engine is able to process
various types of queries and achieve better performance in most cases. However, our
experiments also expose some limitations of the RG engine when coping with pattern
matching and path finding. The real advantage of the RG engine is the capability to
combine different types of network analytics tasks with relational analysis.

49

50 Conclusion

There are a number of directions we may continue to explore as the future work,
including;:

¢ Toincorporate query optimisation strategies into our query engine such as query
equivalence and query caching.

¢ To support more network analytics tasks, such as sub-graph matching, K-core
finding, link prediction and so forth.

¢ To support more graph types including weighted graphs and hyper graphs.

¢ To apply this unified framework on a distributed relational database architec-
ture.

In conclusion, this thesis develops a unified framework which extends relational databases
with network analytics capability. This unified framework is still in its fledgeling stage
and we have a pile of ideas to enrich and maturate it. We hope, in the future, this uni-
fied framework would become full of vigour and vitality.

Appendices

51

Appendix A

ER Diagrams and Relation Schemas

AUTHOR

WRITES

ICLE

CITES
M
N N
PUBLISHED_IN PUBLISHED_IN
1 1
JOURNAL PROCEEDING
N N

PUBLISHED_BY PUBLISHED_BY

1 1

PUBLISHER

Figure A.1: The Entity-Relationship Diagram of ACM Bibliographical Network

53

54

ER Diagrams and Relation Schemas

AUTHOR

AUid | Fname | Mname | Lname | Affiliation | Email

|

WRITES

Lo Dene

CITES

ARTICLE

Publication_date
|1

PROCEEDING

r 3

JOURNAL

m Periodical_type | Publication_date m
I A

PUBLISHER

PUid | Name | Zipcode | City | State | Country
| |

Figure A.2: The Relation Schema of ACM Bibliographical Network

55

1
ST_USER POSTS

ACCEPTED_BY ANSWER

1

1 N

ASKS —'EESE— REPLIES_FOR
N 1

M

LABELLED_BY

N

TAG

Figure A.3: The Entity-Relationship Diagram of Stack Overflow Network

LABELLED_BY

ot

TAG

Tid | Tag_label

QUESTION

Qid | Accepted_Aid | Owner_id | Score | Creation_date | View_count | Comment_count

ANSWER

Aid | Parent_Qid | Owner_id | Score | Creation_date | Comment_count

¢

ST_USER

Uid | Display_name
| |

Figure A.4: The Relation Schema of Stack Overflow Network

56 ER Diagrams and Relation Schemas

~FoLLOW

M
MENTIONED_IN —>—————{ TW_USER
' = N
M
1
TWEET ———— < POSTS
N
N
- l:/ABELLED_éY/
M
TAG

Figure A.5: The Entity-Relationship Diagram of Twitter Network
LABELLED_BY TAG

N |

MENTIONED_IN

mEn
B |

FOLLOW

m Follower id

Display_name

TWEET

0 ower 1| et e
|

Figure A.6: The Relation Schema of Twitter Network

Appendix B

Experimental Data

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 Query 7 Query 8 Query 9
PostgreSQL = PostgreSQL PostgreSQL = PostgreSQL = PostgreSQL = PostgreSQL PostgreSQL PostgreSQL = PostgreSQL
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
1.316 8.198 0.216 57.239 17.375 - — - -
1.406 8.280 0.170 54.426 17.783 - - - -
1.316 8.310 0.219 52.085 17.540 — — — —
1.319 8.213 0.214 58.010 17.875 — - — -
1.313 8.117 0.212 56.198 18.172 - - - -

RG Engine = RG Engine = RG Engine = RG Engine = RG Engine | RG Engine | RG Engine | RG Engine = RG Engine

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
1.408 8.223 0.189 54.123 17.948 48.313 11.332 11.345 19.354
1.315 8.135 0.212 57.235 17.394 47.195 12.346 11.590 19.347
1.313 8.235 0.212 56.235 18.219 48.124 13.104 11.437 20.125
1.323 8.575 0.216 58.225 17.346 47.591 12.124 11.345 19.458
1.369 8.345 0.218 52.453 17.084 47.987 12.898 11.679 19.335

Neo4j Time Neo4jTime = Neo4jTime Neo4jTime Neo4jTime NeodjTime Neo4jTime Neo4jTime Neo4jTime
(s) (s) (s) (s) (s) () (s) (s) (s)

81.592 19.186 2.593 1.112 154.521 152.661 21.782 5.713 11.406
81.359 19.287 2.387 1.284 140.896 152.377 22.013 5.455 11.126
81.692 18.289 2.129 2122 141.836 151.837 21.485 5.123 11.841
82.531 19.297 2.936 0.993 140.467 151.478 21.198 5.178 12.003
82.181 20.116 2.137 1.654 139.268 152.862 21.973 5.468 11.853

Figure B.1: Time Performance Data of Query Engines

57

Experimental Data

58

8EVLLL0LL
orZ10'889}
8brLLL0LL
154108891
LP9BE'G991
(s) swn
Ssauusamiag
grydern
621€2°0
Ge0ge0
681EC0
SP0€C0
I¥6ce0
(s) swny
yueyabed
glydern
00L¥0°0
€S0¥0°0
601700
¥90¥0°0
696€0°0
(s)
awi] aalbag
glydern
€8€82°0
1/8/¢°0
€erLe0
€9992°0
010920
(s) swiL

Bunonisuon
g tydei

91468'15E
09SLy'ere
9¢/681SE
0LSiyeve
¥808L°0vE

(s) swi

ssauusamlag

Liydes
S000L°0
L000}'0
SL00L0
LLOOL'0
0L¥60°0
(s) swi
yueyabeyq
Hhudeso
98100
cler0o
S6vr0°0
¢cer00
cgLy00
(s)
awi] aalbag
Hhudeso
192500
S02S0°0
950500
088700
¢6.v0°0
(s) s

Bunonnsuon
Lydes

6leeseet
€9y’ ECt
6eceseel
gLeeveet
cLo9E'Ect

(s) o

ssauusamleg

orydes
¢6/80°0
99800
08800
95980°0
915800
(s) swi
yueyabed
orydeln
¢00v0°0
696€0°0
LLOYO'0
6.6€0°0
S18€0°0
(s)
awi] aalbag
orydeln
FIELOO
062100
Stelo'0
8lclo0
102100
(s) s

Bunonnsuon
okydes

202s'ee
S9tl6'ce
¥E025°ee
GLLI6ce
£cL08°cE

(s) awnp

ssauusamiag

gude.n
S§S8¥0°0
229¥0'0
S98%0°0
8€9¥0°0
0e9r0'0
(s) s
yueyabed
6udein
0180070
2620070
028000
€£0800°0
064000
(s)
awi] 9aibag
6udein
¥8¥50°0
892500
02500
81500
105070
(s) swinL

Bunonnsuon
6ydes

62001
LS0E0°0L
0r/¥#00L
190€0°0}
008200+

(s) o

ssauusamlag

guder
6161070
816100
6¢610°0
826100
SI610°0
(s) swi
yueyabed
gydeln
0¥800°0
18000
6¥800°0
¢€¢8000
062000
(s)
awi] aalbag
gydeln
220100
60010°0
£6600°0
656000
£5600°0
(s) swiL

Bunonnsuon
gydes

1E8426'E
1S816E
L¥l26'E
198L6'e
LEVI6E

(s) awnp

ssauusam|ag

sydein
S6E1L0°0
228100
S0vrL00
/8€10°0
€8€1L0°0
(s) awi
yueyabed
Lydein
¢//00°0
8920070
¢8.00°0
62000
94000
(s)
awi] aaibag
Lydein
042000
920070
8€2000
9€2000
€€200°0
(s) s

Bunonnsuon
Zydes

9ELYE’L
96981
orive’L
S0LEEL
olgle" L

(s) awn

ssauuseamlag

gudes
§8200°0
692000
§6.00°0
642000
292000
(s) swn
yueyabed
gydesn
€8100°0
+.100°0
€6100°0
§8100°0
281000
(s)
awi] aalbag
gydesn
801070
266000
6480070
498000
€5800°0
(s) suny

Bunonnsuon
qydes

158L%°0
BEVIY0
498110
6rriyo
S6ELr0

(s) swn

ssauusamlag

sydeis
12£00°0
€9€00°0
<¢8E00°0
€4€00°0
99€00°0
(s) swnp
yueyabed
Sydeln
291000
510070
L1000
910070
91000
(s)
awi] aalbag
sydeln
461000
161000
181000
41000
9210070
(s) swiL

Bunonisuon
Sydess

68¢EL0
€420
66¢EL0
€8eel0
LECEL0

(s) awnp

ssauusamlag

vydein
£5€00°0
€¥e000
£9€00°0
£5€00°0
6¥€£00°0
(s) swi
yueyabed
vydein
6910070
6510070
6.100°0
6910070
851000
(s)
awi] aaibag
vydein
950000
6¥000°0
810000
80000
Z¥000°0
(s) s

Bunonnsuon
yudes

+56+0°0
6e6¥0°0
¥96¢0°0
6¥6¥0°0
46.¥0°0

(s) swn

ssauusamlag

gyde.
LELOOO
921000
71000
9€100°0
SEL00°0
(s) swi
yueyabed
gydel
SE000°0
920000
¥¥000°0
£E000°0
9€000°0
(s)
awi] 9albag
gydel
6.100°0
¢/100°0
L1000
891000
8910070
(s) swL

Bunonnsuon
gydes

¢951L00
041100
¢/5100
08100
€9v1L00

(s) swin

ssauusamlag

gudein
690000
290000
6.000°0
¢.000°0
40000
(s) swi
yueyabed
gydein
/%0000
9€000°0
950000
9¥000°0
90000
(s)
awi] aaibag
gydein
L0000
0¥000°0
6€000°0
6€000°0
6€000°0
(s) s

Bunonisuon
gudes

€8120°0
4180070
€61200
4280070
080070

(s) swn

ssauusamlag

Lydern
Z¥000°0
€#000°0
4500070
€6000°0
150000
(s) swin

yueyabed

Lydein
€€000°0
9200070
<¥000°0
ZE000°0
9€000°0

(s)
awi] 9albag

Lydein
20000
100070
€1000°0
€1000°0
€1000°0
(s) swL

Bunonisuon
Lydes

Time Performance Data of SNAP — Part 1

Figure B.2

59

1ZES0°0
821500
LLES0°0
6¢150°0
660500
(s) swny
jusuodwon
pajosuuon

AlBuong
Zlydesn

988200
8v1200
168200
8r1e00
LELC00
(s) swnL
Jusuodwon

paldauuod
giydesn

1/269°01€
¢90£¢'60¢€
18269°01€
€.0.2'60€
8E665°80€

(s) awi].
SS9U8s0|D
zlydein

€59510°0
62100
ESSLO0
6100
99¢100
(s) ownL
jusuodwon
pajosuuon

KBuong
Lydes

95000
895000
#5000
695000
/95000
(s) awiL
usuodwon

pajosuuod
Liydei

¥69.€°89
86£€2 89
¥0..E°89
80¥EC 89
S08c¢'89

(s) swnL
§8auss0|D
Liydein

7811070
606000
¥8LLO0
60600°0
008000
(s) ownp
wauodwon
pajoauuon)

ABuong
olydels

685000
£¢E00°0
008000
€¢E000
¢cenoo
(s) awiL
wauodwon

pajoauuod
0lydesn

956/9°0€
0€0¢9°0€
996/9°0€
0r029°0€
2€c095°0g

(s) swiL
SS9Uas0|D
0lydesn

760070
B8E600°0
c600°0
8E600°0
£¢600°0
(s) swiL
suodwon
pajoauu0n)

fBuong
guder

¥¥S00°0
6E€500°0
S§SS00°0
6ESO00
PESOO0
(s) sl
suodwon

pa1osauu0n)
gydein

gclelel
c96ct el
EELELEL
€L621°EL
L9S¢LEL

(s) sunL
SS8U8S0|D
gudei

GG5200°0
GG5200°0
§5200°0
SSe00°0
L2000
(s) swn
jusuodwon
palosuuon

AlBuong
gydeso

cv 10070
1510070
¢S1000
L1S100°0
9¥100°0
(s) swnL
Jusuodwon

pajoauuo)
gydein

ccerl’e
069¢t'€
cesbl’e
L0L2l’e
64511'E

(s) awi.
SSauUas0|D
gydeis

9¥ 1000
¢y 1000
91000
ErL00°0
¢ 1000
(s) oung
wauodwon
pajoauuo)

ABuong
Lyder

#S000°0
850000
90000
650000
2500070
(s) awiy
wsuodwon

pajosuu0n
/ydein

c0/20'}L
£5€20}
alleo’L
€9€20L
¥r0OLO"L

(s) swiL
§88UIS0|D
Lydein

812000
£8100°0
812000
L8100°0
0810070
(s) swny
suodwon
pajoauu0n)

fBuong
gydes

£8000°0
060000
600070
0600070
8800070
(s) swnL
Jusuodwon

pa1osauu0n)
gydein

SSriv0
Wiy o
SOvLY0
81454V
8rELY0

(s) swiL
S88U8s0|D
gydein

#S000°0
6170000
#S000°0
61000°0
6170000
(s) oung
jusuodwon
pajoauuo)

ABuong
gydelo

¢c000°0
820000
€E000°0
820000
220000
(s) awiy
suodwon

pajosuu0n
gydein

698010
88010
088010
66010
¥SS0L°0

(s) swiL
§89uUss0|D
Gydein

£E000°0
LE000°0
EE000°0
LEODO0
820000
(s) swiL
wsuodwon
pajoauu0n)

RBuong
puder

910000
810000
920000
8100070
€1000°0
(s) swiL
wsuodwon

pa1osauu0n)
pydein

0LLE0°0
0492070
02.€0°0
189€0°0
¢59€0°0

(s) sunL
S88U9S0|D
vydei

610000
6€000°0
6+000°0
6E000°0
9€000°0
(s) swny
jusuodwon
pajosuu0D

AlBuong
eydes

¢l000°0
8100070
€2000°0
8100070
8100070
(s) swiL
Jusuodwon

paoauuos)
gydein

¥¥920°0
/81200
592070
161200
#0200

(s) swirL
SS8uUas0|D
eydeis

610000
10000
610000
10000
€1000°0
(s) swn
jusuodwon
pajvsuuoD

AlBuong
gydes

S0000°0
600000
9100070
010000
6000070
(s) swL
Jusuodwon

pajoauuc)
gydein

505000
26%00°0
§1500°0
205000
505000
(s) swr].

s89Uas0|D
gydess

910000
G1000°0
910000
910000
€1000°0
(s) ouny
wauodwon
pajosuuon)

ABuong
Lydein

099000
800000
049000
800000
900000
(s) awiL
wauodwon

pajoauuod
Lydesn

£0200°0
£0200°0
212000
€1200°0
€0¢000

(s) swiL
§89U8s0|D
Lydein

Time Performance Data of SNAP — Part 2

Figure B.3

Experimental Data

60

€0L0L9S
€0L0L'9S
€0L0L'9S
§2959°6¢
§¢959°6E

(aw) Aowsapy
ssauusamiag

Zlydei
82898,
82€98°L
82€98°L
82€98°L
951682
(aw) Aowapy
yueyabed
giydein
005218
005218
005218
16821°8
95168,
(aw)
Aows|y aaibag
giydein
8288 L
8288 L
8288 L
8288 L
8288 L
(aw) Aowapy

Bunonisuo)
giydein

€9510°0}
€9SL0°04
€95L0°0}
Le8ct8
168S1'8

(W) Liowapy
ssauusamlag

Lydesn
889¥0°€
889¥0°C
889¥0°€
889¥0°€
889¥0°C
(aw) fowapy
yueyabey
Liydesn
£0L5%°€
€0L57°E
€0.51°€
959z2°e

0S.E6°}

(gw) Aowap
saibaq | Lydein

60966°L
60966 L
609661
60966+
¥6580°2

(aw) Aowapy

Bunonnsuon
Lydein

cLI9LY

cLiSLy

[ZA%7A 4

vreLL'E

vrell'E

(aw) Aowapy
Ssauusamiag

0tydesn
915821
9188L°}
9188L 'L
918821

91s8Lt

(aw) Aowsapy

yueyabed
otydei

88LLle
88lLlC
88LLlLe
cetes’t
ceves’t

(an)

Aows|y aaibag

otydei
6092
60972
609Y2
609¥2

609ve’ |

(aw) Aowsapy
Bunonisuo)

oLydesn

£906€°L
£906€°L
£906€°L
82E98'S
82E98'S

(aw) AMowapy
SSsauusamiag

gudes
£9592° 1
€9592"
€9592°
£9592° 1
ZLOEL')
(aw) Aowapy
yueyabed
6ydes
L¥SSE"+
LPSSE
LYSSE
L¥SSE"L

L9t}

(an) AMowspy
oaa1baq gydesn

£959¢2° |
£999¢°|
L6917
£959¢° |
26291}
(an) Aowsepy

Bunonnsuon
eydesn

¥8680°¢
¥8680°C
¥8680°C
8E€609° |
8E609°|

(aw) Aowapy
Ssauuassmlag

gydesn
82E9£°0
82E9€°0
82E9€°0
82E9€°0
8EFET0
(aw) Aowapy
yueyabeyq
gydesn
8/0S5°0
80950
820550
162140

LBLIFO

(aw) Aoway
saibaq gydein

8EYEC0
BEYECO
8EVECO
8ErEC0
8EreC0
(a) Aowapy

Bunonnsuo)
gydein

696490
696490
989240
994650
994650

(aw) fowaw
ssauusamlag

Lydein
8EVEZ0
8EYET0
8EVET 0
8EVET 0
8EYET0
(aw) Aoway
yueyabeyd
Luyder
8EYET0
8EYET 0
8EVET 0
8EVEZ0

8EVET0

(aw) Aowap
aalbaq 2ydein

8E¥EC0
8ErEC0
8EVECO
8E¥EC0
8E¥EC0
(gw) Aowap

Bunonnsuo)
Zydein

95941}
98847}
988L%'}
€0c80'}
€0¢80'}L

(a) fowepy
ssauusamieg

gudein
000000
000000
000000
000000
000000
(aw) Aoway
yueyabeyd
gydess
000000
000000
000000
000000

000000

(aw) Aoway
aa1Baq gydein

000000
000000
000000
000000
000000

(aw) Aoway

Bunonisuo)
gydesny

Se¢i8e0
Sei8eo
Seigeo
Se¢i8e0
S¢l8e0

(aw) Aowspy
ssauusamieg

sydes
000000
000000
000000
000000
000000
(aw) Aowspy
yueyabeyq
gydesn
000000
000000
000000
000000

000000

(aw) Aowapy
aalbaq sydein

000000
000000
000000
000000
000000

(aw) Aowapy

Bunonnsuo)
sydesn

000000
000000
000000
000000
000000

(aw) Aowsy
ssauusamieg

pudesn
000000
000000
000000
000000
000000
(aw) Aowspy
yueyabey
pudein
000000
000000
000000
000000

000000

(gw) Alowapy
aalbaq pydein

000000
000000
000000
000000
000000

(aw) Aoway

Bunonnsuon
pydei

000000
000000
000000
000000
000000

(aw) foway
Ssauusamlag

eydes
0000070
000000
000000
0000070
000000
(a) Aowapy
yueyabeyd
eydery
000000
000000
000000
0000070

000000

(gw) Mowap
aa1baq gydesn

000000
000000
000000
000000
000000
(aw) Aoway

Bunonisuo)
eydess

000000
000000
0000070
000000
000000

(aw) Aowapy
§sauusamlag

gudesn
000000
000000
000000
000000
000000
(aw) Aowspy
yueyabeyq
gudesn
000000
000000
000000
000000

0000070

(g) Alowapy
aalbaq gydein

000000
000000
000000
000000
000000

(aw) Aowapy

Bunonnsuo)
gudein

000000
000000
000000
000000
000000

(W) Kowapy
ssauusamlag

Lydesn
000000
000000
000000
000000
000000

(gaw) Aowspy
yueyabeyq

Lydesn
000000
000000
000000
000000

000000

(gw) Alowawy
aalbaq Lydein

000000
000000
000000
000000
000000

(aw) Aowapy

Bunonnsuon
Lydein

Memory Performance Data of SNAP — Part 1

Figure B.4

61

168.€'8
168.€8
168.€'8
168.€8
£6e64°L
(gw) Aowspy
yuauodwon
palosuu0)

Albuons
zlydeso

99g2L 'L
9922L'L
99g2L 'L
9922L'L
95168°L
(W) Aowapy
yauodwon

pajoauuod
2iydeis

82€9E8
B2ZEYE'8
82€9E8
B2ZEYE'8
9518€°L

(g) Aowepy
$59U3S0|D

zhydeig

88962°¢
88962°€
88962°¢
88962°€
168/£C
(W) Aowsiy
jusuodwo)
pajosuu0)

Ajbuong
Liyders

Wwivre
LWibre
Wwibre
Wwibr'e
0S.86°}
(aw) fowspy
jusuodwo)

pajosuuo]
Lydess

6lerle
6lev.'e
Glerle
g9ovi'e
£o0rie

(gin) Aowspy
$S2UaS0|D

Lydess

000SL°L 82e9t’t
69895°¢ B8CEIE'L
69855'¢ 82e9t’t
69895°¢ BCEIE'L
G/E6S°L FAZ 0l
(an) Aowapy
A
suodwo) (aw) Aowsy
ysuodwoD
pa1oauuo)
pa1oauu0)
AlBuoAS | 6100 sudess
oLydesy
8.00¢g°L cL9EL’ L
8/00€°L 2L9EL’L
8.00¢°L cL9gL° L
8/00€°L 2LOEL°L
82€98°0 cL9gL° L
(gw) fowapy (gw) fowsyy
usuodwo) suodwo)
pajosuuo)] pajoauuod
0tydes sydess
£€959¢'e €SP6e’L
£9592°¢ €Sr6E’L
£€859¢'e €svee’L
16848°1 €Sr6E’L
168481 €svee’L
(an) AMowsy | (gw) Aowew
§8auU8s0|) EEElER e 9]
orydern 6ydess

#609Y'0
6090
#609Y'0
60910

€18ce0

(g) fowspy
jusuodwo)
pajosuuo)
ABuong gydeis

8EYEC 0
8EYEC0
8EYEC 0
8EYEC0
8EYEC 0
(gaw) fowapy
jusuodwo)

pajosuuo]
gyde.n

6096Y'0
609610
609610
82E9€'0
82e9e'0

(aw) Aowepy
§sauaso|D

gydes

€182¢€°0
€182€°0
€182¢€°0
€182€°0

€820

(an) fowepy
jusuodwo)
paioauue)
ABuons zydein

8ErEC0
8EYEC0
8EYEC0
8EYECT0
8EYEC0
(aw) Aowspy
Juauodwo)

pajpsuuc)
zyders

8EveET0
8EYET0
8EVET0
8EYET0
8EVET0

(aw) AMowepy
$8aU8s0|]

Lydern

000000
000000
000000
000000

000000

(aw) fowewy
ysuodwoD
pajosuuo)
AlBuong gydein

000000
00000°0
000000
00000°0
000000
(gw) fowsyy
yauodwon

pajoauuod
qydess

000000
000000
000000
000000
000000

(gn) Aowepy
$59U8S0|D

gydesn

000000
000000
000000
000000

000000

(g) fowspy
jusuodwo)
pajosuuo)
ABuong gydein

000000
00000°0
000000
000000
000000
(gaw) fowapy
jusuodwo)

pajosuuo]
syde.n

000000
000000
000000
000000
000000

(gn) Aowspy
$S8UaS0|D

gydesn

00000°0
00000°0
00000°0
00000°0

000000

(an) fowepy
jusuodwo)
paioauue)
AlBuosis pydein

000000
000000
000000
000000
000000
(aw) fowsy
Juauodwo)

pajpsuuc)
pydess

00000°0
00000°0
00000°0
00000°0
00000°0

(g) Aowapy
$S8US0|D

pydern

000000
000000
000000
000000

000000

(aw) fowep
ysuodwoD
pa198uu0)
AlBuong gydein

000000
000000
000000
000000
000000
(aw) fowsw
yauodwon

pajoauuod
gydess

000000
000000
000000
000000
000000

(gn) Aowepy
$59U8S0|D

gydess

000000
000000
000000
000000

000000

(g) fowspy
jusuodwo)
pajosuuo)
ABuong zydein

000000
000000
000000
000000
000000
(aw) fowspy
jusuodwo)

pajosuuo]
gudein

000000
000000
000000
000000
000000

(aw) Aowepy
§sauaso|D

gydein

00000°0
00000°0
00000°0
00000°0

000000

(an) fowepy
jusuodwo)
paioauue)
ABuoss Lydein

000000
000000
000000
000000
000000
(aw) fowsy
Juauodwo)

pajpsuuc)
Lyders

00000°0
00000°0
00000°0
00000°0
00000°0

(aw) AMowepy
$8aU8s0|]

tydero

Memory Performance Data of SNAP — Part 2

Figure B.5

Experimental Data

62

0£5¢8'S805
99200°'816¥
£8528'9805
€4200'816¥
€9/50°298%
(s) awiL
SSsauuaamlag
giydein
P6LEL'6
25er0'6
L0ZEL'6
292¥0'6
0vre29'8
(s) oy
»ueyebed
giydein
090100
GE600°0
050100
626000
£8800°0
(s)
awl] aalbag
Ziydein
621881
66188°L
€2V./8'L
LEE98'L
Y98EY’L
(s) swnp

Bunonisuo)
Ziydein

22BEY LBEL
16921 0LEL
SEBEYLBEL
86927 °01L€1
661+56'9921
(s) awiL
SSsauuaamlag
Lyder
815902
102r0'e
1£590°2
oLzroe
L1861
(s) oy
yueyebed
Lydero
SOEL00
EVZI00
662100
22100
166000
(s)
awl] aalbag
Liyders
2L8YE0
0EBYE'0Q
ELEVED
B LYED
SOELE0Q
(s) swn

Bunonisuon
Liyders

¥Sr9L'81LS
98908015
99791 '81S
¥6908'01LS
9.2.6'80S

(s) oy

ssauusamlag

0tydein
67990
029%9°0
19¥99°0
089¥9°0
0/L€9°0
(s) sy
Mueyabed
0tydein
9/800°0
228000
99800°0
/18000
gr.000
(s)
awli] aaibag
olydein
8/990°0
285900
2E£590°0
201900
SE6S0°0
(s) swn|.

Bunonnsuon
olydein

95120 L
16£95°601
69120 HHE
8695601
9P¥S0'901

(s) s

ssauuaamiag

6udern
988LL° 1
92€0L" |
668LL L
GEE0L' L
£9565° L
(s) iy
Mueyabed
eydern
S6100°0
L7000
G8100°0
9€100°0
¢e1000
(s)
awli] aaibag
sydesn
89%2€°0
6E6LE0
L921€°0
1091E0
8100€°0
(s) swi|.

Bunonnsuo)
6ydess

9801082
9v61L6'LS
6601082
€5616°L2
€198.L°L2

(s) s

ssauusamiag

gude
£S29€°0
671920
0/./9€°0
8G19€°0
LL9SE0
(s) sy
Nueyabed
gydern
691000
51000
651000
€¥#1L00°0
8€1L00°0
(s)
awli] aaibag
gydein
964500
SEYS00
152500
¥2es0°0
L6LS0°0
(s) swi|.

Bunonnsuo)
gydes

€¢BYE 1
€LL06}HE
9EBYE I
18L06°LL
c6LL8' L

(s) s

ssauusamlag

Lydeig
08veL 0
692210
267210
8/221°0
8122’0
(s) sy
Nueyabed
Lydern
6€100°0
LEL000
621000
021000
0C1000
(s)
awi] aaibag
/ydeiny
€2L00
896000
9¥600°0
¥£600°0
926000
(s) swi|.

Bunonnsuo)
Lydess

S0Lv6e
§50c6'¢
gLive'e
29026¢
§6.L16C

(s) s

ssauusamleg

gydeig
L9%SE0
948220
6.¥SE0
9882E°0
€l¥eceo
(s) sy
»ueyabed
gydein
9¥0000
9¥0000
9€000°0
SE000°0
0€000°0
(s)
aw|] aaibag
gydein
£2ES0°0
6¥250°0
221500
2S150°0
SLIS00
(s) swn

Bunonisuod
gydein

9¢cc0’}
6oL
6€2¢c0’
66v1L0°L
SLELO'L

(s) s

ssauusamleg

gydesn
058900
G¢990°0
298900
#€£990°0
90990°0
(s) sy
yueyebed
gydern
+#000°0
6€£0000
#£000°0
820000
8¢000°0
(s)
aw|] aaibag
gydein
871100
¥eL0’0
296000
£€600°0
968000
(s) swn

Bunoninsuon
sydes

6v.Let0
£9ver0
29.Ler0
0420
L2eer o

(s) oy

ssauusamlag

pudeis
67200
066200
292e0'0
666200
208200
(s) sy
Mueyabed
pyders
€¥000°0
0%#000°0
££000°0
620000
620000
(s)
awli] aaibag
pydein
802000
£0200°0
90€00°0
€6100°0
061000
(s) swn|.

Bunonnsuon
pydess

1SS80°0
8E¥80°0
95800
9p¥80°0
S8€80°0

(s) s

ssauuaamiag

eydern
¥6¥E0°0
182€0°0
£0SE00
062€0°0
9GLE00
(s) iy
Mueyabed
gydern
820000
020000
810000
600000
600000
(s)
awli] aaibag
gydein
2€800°0
2280070
£2800°0
¥0800°0
008000
(s) swi|.

Bunonnsuo)
gydess

£€80E0°0
56200
960€0°0
186200
£€620°0

(s) s

ssauusamiag

gudern
I8LI00
crLI00
¥6LL0°0
ISLI00
P00
(s) sy
Nueyabed
gydern
120000
020000
L0000
600000
600000
(s)
awli] aaibag

gydess

002000

1000
281000
SZ100°0
01000
(s) swi|.

Bunonnsuo)
gydess

LS00
0rSL00
S8SL00
LPSL00
05100

(s) s

ssauusamlag

Lydess
995000
9¥S00°0
65000
§GS00°0
2¥S00°0
(s) sy
Nueyabed
Lydery
£2000°0
220000
€1000°0
L0000
600000
(s)
awi] aaibag
Lydein
Z¥000°0
€¥#000°0
0%000°0
6£000°0
8€000°0
(s) swi|.

Bunonnsuo)
Lydei

Time Performance Data of NetworkX — Part 1

Figure B.6

63

900000
€0000°0
£0000°0
00000
00000
(s) s
wauodwon
pajauuo)

AlBuong
ghydelrn

200000
00000
200000
S0000°0
00000
(s) auny
wauodwon

pajoauuod
Zhydein

959/6°5002
8le0r'vell
§99/6°5002
L9e0¥ ¥ell
S0LL9'€elt

(s) sung
SSauaso|D
glydeln

900000
S0000°0
200000
900000
¥0000°0
(s) swi
wauodwon
pajoauuo)

AlBuong
Liydeln

90000°0
¥0000°0
900000
¥0000°0
$0000°0
(s) awn
wauodwon

pajosuuod
Llydern

66102 V6%
GG996'95%
6020 V6%
86996'95¥%
ETAZAS 4

(s) sy
SSaUaSO|D
Liydesn

900000
£0000°0
900000
00000
00000
(s) swi|.
jusuodwon
pejo8uuo)

AlBuong
olydeln

900000
00000
200000
S0000°0
00000
(s) auny
jusuodwon

pajoauuod
oLydein

88.SEPSI
00961°¥SI
LB6LSEPSI
Er961 VSt
LEEPBES L

(s) sung
SSauaso|D
olydein

90000°0
€0000°0
90000°0
¥0000°0
¥0000°0
(s) swi
wauodwon
pajoauuo)

AlBuong
sydeln

90000°0
S0000°0
900000
90000°0
$0000°0
(s) e
wauodwon

pajosuuod
sydern

916£9'69
¥2EE9'69
G26£9°69
L9EE'69
£0£09'69
(s) s

SSauUaso|])
sydeln

900000
£0000°0
900000
00000
00000
(s) swi|.
jusuodwon
pajosuuo)

AlBuong
gydeln

200000
00000
00000
00000
00000
(s) suny
jusuodwon

pajoauucd
gydein

99re6'H
99re8'H
94ve6'HE
805¢8'H
8rreL Ll

(s) suny
SSauaso|D
gydel

900000
€0000°0
900000
¥0000°0
00000
(s) swiL
wauodwon
pajoauuo)

ABuong
Lydein

900000
€00000
900000
00000
00000
(s) awn
wauodwon

pajosuuod
Zydein

L9E8R'E
19298
9/£88°€
60£98°E
£/098°€
(s) suny

SSauUaso|D
Lyder

900000
£0000°0
900000
¥0000°0
¥0000°0
(s) swi|.
jesuodwon
pajvauuo)

AlBuong
gydeln

900000
¥0000°0
900000
S0000°0
#0000°0
(s) suny
jusuodwon

pajosuuod
gydein

298711
ceoel’t
9/8v1'|
SO0EH' |
9roet’t

(s) sung
SSauUaso|D
gydein

900000
£0000°0
900000
¥0000°0
¥0000°0
(s) s
jeauodwon
pajoauuo)

AlBuong
gydein

G0000°0
€0000°0
900000
¥0000°0
00000
(s) suny
jauodwon

pajosuuod
gydein

67520
S6¥SC0
8G6/S¢0
8€5520
prAerAlY

(s) sung
EEEIFE0]ig)]
gydein

900000
€0000°0
900000
¥0000°0
¥0000°0
(s) swnL
auodwon
pajoauuo)

AlBuong
pydel

90000°0
€0000°0
900000
¥0000°0
¥0000°0
(s) auny
jauodwon

pajosuuod
pydern

GESKL'0
PPl 0
¥PSYL0
¥8F L0
262r10
(s) sung

EEEIVEe]ig)]
fydei

900000
€0000°0
90000°0
00000
00000
(s) s
wauodwon
pajauuo)

AlBuong
gydeln

900000
€0000°0
900000
00000
00000
(s) auny
wauodwon

pajoauuod
gydein

69%10°0
§9¢10°0
8/¥10°0
L0€10°0
G82100

(s) sung
SSauaso|D
gydeln

S0000°0
€0000°0
90000°0
¥0000°0
¥0000°0
(s) swi
wauodwon
pajoauuo)

AlBuong
gydein

20000°0
S0000°0
200000
S0000°0
#0000°0
(s) auny
wauodwon

pajosuuod
Zydern

052000
912000
092000
652000
952000
(s) suny

SSaUaSO|)
gydein

900000
£0000°0
900000
00000
00000
(s) s
jusuodwon
pajoauu0)

AlBuong
Lydesn

900000
€0000°0
900000
00000
00000
(s) auny
jusuodwon

pajoauuod
Lydeln

655000
€25000
695000
995000
655000

(s) sung
SSauaso|D
Lydesn

Time Performance Data of NetworkX — Part 2

Figure B.7

Experimental Data

64

16215°€9E
16215°€9E
L62VSE9E
162VSE9E
YELLZ 8SE
(aN) Aowapy
Ssauusamlag
2iydesg
889¥0'6£6
88962'6£6
889¥0'6£6
82E19' 16
889¥0'6E6
(aN) Aowapy
yueyabeyd
glydei
€1LE0L 65E
€1LE0L 65E
€1LE0L 65E
ELEGH'65E

G218e'8se

(GW) Aowapy
aalbag g1 ydein

9922.°90%
9922.°90%
9922.°90%
9922.°90%
€1€0L°90¢

(aN) Aowapy

Bunanysuo)
2iydesg

¥Y86ESL
¥Y86ESL
¥Y86EGL
8EVET TL
000S.°0L
(aw) Aoway
Ssauuasmleg
Lyders
LPOET 9L
LPOET 9L
Lp086°E94
BLLLLIOL
BLLLLIOL
(aw) Aioway
Nueyabeyd
Liydery
0S/81°2L
0S/81°2L
0S/81°2L
0S281°2L

cLI9L0L

(aw) Aowapy
aaibaq | Lydein

2110708
2110708
ZLHL008
2110708
2110708

(aw) Aoway

Bunoniisuc)
Lyders

¥E€L20'%2
¥E€L20'%2
YELE0 VT
G218 ¥
005£8°81
(aw) Aowapy
Ssauuaamlag
olydess
18205'8€
18205'8€
18.52'8€
82886'GE
82886'GE
(aw) Aowapy
yueyabeyd
0lydes
G2951 02
G2951 02
G2951 02
SZLED'0Z

881268l

(gw) Aowapy
aaibag oLydein

8812102
8812102
881LLL02
8812102
1682102

(aw) Aowapy

Bunanysuo)
olydess

LEGPE" 1L
LEGPE" 1L
LESYE 1L
LESYE LL
16€05°0L
(@) Aowsy
Ssauusamlag
eydesn
659855°L8}
Ge90t'96 1
G2¢906'56 +
82€98°981
82€98°981
(@) Aowasy
Nueysbeyq
6ydesn
05¢18°04
05¢18°04
05¢18°04
0S218°0L

CLLIS0L

(aw) Arowapy
aalbag gydein

16ESL'6L
16ESL'6L
L6ESL 6L
16ESL'6L
YYELL6L

(aw) Aowapy

Bunanysuoy
6ydesn

00G29'v1
00G29'v1
00Scov1
00Se9vL
LYSSEPL
(@) Aoway
Ssauusamlag
gydein
0Se18'¢ee
0Se18'¢ee
0S295°¢€
0Sg18'ee
0Sg18'ee
(@) Aowaiy
Nueyebeyq
gydein
611971
611971
611971
611971

99.LPE VL

(W) Aowapy
aalbag gydein

#8685°G1
#8685°G1
#8685°G1
#8685°G1
95109°G1

(W) Aowapy

Bunanysuo)
gydein

162v5'S
162v5'S
L62YS'S
162YS'S
18288°€
() Aowapy
Ssauusamlag
2ydein
881970}
881970}
88126'6
889¥0'6
889¥0'6
() Aowapy
Nueyebeyq
2ydein
8ZELLY
8ZELLY
8ZELLY
8ZELLY

000sL’e

(W) Aowapy
aalbag Lydein

8896.°E
16828°€
16828°€
16828°€
16828°€

() Aowapy

Bunonysuo)
2ydein

9882l

9882l

cL988¢l

¢.988°¢l

8EVELCL

(an) Arowapy
sSssuusamleg

gydein
05295°2¢
05295°2¢
0szlege
€1E5h2E

e€lesyee

(an) Aowapy

yueyabeyq
gydein

6levlel
6levlel
6levlel
6levlel

6levlgl

() Aowapy
aalbag gydeln

LPSOoLPpL

LPSOoLPpL

LPSOLPL

LPSOoLPpL

8EV86'EL

(aw) Aowspy
Bunonysuo)

gydein

€0L0z°€

€0L0z°€

€040cE

€0£0e°€

§2906'2

(aw) Arowapy
Ssauusamlag

sydes
S/812°L
S/812°L
S/89tL
6/812°L

§i8le’L

(aw) Aoway
yueyabeyd

sydeun
L7990°€
L7990°€
L7990°€
L¥990°€

9l016'C

(W) Aowapy
aalbag gydel

Lb086'C

Lb086'C

L086'C

Lb086'C

69626'¢

(aw) Aowepy
Bunonysuo)

sydes

168LE"L

168LE"L

L68LE L

L68LE°L

168LE"L

(aw) fiowapy
sSsauusamlag

pydess
gL19ze
gL19ze
gL19ze
2L192e

clloze

(aw) foway
yueyabeyd

pydes
8896270
8896270
8896270
8896270

90990

(aw) Aloway
aaibag pydeln

§2959°0

§2959°0

§2959°0

§2959°0

§2959°0

(aw) foway
Bunonysuo)

pydess

90991
90991
90991
90991
90991
(aw) Aoway
Ssauuaamlag
gydesn
6580€ ¥
6580€ ¥
65850'F
65808'€
65808'€
(aw) Aoway
Nueyabeyd
gydesn
£9079'L
£9079'L
£9079'L
£9079'L

€90¥9°L

(am) Aowapy

aalbag gydeln

99265°L
99265°L
99265}
99265°L
815.9'L

(aw) Aoway

Bunonssuo)
gydesn

182820
182820
18050
18£G2°0
182820
(W) Aoway
Sssauusamlag
2ydein
¥¥E20'2
¥¥E20'2
¥¥E20'2
¥PEZ0'Z
¥PEZ0'Z
(W) Aoway
Nueyebeyq
cydein
168.£°0
168.£°0
168.£°0
168.E°0

L684E°0

(W) Aowapy

aalbag gydein

1828€°0
1828€°0
1828€°0
1828€°0
1828€°0

(W) Aoway

Bunonysuo)
2ydein

ESPPL0
ESPPL0
ESYPL0
ESYPL0
ESPPL0
() Aoway
Sssuusamlaeg
Lydeis
915880
915880
915880
918820
918820
() Aoway
Nueyabeyq
Lydeis
ZL9EL°0
ZL9EL°0
ZL9EL°0
ZL9EL°0

CL8EL0

(W) Aowapy

aalbaq Lydeln

16£00°0
16£00°0
+6£00°0
16£00°0
16£00°0

(aw) Aoway

Bunonysuo)
Lydeis

Memory Performance Data of NetworkX — Part 1

Figure B.8

65

00000°€62
00000°€62
00000°€62
00000°€62
00000°€62
(aw) Aoway
ysuodwo)
pajoauuo)

ABuong
zhydein

£569¢°85¢E
£569¢°85¢E
£569¢°85¢E
£569¢°85¢E
£569¢°85¢E
(aw) fowspy
jusucdwo)

paosuuc)
Ziydern

v€.25°€9E
v€.25°€9E
v€.25°€9€
v€.25°€9€
¥¥€.2°85€E

(W) Arowap
SS8U8S0|]
giydern

Geosth'LL
Geosth'LL
Geosh'LL
Geosh'LL
16€00° 1L
(aw) foway
ysuodwo)
pajoeuuo)

Albuong
LHhydesn

609¥L°0L
609¥L°0L
609%L°0L
609%L°0L
609¥L°0L
(aw) Aowen
ysuodwo)

pajosuuod
Lydern

0S.E6'LL
0S.E6'LL
0S.€6'LL
0S.€6'LL
609%2'0L

(aw) Atowasy
SSauUds0o|D
Lyders

elesyie

elesyie

glesyiie

glesyiie

elesyie

(an) Aowapy

ysuodwo)

pajoauuo)
ABuong
0ryders

91016'81
91016'81
9101681
9101681
91016'81
(aw) fowspy
jusucdwo)

pajosuuc)
otyders

§2951°02
§2951°02
G2951°02
88126'61
005.8'8L

(W) Arowapy
SS8U8S0|]
0tyder

L¥0€2'8S

L¥0€2'8S

L¥0ET'8S

L¥0ET'8S

€0280'8S

(aw) Arowapy

ysuodwo)
pejosuuo)

SclesoL
SclesoL
Scles0L
Scles0L
SclesoL
(aw) Aowspy
jusuodwod

palosuuc)
6ydein

€045 1L
€045 1L
€0LG¥'LL
€0LG¥'LL
916€5°0L

(W) Arowapy
SS8UIS0|D
6ydein

658551
658551
658551
658551

65855 1
(aw) Arowapy

suodwo)
pejosuue)

Aibuong sydesn | ABuonsg gydein

SLEVEVL
SLEVEVL
SLEVETVL
SLEVETVL
SLEVEVL
(aw) Aowspy
suodwod

pajosuuo)
gydein

00S29'v1
00S29'v1
00529'v1
00529'v1
€0ceevL

(W) Arowapy
SS9uU8s0|D
gydein

6LL1L9Y
6LL1L9Y
6LLIOY
6LLIOY

6LL1L9Y

(aw) foway
yeuodwo)
pajosuue)

Ajbuong Lydern | ABuong gydein

910l6°€
910l6°€
91016°€
91016°€
000SL°€
(aw) Aowspy
jusuodwo)

pajsuuc)
Lydein

alosl'y
alosl'y
alosL'y
8cELLY
(AT

(W) Arowapy
SS8UIS0|D
Lydein

Y6SEC’LL
Y6SEC’LL
Y6SEE L
Y6SEE L

Y6SEC’LL

(aw) fowapy
suodwo)
pajosuue)

£€959.°¢1
£€959.°¢1
€959.°¢1
€959.°¢1
£€959.°¢1
(aw) Aowspy
suodwod

palosuuo)
gydein

6018721
6018721
6012821
6012821
s/812°2L

(W) Arowapy

SS9uU8s0|D
gydesn

959/6'¢
959/6'¢
989/6'¢
989/6'¢

1£028'2
(aw) Arowapy

euodwo)
pejosuu)

Ajbuong gydern | Abuons pydern

viv6e
viv6e
848474
848474
viv6e
(aw) fowapy
jusucdwo)

paosuuc)
Sydein

cce6l’e
cce6l’e
cce6l’e
cce6l’e
8/S¢6'e

(W) Arowapy
SS8U8S0|]
sydein

88126°0
88126°0
881¢6°0
881¢6°0

88126°0

(aw) fowapy
suodwo)
pajosuue)

£90¥#9°0
£90¥#9°0
£90¥9°0
£90¥9°0
£90¥#9°0
(aw) Aowspy
suodwod

palosuuo)
yydein

69€€6°0
69€€6°0
659€€6°0
659€€6°0
910990

(W) Arowapy
SSaU8s0|D
yydeis

88LLL'e
88LLL'e
88LLLe
88LLLe

88112
(aw) Arowapy

euodwo)
pejosuuo)

Aibuong gydern | Ajbuong gydein | AjBuons Lydein

91099
91099
91099
91099
91099
(aw) fowspy
jusucdwo)

paosuuc)
gyden

S2959°L
S2959°L
S2959°L
S2959°L
§2959°L

(W) Arowap
SS8U8S0|]
gydein

£€959/°0
£€959/°0
£€959.°0
£€959.°0

168290

(aw) fowapy
suodwo)
pajosuue)

eL1IS 0
eL1IS 0
¢LIIS0
¢LIIS0
168.€°0
(aw) Aowspy
suodwod

palosuuc)
gydein

182050
182050
182050
182050
168.€°0

(W) Arowapy
SSauU8s0|D
cydein

¥eesto
¥eesto
veESSH0
veESSH0

¥eesto

(aw) fowapy
Jusuodwo)
pajosuu0D

168210
168210
168210
168210
168210
(aw) fowepy
jusucdwo)

pajosuuo)
Lydein

L6821°0
L6821°0
L6821°0
L6821°0
168210

(aw) Arowapy
SS8U8S0[D
Lydesn

Memory Performance Data of NetworkX — Part 2

Figure B.9

Experimental Data

66

1095.4°269
§695.'c69
LV1EE'8S9
orieley9
1€EEE'899
(s) s,
ssauusamiag
ghydeso
644810
684810
7Oor81°0
00v81'0
c8e8L0
(s) s,
yueyebed
Ziydeso
651900
2¥090°0
671900
2€090°0
G66G0°0
(s)
awn) aalbaq
Ziydern
6LS0L P71
988071
091071
L1S66°EL
L6986°EL
(s) s,

Bunoniisuon
Ziydern

08259°L6}
vLES9°L6L
vellg'L6l
28120°L61
B80EIS'L6)
(s) swiL
ssauusamiag
ydeso
€CESL0
2eest’o
L6SY 10
1 lad XY
S.¥v1L0
(s) swiL
sueyabed
Lydeso
Zre90’0
202900
EEE90°0
981900
6E£850°0
(s)
aw)] aalbaq
Lydero
r¥8vr8'c
0cleEse
6E2EBC
QcggeBe
82E1BC
(s) swiL

Bunonnsuon
Lydeso

GE.2€'89
6¢82¢€'89
091628
6971829
¥e816'LS
(s) awn
ssauusamieg
olydes
295210
9/5210
182210
22220
80ccL0
(s) swn
yueyabed
oLydess
€96S0°0
906500
€S6500
068500
208500
(s)
awi) asibaq
olydesn
200850
FAVNA=NI]
Sia ZAN]
206950
906950
(s) awn

Bunonnsuon
olLydesn

G0906'8
869068
89088
¥6599'8
59088
(s) awnp
ssauusamiag
sydes
¥eee00
£€2e00
102E00
LLLE00
€61€0°0
(s) swnp
yueyebed
sydes
¥1el00
981100
¥0ct00
041100
Y9LLO0
(s)
awi] aaibaq
sudern
¥886.°C
gs98L2
LEE8LT
06¢8L°¢
¥8eLLC
(s) swnp

Bunonnsuo)
sydern

916€9'€
0L0¥9E
91629'E
19829'€
001€9°€

(s) awig
Sssuusasmieg
gydes

¢5¥20'0
29¥200
09%20°0
10¥20°0
£8€200

(s) awiy
yueyebed
gydeso

€8110°0
081100
€LLL00
Y9100
29lL00
(s)
aw) aaibaq
gudein
GG83S5°0
£08GS°0
810650
910850
26¥S'0

(s) awiy
Bunonysuon
gudes

2sels’
rvigL
250181
vLE6LL
9€218’L
(s) owiL
ssauusemiag
Lydesn
G¥Ge0°0
756200
651¢0°0
19¥20°0
arve00
(s) swiL
yueyebed
Lydesn
€6110°0
64110°0
¥8LLO°0
€9110°0
€GLL0°0
(s)
awn) aalbaq
Lydein
€09LL°0
SOFLLE0
Leviio
8I¥LL0
cLELLO
(s) swiL

Bunoniisuon
Lydern

L0E2F0
00¥2Y°0
S68LF0
SL8LF0
8L02F0
(s) owiy.

Ssauusamieg
gydein
£6900°0
£0200°0
£5900°0
G9900°0
2¥900°0

(s) s
sueyabed
gydein

292000
192000
252000
S¥2000
£¥200°0
(s)
aw) aalbaq
gudein
900950
L0ESS0
0F1SS0
166750
826150
(s) s

Bunonnsuon
gydein

¥8291°0
848910
05891°0
€¥891L°0
€E0LL0
(s) awip
ssauusamieg
Sydern
0k900°0
029000
2585000
195000
€¥500°0
(s) s
sueyabed
sydein
192000
€£5200°0
1G200°0
£E200°0
€€200°0
(s)
aw)] aalbaq
sydein
€9LLL0
8CLLL'0
€CLLL0
CHELLEO
¢60LL0
(s) s

Bunonnsuon
sydein

1612070
S$8¢L00
65¢200
002200
ervL00

(s) awn
ssauuasmieg
puder

65000
109000
16500°0
609000
185000

(s) swn
yueyabed
pydes

92000
652000
52000
#2000
£€200°0
(s)
awi) asibaq
pudern
¢G€200
<¢0€200
£€9¢20°0
¢cec00
90¢c00

(s) awnp
Bunonnsuon
puder

102200
S6¢c00
€Lec00
81cc00
£45¥20°0

(s) awn.
ssauuasmieg
gydes

0EE00°0
0¥£00°0
292000
08¢00°0
192000

(s) awn
yueyebed
gydes

40000
690000
900070
£5000°0
250000
(s)
awi] aslbeq
gydein
LBELL0
EVLILO
CLLLLO
€LL01°0
889010

(s) aump
Bunonnsuo)
gydesn

§/S00°0
899000
9t900°0
9t900°0
0€800°0
(s) awiy
ssauusamieg
cydesn
£5200°0
£€9200°0
1422000
¥$200°0
922000
(s) swiy
yueyebed
cydesn
€4000°0
690000
#9000°0
£€5000°0
£5000°0
(s)
awl) aalbaq
cudein
18200
10€20°0
061200
L1200
951¢0°0
(s) awiy

Bunonisuon
2ydes

25000
9€900°0
20v00°0
18€00°0
985000
(s) awnL
sseuuaamieg
Lydein
0S¥S0°0
657500
62€00°0
2re00°0
€2e00°0
(s) s
yueyebeyd
Lydeis
840000
690000
890000
€5000°0
250000
(s)
awn) aalbaq

Lydein
98000
¥8100°0
€8700°0
LL¥00°0
L#100°0
(s) s,

Bunonnsuon
Lydein

Time Performance Data of Graph-tool (1 Core) — Part 1

Figure B.10

67

LSS61°0
€ES61°0
8Labl’o
061610
LIEGLO
(s) swi
wsuodwo)
pajoauuoy)

Abuons
Ziyder

€4091°0
LEQSL0
[448:190]
EV8S10
¢/8S1°0
(s) swiL
wauodwon

pajoauuon
Zlydesn

0L5S¥'S6C
SS66Y v6C
8510 ¥6S
LL¥SY S6S

L19v0'v62

(s) sy
SSOUSS0|D
Zhydern

G9591°0
LPS91°0
91910
€E091°0
£€9291°0
(s) awi
wsuodwon
pajoauuoy)

ABuong
Fydern

¥rS91°0
95€91°0
€0991°0
S¢6SHO0

86510
(s) suny
wauodwon
pajoauuoy)
bhydein

91Le91°20k
280567101
Z61€8°101
£2/e9¥'201

06¢e8'101

(s) auny
$S8UaS0|)
Fydern

855¥%1°0
0rSvi0
0€6EL0
968€1°0
6¢0¥10

(s) swnL

weuodwo)
paloauuo)

ABuons
otyder

086€1°0
L8EL0
6E0%1°0
€6LE1L0
¢cB8EL0

(s) sy

weauodwon
paloauuoy)

0Lydesn
ZLOLE6E
85699°8€
0¥6£9°8E
£.69€°6E
€E0¥9'8E

(s) ey

SS9USS0|D

otydern

S19€0°0
/65€0°0
¥82€0°0
LZ1€0°0
¢8EE00

(s) swiL

wsuodwo)
pajoauuoy)

Abuons
sydeiy

946200
£€¢620°0
SE0E0'0
£88¢0°0
L6200

(s) swiy

wauodwon
pajoauuoy)

sydesn
€4/88'8
2858
25E124°8
¥£.88'8
SbpLL'8

(s) ey

SSOUSS0|D

sydery

GEEC00
91€€00
6ELE00
€€1€0°0
8ECE00
(s) awi
wsuodwon
pajoauuoy)

ABuong
gudei

0862070
€4820°0
8€0€0°0
€.48¢00
L0620°0
(s) swiL
wauodwon

pajosuuo)
gydein

9ev8.Le
Lc08L¢
1S6.4°¢
86E8L°C
€v08Le

(s) auny
$S8UaS0[D
gudein

56200
§£620°0
169200
069200
682¢0°0

(s) swiL

jsuodwon
pajoauuoy)

AlBuons
Lydein

66200
L€0E00
85€L0°0
4600
£00€0°0

(s) sy

juauodwon
pajoauuoy)

Zydein
oeoer’L
£08I1'L
2solt'L
266111
SrLltL

(s) ey

$S9UaS0[D)

Lydein

120070
$6900°0
¢6900°0
849000
064000

(s) swiL

suodwon
paloauuon)

AlBuons
gydern

2190070
0090070
1290070
995000

65000

(s) sy

juauodwon
paloauuo)

gydein
Lp12e0
9861£°0
£8SLE0
801280
9/91€°0

(s) oy

$S9UBS0[D)

gydein

¥9800°0
S¥800°0
1#900°0
6£900°0
6€.00°0

(s) swiL

suodwon
paloauuos)

AlBuons
Sydern

€€900°0
8190070
2690070
<9000
790070

(s) oy

jauodwon
paloauuo))

sydein
SPS0L0
8EF0L'0
81+01°0
£0S01°0
LLS0L'0

(s) oy

$S9Uas0[)

gydern

912000
£6900°0
120070
S¥S00°0
¢kB8000

(s) ewiL

jusuodwon
pajoauuon)

AlBuons
pyder

2¥900°0
1090070
10£00°0
6850070
£1900°0

(s) oy

juauodwon
pajoauuoy)

pydei
£2090°0
266500
£4650°0
886500
99090°0

(s) oy

$S9Uas0[D)

pudern

891000
051000
cS100°0
€s1i000
05200°0
(s) awil
wsuodwon
pajoauuoy)

Abuong
gydery

S¥#100°0
8€100°0
02000
221000

951000
(s) s
wsuodwon
pajoauuoy)
gydesn

EEEL00
YLELOO
80€E10°0
S6¢10°0
LO¥ 100

(s) s
$S9U9S0|)
gyder

291000
€¥100°0
L1000
#1000
92000
(s) awip
jusuodwon
pajoauuoy)

ABuons
gydern

151000
¥€100°0
012000
L2000
951000
(s) swiL
juauodwon

pajosuuo)
eydein

S¥S00°0
9£500°0
92500'0
905000
61900°0
(s) ewiL

$S2UaS0|)
gydern

¥e1000
911000
21000
021000
¢cc00°0
(s) awip
jusuodwon
pajoauuon)

AlBuons
tydern

80100
8€100°0
£6010°0
821000
951000
(s) swiL
juauodwon

pajosuuod
Lydein

S/£00°0
¥9€00°0
LS€00°0
9€£00°0
05+00°0
(s) swiL

$SQUAS0|)
tydern

Time Performance Data of Graph-tool (1 Core) — Part 2

Figure B.11

Experimental Data

68

8.5.1°8€
8L5.1°8€
8.5.1°8€
¥86EE°cE
90¥91°1E

(aw) fuowapy
SSsuussmieg

Ziydern
£182€°2E
€18zeee
£1828°2¢
€182€72E
91094°1E
(anw) Aowapy

syueyabed
Ziydern
Y6SEETE
P6SEETE
¥65£8°2E
v6SEEeE
£9592°1€

(aw) Aowaspy
aalbaq zLydein

L6/91°1E
£6/91°1E
0S.8L°1E
0S8L°1E
L6/91°1E
(aw) Aowspy

Bugoniysuon
Zlydein

61419°01 9158¢'S 992659 £9068'¢
6141970} 9168c'S 992659 £9068'¢c
61419°01 91682°S 992659 £9068'c
¥8680°01 9158c'S L€0cE'L £9068'¢
€206'8 L¥086°E 2avee’9 99/¥8°L
(aw) Aowapy (aw) Aowapy (anw) Aowsy | (aw) Arowayy
ssaul \Ets| ssauL Jog ssauL 1eg ssauL Jog
Lydesn 0kydess eydein gydesn
¥6580°01 91682°S 6S€89'9 60lcle
#6580°01 9158c'S 65SE89'9 60lclc
¥6580°01 91682°'S 65S€89'9 60lcle
$6580°0} 9168c'S 65S€89'9 60lclc
G2906'8 Ly086°€ c/98¢9 Ly0eL’L
(aw) Aowap (aw) Atowaw (aw) Aoway (gi) Aowapy
yueyabed yueyabed yueyabed yueyabed
Lydesn 0kydess eydein gydesn
612666 ¥reeC0's 840859 9s10le
61c666 vree0's 840859 95101'¢c
612666 ¥¥€20's 8/0659 9siol'e
61c666 vrEe0's 80859 95101¢
90t 168 959/6°€ €9592'9 Ly0EL’ L
(aw) Aowspy (aw) Atowaw (aw) Aowspy (gi) Aowsy
aaiBaq LLydelr | saibaqg oLydein saibaq gydern | aaiBaq gudein
915€06 £969LY 609%c9 oovie’l
915€0°6 €S69L°F 609¥2'9 0v 6’
€95106 €969LY vrELS9 o0vie’t
G/E606 €569.F 1¥0€29 90t I6°
840506 €969LY vrELS9 o0vie’t
(aw) Aiowapy (aw) Aoway (aw) Aiowspy (gi) Aowapy
Buponisuo) Buponssuon Bujonyisuon Buponssuon
LLydein oLyder suden gudein

SLEVE'L 8E698°| GeleS0
SLEVE'L B8EESB | Scleso
SLEVE'L 8E6S8’L Geleso
SLEVE'L 8EES8'| Scles0
168280 LrI6L L vveL20
(aw) Aoway | (ay) Mowepy (a) Aowepy
ssaul Jog ssaul Jeg ssauL leg
Lydein gydesn gydein
6se8l’ 8BILLL 7¥86€°0
B6SE8LL 8BILLLL 7¥86€°0
B6SE8LL 8BLLLL Y¥86€°0
B6SE8L L 8BLLLH v¥86€°0
005480 88LLL'L ¥86€°0
(aw) Aoway | (gW) Aowsw | (gi) Aoway
syueyabed yueyabed yueyabed
Lydein gydesn gydein
LYSOLTL 8BILLL vreLS0
L¥SOL°L 8BLLLH vveLe0
LPS0L°L 88LLL'L r¥eLe0
L¥SOL°L 8BILLLL vveLC0
658080 8BLLLL vveL20
(aw) Aowsy | (gW) Aowsy | (giN) Aowasiy
saiBaq pydern | saibaqg gyder | saibaq gydein
951017t 0S481°1 £969¢°0
951017t 0S481°L £€5692°0
951017} 0S481°1 €569¢°0
951017t 0S5481°L £5692°0
951017} 0S481°1 €569¢°0
(aw) Aowsiy | (gW) Aowsy | (gIN) Auoway
Bugoniysuon Buponyisuon Buponyisuo)
Lydern gydein sydeirn

€Svirl0
€5¥r10
€5¥¥10
€Sv¥10
£5¥¥r10

(aw) Aowapy
Ssauusamlag

pydesn
¥EZSL0
#ETSL0
¥E251°0
PETSL0
#£251°0
() Aowapy
yueyabed
pydesn
£90F1°0
€90¥1°0
£90F1°0
€90¢1°0
£90F1°0

(aw) Aowsiy

aa1Baq pydern

182€1L0
182€1°0
182€10
182€1°0
182€10
(aw) Alowaiy

Buponssuon
puders

¢L98E'0 000000 000000
GL98E0 000000 000000
¢L98E'0 00000°0 00000°0
¢L98E'0 000000 000000
168210 00000°0 00000°0
(aw) Aoway | (gw) Aowew | (aw) Aowapy
SSaUL 109 SSauL 1eg SSauL leg
gydesn 2ydesn Lydes
168210 00000°0 00000°0
168¢1°0 000000 000000
168210 00000°0 00000°0
L68¢10 000000 000000
168210 000000 00000°0
(aw) Aoway | (gW) Aowely (aw) Aowapy
yueyabed yueyabed yueyabed
gydesn 2ydesn Lydes
168210 00000°0 00000°0
L68¢10 000000 000000
168210 000000 00000°0
168¢1°0 000000 000000
168210 00000°0 00000°0
(aw) Aoway | (GW) Aowely (aw) Aowapy
aa1Ba gydern | saibaqg gydery @ saibaq Lydein
168¢1°0 000000 000000
168210 00000°0 00000°0
168210 000000 000000
168210 000000 00000°0
168210 000000 000000
(aw) Aoway | (gW) Aowaly (GW) Auowaly
Buponssuon Buponisuon Buponisuon
gudein 2ydern Lyders

Memory Performance Data of Graph-tool (1 Core) — Part 1

Figure B.12

69

gelee’ e L¥S0L'6 €9610'S 760149 8c8eeC LESY6°0 0sele’t vyeLE 0 €90%1°0 184520 000000 000000
000s.ce 906€5°01 €9510'S 760149 B8¢8ECC LESY60 0sele’L vvELE 0 €90%1°0 184520 000000 000000
000s.ce 906€5°01 €9510'S 760149 B8¢8ECC LESY60 0sele’L vvELE 0 €90%1°0 184520 000000 000000
0008L'¢ce 906€5°01 cl988% ¥60LL9 8e8Ec@ LESY6°0 0ScLe’ vreLE 0 €90¥1°0 184520 000000 000000
€18.L0°IE 69626'8 78196 1€02E9 8ceo8’l 820080 696L1°L vyeLE 0 €90%1°0 184520 000000 000000
Alows| Kiows Alows)
,w__\%hcaecoz Hm_c_m,_.waaEcos Hw‘wwcaeo%_ (aw) fiowsy | (aw) Aiowsy | (aN) Aowa (gIN) Atoway | (gn) Aowey - (gIN) Alows | (gIN) AlowaiN | (giN) Atowely | (GIN) Atowsy
S100ULO S198UUO S100ULO juauodwo) jusuodwo) wauodwo) weuodwo) juauodwo) jusuodwo) wauodwo) weuodwo) juauodwo)
P >__mcc:m0 P >_ﬁmcc:m0 P >__mcc:wo pajoauuon pajoauuon SEILENT) [SEILENT) pajoauuon pajoauuon SEILENT) [SEILENT) pajoauuon
AjBuol deu AlBuou des Ajbuo des AjBuor des AjBuol deu AlBuou des Ajbuo des AjBuo des AjBuol deu
ZLydein LLyders oLydein | IS 6YdeI | IS 8ydel | 1S Zydeln | 1S 9ydel | IS Sydes | IS pydel | 1S gydeln | 1S cydeln | IS Lydes
¥86E€°LE €1E0C'6 el0148 L79LE9 €9068° 1 L¥0EL’ L Ly08%° L 86850 9068¢0 184S¢0 000000 000000
¥86£¢€°LE €1e02C'6 el0148 4 LP9LE9 €9068° 1 LY0EL’ L Ly08Y° L 86850 9068¢0 184520 000000 000000
786€EE°IE €1€02'6 el40 a4 1¥91E'9 €9068° | LYOEL’L Ly08Y°L 786850 9068¢°0 184520 000000 000000
Geoslee 612666 992.6'v GeoSI'L 99¢ele LVOEL’L PAZV: 86850 906820 184520 000000 000000
GeosL'IE ¥8196'8 95916 000529 61298°1 10280 65EBL’L veLLE 0 r¥8v L0 168210 000000 000000
(W) Aloway | (gn) Aiowsy | (GW) Aoway | (GN) fowsy (aw) Aowsy (aw) Atoway (aw) Atoway (aw) Kowapy (aw) Aowsy (aw) Atoway (aw) Atoway (aw) Koway
jsuadwon) weuodwo) wauodwo) juauodwo) jusuodwo) wauodwo) weuodwo) juauodwo) jusuodwo) wauodwo) wauodwo) juauodwo)
pejoauuo) pajoauuo) pejoauuo)) pajoauuo) pejoauuo) pajoauuo) pajoauuo) pajoauuo) pejoauuo) pajoauuo) pajoauuo) pajoauuo)
Ziydern Lydesn otydesn Bydesn gudern Lydein gydein sydesn pyder gydesn 2ydesn Lydern
9168g'ce 9510L0} 9168¢°S 69¥SS9 L68CL ¢ cl19e’ L 1649171 £BLLP0 eGP0 168210 000000 000000
91682'¢cE 9510101 9168¢'S 69%559 168cl ¢ A% TN 2649171 LBLIYO eStrLo 168C10 000000 000000
91682'¢cE 9510101 9168¢'S 69%559 168cl ¢ A% TN 2649171 LBLIYO eStrLo 168C10 000000 000000
9lg8egce 9G101°0t 9168¢'S 69%559 168¢l¢ (7RSI LBL9L°L L6L1¥0 €SryL0 168210 000000 000000
€18.0°1E 910168 2¥086°¢ £959¢2'9 99.%8°L 005480 1649171 v¥eL20 eGP0 168¢10 000000 000000
() Aowapy | (gw) Aiowapy | (gw) Aowspy | () fowspy (anw) Aowaspy (aw) Atowapy (aw) Atowapy (gw) Kowapy (anw) Aowaspy (aw) Atowapy (aw) Atowapy (gw) Kowapy
$S8USS0|D SS8UIS0|D $S8USS0|D $S8U3S0|D $S8USS0|D $S9US0|D SS9US0|D $S8U3S0|D $S8USS0|D $S9US0|D SS9US0|D $S8UAS0|D
gLydein LLyders otrydern 6ydein gydein Zydeig gydei sydern pydeirn gydein gudein Lydern

Memory Performance Data of Graph-tool (1 Core) — Part 2

Figure B.13

Experimental Data

70

68905°68¢€
£292t'98¢
192+'98€
SPPLE'E8E
viPILEEBE
(s) awip
ssauusamlag
Zhydern
¥rorL'0
¥eovil'o
¢L6EL'0
€G9EL'0
000%L'0
(s) awip
Mueyabed
Zhydern
60900
¢#090°0
¥2080°0
£6850°0
606500
(s)
awy] aaibag
girydesn
rele vl
SoEvL'vL
gclLel vl
18gch'vl
0SS v
(s) swi

Bunonnsuon
girydesn

c0lsy98
651c6'¥8
9vLe6'¥8
PSLr6'E8
€8Lv6'€8

(s) awy

ssauusamiag

Hyderg
S¥80L0
928010
8¥¥0L'0
¥610L°0
9/%0L°0
(s) s
Mueyesbed
Hyderg
6¥290°0
660900
18090°0
2EBSO0
£5650°0

(s)

aw] aaibaqg

Liydein
R
LEYFE'E
ZEBER'T
252682
G082
(s) swir

Bunonnsuon
Liydein

6SLLS'Sc
§660L¥C
2860L'%¢
89l6¥' e
86l6%" ¢

(s) awnp

ssauusamiag

orydeln
ovLol0
Lglolo

€LI0L0

¢8001°0
L7010

(s) awp

yueyebed
orydeln
§9650°0

668500

288500

682500

S0850°0

(s)

awy) aalbaq

oLydesn
15585°0
20t85°0
626.5°0
80€/5°0
08€95°0
(s) swiL

Bunonsysuo)
otydein

LLLL9e
800/9°C
G6699°C
tr8197¢
€/819°C
(s) awnp
ssauusamlag
eydess
60¥#20°0
68€20°0
G/€20°0
898200
€0t20°0
(s) awnp
yueyebed
eydess
91200
/811070
01100
991100
I8LI00
(s)
awy) aalbaq
6ydes
0296.°C
60S6.°C
cor8l'e
lavile
€90v.L'C
(s) swin

Bunonisuo)
6ydes

6.6S0°}
2e0s0°
610S0°}
886€0° |
L10¥0°L

(s) awip

ssauusamiag

gydeln
8€1200
611200
921200
160200
¥5120°0
(s) awi
Nueyabed
gydeln
celoo
8EcCI00
Lecloo
081LL0°0
961100

(s)

awy) aalbaq

gudess
PLLLSO
286950
920950
185550
¥9555°0
(s) swi|.

Bunonnsuo)
gudess

919¥5°0
98%¥5°0
¥S¥¥rS0
S16ES°0
S¥6ES°0

(s) awi

ssauussmiag

Lydern
00200
S8610°0
¥S61L0°0
€¥610°0
€8610°0
(s) awip
Nueyabed
Lydern
SLH0°0
LLIO0
0911070
L5100
€L110°0

(s)

awy) aalbaq

Lydes
IP9LL0
156110
£0ELL0
962110
99LLL'0
(s) swi|.

Bunonnsuo)
Lydes

L¥8EL0
L¥8EL'0
8¢8€L'0
8GEEL0
L8EEL0

(s) awnp

ssauusamieg

gydein
29000
S0900°0
695000
655000
865000
(s) awny
yueysbed
gydein
52000
292000
62000
¢vc00'0
852000

(s)

awy) aalbag

gydein
801250
012950
809950
85Y95°0
219550
(s) suw

Bunonisuon
gydein

82500
262500
6€250°0
LE250°0
092500

(s) swnp

ssauusamiag

sydein
€565000
¥E€500°0
0€500°0
9¢500°0
855000
(s) swnp
yueyebed
sydein
2000
19200°0
€¥200°0
¥€200°0
6¥¢00°0

(s)

awy] aalbag

gydein
S6SLL'0
655110
¥ESLL0
€ISLL0
205110
(s) suwn

Bunoninsuon
gydein

£48¥20°0
Geve0'0
€Lv200
L9€20°0
L6€20°0

(s) awi

ssauusamiag

pydels
0%500°0
12S00°0
£0S00°0
05000
GES00°0
(s) awi
Mueyabed
pydels
L¥200°0
92000
92000
6E200°0
652000

(s)

awy] aalbaqg

pydess
£/£20°0
9£220°0
128200
612200
902200
(s) oy

Bunonnsuon
pydess

506000
988000
£€/800°0
898000
168000

(s) awi

ssauusamiag

gydeln
€4200°0
¥5200°0
¢E€2000
£2200°0
082000
(s) awi
Mueyabed
gydeln
£98000°0
040000
£5000°0
¢S000°0
890000

(s)

awy] aalbaqg

eyder
£L2LL0
£2LLL0
080LL'0
1¥601°0
228010
(s) wiy

Bunonnsuon
eyder

0ee000
262000
642000
042000
662000

(s) swiy

ssauusamiag

gydein
9€€00'0
91€00°0
¥9200°0
L€200°0
¢6200'0
(s) swiy
Nueyebed
gydein
90000
080000
£€9000°0
950000
120000

(s)

awy] aalbaqg

gydei
9/t20°0
991200
091200
051200
£E120°0
(s) swi

Bunonnsuo)
2ydein

¥¢2000
002000
881000
G81000
12000

(s) swnp

ssauusamiag

Lydein
642000
092000
8¢200°0
812000
252000
(s) swnp
»ueyebed
Lydein
€90000
1£000°0
£5000°0
¢5000°0
890000
(s)

awy] aalbag

Lydes
£8Y00°0
0/+00°0
09000
§5¢00°0
6¥¢00°0
(s) swn

Bunoninsuon
Lydes

Time Performance Data of Graph-tool (4 Cores) — Part 1

Figure B.14

71

(01431 0]
69€810
¢908L°0
S¥8LLO
+9841°0
(s) swn
jsuodwon
pejoauuon)

ABuong
ghyderg

/81S10
SSvPL0
vLIS1L0
LevkL0

L0¥F1°0
(s} awirL
suodwon
pajosuu0D)
Zludein

$0898'16
08898 76
SEBEC ¥6
0S199°E6
LE199°E6
(s) swn

SSauaso|)
glydeln

¥2991°0
€69910
9S€91L°0
9%291L'0
+9291°0
(s) suny
ysuodwon
pajosuu0n)

ABuong
Frydero

L¥8S1°0
¥9451°0
YEBSLO
9ELS10

S69510
(s) awiL
ysuodwon
pajosuu0)
Lydesn

16029°EY
¥L129°EY
08S6S°EY
FrIESEY
zeleser
(s) suny

§S8UBS0|D
Lydein

6¥GEL0
89G6EL0
S/¥EL0
EL6cL0
lE6ct 0
(s) swny
suodwon
pajosuuon)

ABuong
otyder

60L¥1L°0
corvL0
969¥%1°0
vEYPLO

YEEVL'O
(s) awiL
jusuodwon
pajosuuon)
olydern

/811591
$9215°91
8188%'91
9S/00°€1
EFL00EL
(s) swny

SSaULSO|D
olLyderg

L02€00
922¢e00
602€0°0
¥SLEQO
¢lIE00
(s) swn
suodwon
pejoauuon)

ABuong
sydes

20800
980E0°0
S90E0°0
850€0°0

€L0E00

(s} awiL
suodwon
pajoauu0n)

sudel

86/£€2
G188€2
¥ébet'e
¥Stee'e
Irr2ee
(s) s

SSauUaso|D
sydeln

0E€LE00
0S1€00
FOLEQD
L2000
960€0°0
(s) swn
suodwon
pajoauuon)

ABuong
sydes

8¢cr0°0
GS8E0°0
Sler00
2298€e0'0

£16200

(s} awiL
suodwon
[SEYLEI1]e%g)

gydeln

Zre8L0
61€8L°0
656,470
062470
168240
(s) s

§S8U8s0|D)
gudein

2e6200
€s6200
9£9¢00
£192¢00
GE920°0
(s) swny
ysuodwon
pajosuu0)

AiBuong
Zydes

€€6¢0°0
858200
026200
628200

604200
(s} awiL
sucdwon

paloauuo)
Lydein

899210
YrL2F 0
&Séer 0
0ceer 0
2022770
(s) swny

$S8Uas0|)
Zudeln

19800°0
088000
LE£L00°0
€LL00°0
LEL00°0
(s) suny
jusuodwon
pajoauuon)

Abuons
gydei

05900°0
199000
2E900°0
€€900°0

S1900°0
(s) awiL
juauodwon
pajoauuo)
gudein

¥/880°0
156800
642800
95/80°0
¥7L80°0
(s) swny

$SaUasol)
gudern

8€900°0
159000
929000
£2900°0
1#900°0
(s) suny
ysuodwon
pajosuuon)

AiBuons
sydesn

698000
859000
958000
0€900°0

1£S00°0

(s) awiL
ysuodwon
pajosuu0)

gydei

92.£0°0
208€0°0
L1S€0°0
£6¥E0°0
08+€0°0
(s) suny

$S8Uas0|)
gudein

S62000
S1800°0
6€9000
€65000

¢19000
(s) suny
ysuodwon
pajosuu0)
ABuons
pydeio

€5900°0
965000
0v900°0
895000

§9S00°0

(s) awiL
ysuodwon
pajosuu0l)

pudes

1£220°0
¥1€20°0
S12e00
S0220°0
£6120°0
(s) suny

SSauU8s0|D
pudel

L¥100°0
991000
651000
81000
991000
(s) suny
jsuodwon
pajosuu0n)

ABuong
eydesn

¢91000
951000
6¥100°0
821000

L2000
(s) awiL
suodwon
pajosuu0)
gydern

6SEL0°0
9E¥10°0
ovEL00
9EEL00
£2€10°0
(s) suny

§S8UBS0|D
gudeln

E¥100°0
291000
S¥ 1000
E¥L00°0
191000
(s) suny
suodwon
pajoauuon)

K Buons
gydesn

81000
vZ100°0
LZ100°0
971000

8€100°0

(s) awiL
juauodwon
pajosuuo)

gydeln

£2500°0
679000
895000
195000
8¥500°0
(s) swny

SSaULS0|D
gudeln

921000
91000
FAA RleN0]
9¢100°0
S¥100°0
(s) swn
jsuodwon
pajoauuon)

ABuong
tydes

951000
851000
1000
0€1000

0€1000
(s} awiL
jsuodwon

pajpsuuo)d
Ludein

99€£00°0
grr000
0SE00°0
FAZ01040]
#E£€00°0
(s) swn

SSaULs0|D
Lydein

Time Performance Data of Graph-tool (4 Cores) — Part 2

Figure B.15

Experimental Data

72

L¥918'€52
L¥918'€52
182£9'252
90682'8v2
9068282
(gw) Arowepy
Ssauussmlag
Ziydein
2.98€'95
2.98€'9S
2.98€'95
2.98€'95
2.98€'95
(an) Aowspy
yueyebeyq
ghydero
88LLL2E
88LLL2E
881/12E
88LLL2E

€18.0°1E

(aw) Arowepy
saibaq zLydein

22661 1E
TTE611E
69750’ LE
69750’ LE
69YS0°LE

(aw) Aowspy

Bunanisuon
zhydelo

05/89'922
05/89'922
05/89'922
91091°922
91001°922
() Aowspy
Ssauussmlag
Lyders
99/60v€E
99/60%€E
99.60%€
99.60%€
99.60%€
(aw) Aowapy
yueyebeyq
Lhydelo
8EY86'6
8EY86'6
8E186'6
8EV86'6

881268

(aw) Aowsy
saibaq LLydern

609¥2°9
691506
226v6'8
226v6'8
vE€/20°6

(aW) Aowapy

Bunonysuon
Lydern

8896¢"lcc

8896¢"lcc

8896¢"lcc

8896¢"Lcc

8896¢ Lce

(aw) Aowspy
Ssauusamlag

otydern
88962 62
88962 62
8896262
8896262

88962'62

() Asowapy

Mueyabed
olydess

vree0’s
vree0’s
t¥e20's
vre20’s

Lv086'C

(aw) Aowsy
aaibag oLydein

1% 1 g

o13:14: g

€1828'%

€1828'%

€18e8v

(aw) Atowsiy
Bunonysuon

okydern

17995222
17995°222
17995°222
05/81°€22
05/81°€22
(gw) Arowepy
s§sauuasamlag
6ydesn
05295 0€
05295 0€
05295°0€
05295°0€
0529508
(an) Aowapy
Mueyabed
6ydesn
262159
262159
162159
162159

vvELS 9

(aw) Aowsiy

saibaq pydern

95922'9
9592z'9
87129
87129
16£S2°9

(aw) Aowspy

Bunonusuon
6ydesn

16216812
16216812
9068.°812
9068.°812
90682812
(8w) Aowaspy
ssauusamlag
gydein
2/L192°92
2/L192°92
2L192°92
2L192°92
2L192°92
(aN) fiowapy
yueyebed
gydein
8E6042
8E6042
8£6012
8£601C

82¢E98’}

(an) fowsy

saiba gydein

612981
61,981
612981
612981
612981

(8N) fuowapy

Bunonysuon
gydein

¥¥86E°L12
¥¥86€°L12
¥¥86€°L12
Y8612
YY8EE LT
(gw) Arowepy
Ssauusamlag
Lyder
ESPYLSE
ESPYLSE
e iger
€St L'se
£S5ty L'Se
(anw) fowapy
Mueyabed
Lydesn
886041
886041
8E60L°L
8E60L L

¢eres0

() Aowsy

saibaq Lydern

889%0°'L
889Y0° L
889%0°L
889%0°L
889%0°L

(aw) Aowspy

Bunanisuon
Lydein

L1858°L1E
LYSS8°L1E
LYSS8°L1E
115587212
11SS8°L1LE
(8w) Aowapy
ssauusamlag
gydein
696/1°GE
696/1°GE
696.1°G2
696.1°52
696.1°62
(8N) Aiowapy
yueyebed
gydein
9019kt
9019kt
901911
901911

0v9L’L

(an) fowsy

saibag gydesn

88LLLL
881LLL
881LLL
881LLL
88LLLL

(8W) Aioway

Bunonysuon
gydein

LBLLY9le
LBLLY9LE
LBLLY9LE
LBL1¥9le
LBL1¥9le

(an) Aowepy
Ssauusamlag

Sydesn
91582 ¥
91582 v
915982'¥2
91582¥2
91582¥2

(an) Aowspy
Mueyabeyq
gydesn

521820
521820
521820
G2182°0
G2182°0

(amw) fowsiy

saubag gydern

¥YELZ0
YYELZ 0
YYELZ0
YYELZ0
YEL20
(an) Aowsy

Bunonysuon
Sydesn

ry8yL9Le
ry8r1L9Le
ry8r1L9Le
ry8YL9Le
vY8YL9LE
(B8W) Atowspy
ssauusamleg
pudei
Pr8YLYE
Pr8YLYE
Pr8YL Y2
Pr8YLYE
Pr8YL¥E
(an) Aowapy
yueyabeyq
pudein
¥E2510
¥E2510
$E2SL0
$EZSL0

vEesS1L0

(anw) Alowsy

saiba(ydein

2L9E1°0
TL9EL O
2L9E1°0
2L9E1°0
2/981°0

(8W) Aowapy

Bunonysuon
pudei

¥¥86£912
F¥86£912
F¥86£912
PY86£91E
¥Y8EE9LE
(gw) Arowepy
Ssauusamlag
gydesn
168210
168210
168210
168210
168210
(an) fowapy
Mueyabeyq
gydesn
168210
168210
168210
168210

168¢L0

(am) Aowsiy

saibag gydern

182520
182520
182520
182520
182520

(aw) Aowspy

Bunonusuon
gydesn

£SP¥19Le
£SP¥L9Le
£SP¥L9Le
£5Pr1L91LE
£GFr1L 9L
(aw) Arowepy
Ssauusamlaeg
gudein
000000
000000
000000
000000
000000
(aw) fowapy
yueyabed
guden
000000
000000
000000
000000

000000

(an) Alowsy

aa.baq gydein

000000
000000
000000
000000
000000

(anw) fowspy

Bunoan.isuon
gudein

clll09le
c¢lll09le
c¢lll09le
clllo9gle
clLlo9le
(8w) Aowsapy
Ssauusamlag
Lydeig
000000
000000
000000
000000
000000
() Arowsiy
yueyebedq
Lydesg
000000
000000
0000070
000000

000000

(aw) fowsy

saibag Lydein

000000
000000
000000
000000
000000

(aW) Aowapy

Bunonysuon
Lydesg

Memory Performance Data of Graph-tool (4 Cores) — Part 1

Figure B.16

73

18¢8€°5S
9616899
96168'95
96168'95
9G198°95
() Arowapy
suodwo)d
pajoauuon

ABuong
giydeln

1828¢€°LE
1828 L€
1828eLE
4c66l et
£0.02°LE
(an) Aowsiy
auodwon

payauuo)
clydes

8L00€'8v2
8.00€'82
8.00€'812
8200€'812
8L00€'8ve

(giN) Arowey

§Sausso|]
2lydern

99/60°€E
8/085+€
8/08G5v€
GCLESPE
SCLESTE
() Aowapy
suodwo)d
pajoauuon

ABuong
Liudern

G2osSk'6
Ge9SH'6
Sc9S1'6
¢cbve'6
+€206'8
(an) Aowsy
auodwo)

payauuo)
Lyders

95101'922
95101'922
95101'922
95101'922
95101'922

(giN) Aowey

§Sausso|)
Liydern

L6ev0°6¢

162v0°'6¢

16ev0°'6¢

90¥16'82

90r16'8¢

(an) Aowepy

suodwo)

pajoauuon
ABuong
oLydern

Elu48 a4
Elud a4
4N ad
959.6'v

959/6'€

(aN) Aowsiy

auodwo)
payauuo)
olydes

8L00€"Ice
8200€"lce
8.00€" 22
8.00€’Lce

8L00¢€"Ice

(gin) Aowepy

§Sausso|)
olydern

L6199°0€

16299°0€

16199°0€

16199°0€

4629902

(an) Aowapy

auodwo)
pajosuuo)

Abuons sydei

€906€'9

£906€°9

£906€°9

L¥0EC' L

99.%¥€'9

(aN) Aowsiy

auodwo)
payauuo)
sydesn

§S.£65°¢ce
§/€65°¢ce
G§/€65¢ce
§/€65°¢ce

§4865°¢ce

(gin) Aowepy

$S8Uas0|)
pudein

0005292
0005292
000S2'92
000S2'92

0005292

(gw) Aiowapy
wauodwon
pajsuuo)
AjBuons gydelny

€568
€568
€5168°1
99¢¢l'e
61298°1L
(an) Aowspy
wauodwon

pajsuuo)
gydein

£90v1'81E
£90r1'812
£90r1'812
£90v 1812
€90v1'81e

(am) Aowey

8Sau8so|]
gydein

78¥96've
¥8¥96°¥2
¥8¥96'¥2
8¥96'¥c

¥8Y96°¥C

(aw) Aowapy
auodwo)
pasuuo)
Abuoas zydein

1626471
L626L}
1626471
1626471
182880
(aw) Aowsy
auodwo)

pasuuo)
Lyder

PAL AN A
FAL VA
Lv0€eLle
Ly0€eLle
Ly0EC LIS

(aw) Aowep
§s8usso|n

Zydein

¢eree’se
¢eree’se
gevee’se
gevee’se

gehee’se

(gw) Arowapy
suodwon
pajoauuo)
AlBuons gydein)

G/89%°L
SL897°L
G897 L
GL89%° 1
88LLLL
(an) Aowsiy
suodwon

pajoauuo)
gydesn

6961212
696/1°212
696/1°212
696.1°212
6961212

(am) Aowey

§S88ausso|)
gudesn

9ls8eve
9lsgeve
9lsgeve
9lsgeve

91S8Cve

(aw) Aowapy
Juauodwo)
pajsuuo)
Abuons sydei

B6SEEY'0
65€EY°0
65€EY 0
B6SEEY 0
¥¥eLE0
(aw) Aowsy
Juauodwo)

pajsuuo)
sydein

0SLEV'912
0S8/8°912
05281912
05281912
088912

(an) Aowep

$S9UBSOID
gydeiny

909l 'Fe
a0reL've
Q0rel've
90¥9L've

90r9L've

() Aowapy
auodwo)
payauuo)
ABuons pydeis

2¢ceeo
a4y
a4y
[faz4Y
€90%1°0
(an) Aowsy
auodwo)

payauuo)
pydesn

reesole
reesiole
reesiole
reesiole
¥eest9le

(gin) Aowepy
§Sausso|)
ydesn

168210
168210
168210
168210

168210

(gw) Aiowapy
wauodwon
pajsuuo)
AjBuons gydeiny

£€9592°0
£€959¢°0
€959¢°0
£€959¢°0
168210
(an) Aowspy
wauodwon

pajsuuo)
gydein

18452°0
1852°0
1852°0
18/52°0
1815270

(am) Aowey

8Sau8so|]
gydein

000000
000000
000000
000000

000000

(aw) Aowapy
auodwo)
pasuuo)

Albuong gydein | ABuons Lydein

00000°0
000000
000000
000000
000000
(aw) Aowsy
auodwo)

pasuuo)
gydein

000000
000000
00000°0
00000°0
000000

(aw) Aowep

EEENELN)
2ydein

000000
000000
000000
000000

000000

(gw) Atowapy
suodwon
pajoauuo)

0000070
000000
000000
000000
0000070
(aw) Aowsiy
suodwon

pajoauuo)
tydes

000000
000000
000000
000000
000000

(am) Aowepy
§S88ausso|)
Lydesn

Memory Performance Data of Graph-tool (4 Cores) — Part 2

Figure B.17

74

Experimental Data

Appendix C

Experimental Queries

Query 1 (Join Operation + Sorting Operation): Show the question id, the owner id
and the tag label of top 10 questions that have the most view count.

For PostgreSQL and RG engine:

SELECT topQ.Qid, topQ.Owner_id, tag.Tag label

FROM LABELLED_BY AS b, TAG,

(
SELECT Qid, Owner_id, View _count
FROM QUESTION
ORDER BY View_count DESC
LIMIT 10

) AS topQ
WHERE 1b.Qid = topQ.Qid AND Ib.Tid = tag.Tid;

For Neo4;j:

MATCH (t:Tag) —[:LABELS]—> (q:Question)
RETURN q.Qid, q.Owner_id, t.Tag_label
ORDER BY q.View_count DESC

LIMIT 10;

75

76 Experimental Queries

Query 2 (Join Operation + Sorting Operation + Aggregate Operation): Show the top 5
answerers and their latest reputation score in an descending order based on the num-
ber of their answers that accepted by questions.

For PostgreSQL and RG engine:

SELECT Owner_id, max(Score) AS score
FROM ANSWER
WHERE Owner_id IN
(
SELECT a.Owner_id
FROM ANSWER AS a, QUESTION AS q
WHERE g.Accepted_aid = a.Aid AND a.Owner_id != 0
GROUP BY a.Owner_id
ORDER BY count(a.Aid) DESC
LIMIT 5
)
GROUP BY Owner_id
ORDER BY score DESC;

For Neo4j:

MATCH (q:Question) —[r:ACCEPTS_USER]—>(user:User)
RETURN user.Uid, user.Score, count(r)

ORDER BY COUNT(r) DESC

LIMIT 5;

77

Query 3 (Join Operation + Sorting Operation + Aggregate Operation + Set Opera-
tion): Show the number of articles of each journal and proceeding along with the
journal name and the proceeding title in a descending order.

For PostgreSQL and RG engine:

SELECT jo.Name AS name, jo.Publication_date, arcount.count
FROM JOURNAL AS jo,
(
SELECT ar.JOid, count(ar.ARid)
FROM ARTICLE AS ar
GROUP BY ar.JOid
) AS arcount
WHERE jo.JOid = arcount.JOid AND jo.Name !="
UNION
SELECT pr.Title AS name, pr.Publication_date, arcount.count
FROM PROCEEDING AS pr,
(
SELECT ar.PRid, count(ar.ARid)
FROM ARTICLE AS ar
GROUP BY ar.PRid
) AS arcount
WHERE pr.PRid = arcount.PRid AND pr.Title !="
ORDER BY count DESC;

For Neo4;j:

MATCH (ar:Article) —[r:PUBLISHED_IN]—> (jo:Journal)

RETURN jo.Name AS name, jo.Publication_date AS date, count(r) AS count
ORDER BY count DESC

UNION

MATCH (ar:Article) —[r:PUBLISHED_IN]—> (pr:Proceeding)

RETURN pr.Title AS name, pr.Publication_date AS date, count(r) AS count
ORDER BY count DESC;

78 Experimental Queries

Query 4 (Pattern Matching): Recommend 10 twitter users for Jack who currently does
not follow these users but Jack follows somebody who are following them.

For PostgreSQL and RG engine:

SELECT Uid, Display_name FROM TW_USER
WHERE Display_name != ‘jack' AND Uid IN
(
SELECT f1.Uid
FROM FOLLOW AS {1, FOLLOW AS {2
WHERE f1.Follower_id = f2.Uid AND f1.Uid NOT IN
(
SELECT Uid FROM FOLLOW WHERE Follower_id IN
(SELECT Uid FROM TW_USER WHERE Display_name = ‘jack’)
)

)
LIMIT 10;

For Neo4j:

MATCH (jack:User {Display_name: jack'}) —[:FOLLOWS]—> (),
()—[:FOLLOWS]—> (other:TW _user)

WHERE NOT ((jack) —[:FOLLOWS]—> (other))

RETURN other.Uid, other.Display_name

LIMIT 10;

Query 5 (Triangle Counting): Count the number of triangles of the co-authorship net-
work.
For PostgreSQL and RG engine:

SELECT count(*)
FROM coauthorship AS c1
JOIN coauthorship AS c2 ON c1.CoAUid = c2.AUid AND c1.AUid < c2.AUid
JOIN coauthorship AS c3 ON
c2.CoAUid = c3.AUid AND c3.CoAuid = c1.AUid AND c2.AUid < c3.AUid;

For Neo4;:

:GET /service/mazerunner/analysis/triangle_count/ COAUTHOR

MATCH (aul:Author) —[r1:COAUTHOR]—> (au2:Author),
(au2:Author)—[r2: COAUTHOR]—> (au3:Author),
(au3:Author)—[r3:COAUTHOR]—> (aul:Author)

WHERE au2.AUid <> aul.AUid AND au3.AUid <> au2.AUid
AND au3.AUid <> aul.AUid

RETURN count(x);

79

Query 6 (PageRank Centrality): Find the top 10 influential authors according to the
pagerank centrality in the co-authorship network.

For RG engine:

SELECT Fname, Mname, Lname
FROM author WHERE AUid IN
(
SELECT VertexID
FROM RANK (coauthorship, pagerank)
LIMIT 10

);

For Neo4;j:

:GET /service/mazerunner/analysis/pagerank/COAUTHOR

MATCH (au:Author) WHERE has(au.pagerank)

RETURN au.Fname, au.Mname, au.Lname, au.pagerank AS pagerank
ORDER BY pagerank DESC

LIMIT 10;

Query 7 (Connected Component): Count the number of connected components of
the co-authorship network.

For RG engine:

SELECT count(ClusterID) FROM CLUSTER (coauthorship, CC)

For Neo4;:

:GET /service/mazerunner/analysis/connected_components/COAUTHOR

MATCH (au:Author) WHERE has(au.connected_components)
RETURN count(DISTINCT au.connected_components)

80 Experimental Queries

Query 8 (Path Finding): Find paths with length less than 2, which connect two au-
thor V1 and V2 in the co-authorship network where author V1 is affiliated at ANU
and author V2 is affiliated at UNSW.

For RG engine:

SELECT =

FROM PATH (coauthorship, V1/./V2)

WHERE V1 AS

(
SELECT AUid FROM AUTHOR WHERE affiliation like "% ANU%'

) AND V2 AS

(
SELECT AUid FROM AUTHOR WHERE affiliation like '7%UNSW%'

);

For Neo4j:

MATCH p=((nl1:Author) —[r:COAUTHOR+1..2]— (n2:Author))
WHERE nl.affiliation =~ ".x ANU.*' AND n2.affiliation =" ".x UNSW.«'
RETURN [n IN nodes(p) | n.AUid]

Query 9 (Shortest Path): Find a shortest paths between two authors Michael Norrish
and Kevin Elphinstone in the co-author network.

For RG engine:

SELECT =
FROM PATH (coauthorship, V1//V2)
WHERE V1 AS
(
SELECT AUid FROM AUTHOR
WHERE Fname = 'Michael' AND Lname = 'Norrish'
) AND V2 AS
(
SELECT AUid FROM AUTHOR
WHERE Fname = Kevin' AND Lname = 'Elphinstone’

)
ORDER BY Length ASC;

For Neo4;:

MATCH p=shortestPath((n1:Author) —[r:COAUTHOR=]— (n2:Author))

WHERE n1.Fname='Michael' AND nl.Lname = 'Norrish' AND n2.Fname = 'Kevin'
AND n2.Lname = 'Elphinstone’

RETURN [n IN nodes(p) | n.AUid]

81

Query 10 (Community Detection): Find a group of tags that they are often used to-
gether to label a question.

For RG engine:

CREATE UNGRAPH cotag AS
(
SELECT Ib1.Tid as Tid, 1b2.Tid AS CoTid

FROM LABELLED_BY AS 1b1, LABELLED_BY AS 1b2
WHERE 1b1.Qid = 1b2.Qid AND Ib1.Tid != 1b2.Tid

);

SELECT Tag_label

FROM TAG,

(
SELECT Members
FROM CLUSTER (cotag, CNM)
LIMIT 1

) ASc

WHERE Tid = ANY(c.Members);

Query 11 (PageRank Centrality + Connected Component): According to the pager-
ank centrality, find the top 3 authors of the biggest collaborative community in the
co-authorship network

For RG engine:

SELECT VertexID, Value
FROM RANK (coauthorship, pagerank) AS r,
(
SELECT Members
FROM CLUSTER (coauthorship, CC)
ORDER BY Size DESC
LIMIT 1
) ASc
WHERE r.VertexID = ANY(c.Members)
LIMIT 3;

82 Experimental Queries

Query 12 (PageRank Centrality + Path Finding): According to the pagerank central-
ity, show how the top 2 authors connect with each other in the co-authorship network.

For RG engine:

SELECT PathID, Length, Path
FROM PATH (coauthorship, V//V)
WHERE V AS

(
SELECT VertexID

FROM RANK (coauthorship, pagerank)
LIMIT 2

);

Bibliography

[1] A Tour of PostgreSQL Internals. http:/ /www.postgresql.org/files/developer/tour.
pdf.

[2] AllegroGraph RDFStore Web 3.0’s Database. http:/ / franz.com / agraph /
allegrograph/.

[3] Apache Jena - Home. https:/ /jena.apache.org.

[4] Centrality measures - graph-tool 2.10 documentation. http:/ / graph-tool.skewed.
de/static/doc/centrality.html.

[5] GenRndGnm - Snap.py 1.2 documentation. http:/ /snap.stanford.edu/snappy/
doc/reference/GenRndGnm.html.

[6] Giraph - Welcome To Apache Giraph! http:/ /giraph.apache.org.
[7] Graph-tool: Efficient network analysis. http://graph-tool.skewed.de.

[8] Import Data Into Neo4j - Neo4j Graph Database. http:/ /neo4j.com/developer/
guide-importing-data-and-etl/.

[9] Importing CSV Data into Neo4j - Neo4j Graph Database. http:/ /neo4j.com/
developer/guide-import-csv/.

[10] Julia Benchmarks. http:/ /julialang.org/benchmarks/.
[11] libpq - C Library. http:/ /www.postgresql.org/docs/current/static/libpq.html.

[12] Neo4j and Apache Spark - Neo4j Graph Database. http:/ /neo4j.com/developer/
apache-spark/#mazerunner.

[13] Neo4j Graph Database. http:/ /neo4j.com/product/.
[14] Neo4j, the World’s Leading Graph Database. http:/ /neo4j.com.

[15] OrientDB - OrientDB Multi-Model NoSQL DatabaseOrientDB Multi-Model NoSQL
Database. http:/ /orientdb.com/orientdb/.

[16] Overview - NetworkX. http:/ /networkx.github.io.
[17] PostgreSQL + Python — Psycopg. http:/ /initd.org/psycopg/ .

[18] PostgreSQL 9.4.5 Documentation. http:/ / www. postgresql.org / docs /9.4 /
interactive/index.html.

[19] PostgreSQL: The world’s most advanced open source database. http:/ /neo4j.com.

[20] Relational Algebraic Equivalence Transformation Rules. http:/ /www.postgresql.
org/message-id/attachment/32513 /EquivalenceRules.pdf.

[21] Stanford Network Analysis Project. http://snap.stanford.edu.

83

http://www.postgresql.org/files/developer/tour.pdf
http://www.postgresql.org/files/developer/tour.pdf
http://franz.com/agraph/allegrograph/
http://franz.com/agraph/allegrograph/
https://jena.apache.org
http://graph-tool.skewed.de/static/doc/centrality.html
http://graph-tool.skewed.de/static/doc/centrality.html
http://snap.stanford.edu/snappy/doc/reference/GenRndGnm.html
http://snap.stanford.edu/snappy/doc/reference/GenRndGnm.html
http://giraph.apache.org
http://graph-tool.skewed.de
http://neo4j.com/developer/guide-importing-data-and-etl/
http://neo4j.com/developer/guide-importing-data-and-etl/
http://neo4j.com/developer/guide-import-csv/
http://neo4j.com/developer/guide-import-csv/
http://julialang.org/benchmarks/
http://www.postgresql.org/docs/current/static/libpq.html
http://neo4j.com/developer/apache-spark/#mazerunner
http://neo4j.com/developer/apache-spark/#mazerunner
http://neo4j.com/product/
http://neo4j.com
http://orientdb.com/orientdb/
http://networkx.github.io
http://initd.org/psycopg/
http://www.postgresql.org/docs/9.4/interactive/index.html
http://www.postgresql.org/docs/9.4/interactive/index.html
http://neo4j.com
http://www.postgresql.org/message-id/attachment/32513/EquivalenceRules.pdf
http://www.postgresql.org/message-id/attachment/32513/EquivalenceRules.pdf
http://snap.stanford.edu

84 Bibliography

[22] Stardog: Enterprise Graph Database. http://stardog.com.

[23] The Computer Language Benchmarks Game. http:/ /benchmarksgame.alioth.
debian.org.

[24] Titan: Distributed Graph Database. http:/ /thinkaurelius.github.io/titan/.

[25] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases, volume 8.
Addison-Wesley Reading, 1995.

[26] Ulrik Brandes and Thomas Erlebach. Network analysis: methodological foundations, vol-
ume 3418. Springer Science & Business Media, 2005.

[27] Chungmin Melvin Chen and Nicholas Roussopoulos. The implementation and perfor-
mance evaluation of the ADMS query optimizer: Integrating query result caching and
matching. Springer, 1994.

[28] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu,
Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph: taking the
pulse of a fast-changing and connected world. In Proceedings of the 7th ACM euro-
pean conference on Computer Systems, pages 85-98. ACM, 2012.

[29] Aaron Clauset, Mark E] Newman, and Cristopher Moore. Finding community struc-
ture in very large networks. Physical review E, 70(6):066111, 2004.

[30] Emil Eifrem. The New Way to Access Super Fast Social Data. http:/ /mashable.com/
2012/09/26/graph-databases/.

[31] Paul Erd6s and Alfréd Rényi. On the strength of connectedness of a random graph.
Acta Mathematica Hungarica, 12(1-2):261-267, 1961.

[32] Jing Fan, Adalbert Gerald, Soosai Raj, and Jignesh M Patel. The case against special-
ized graph analytics engines. 2015.

[33] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75-174,
2010.

[34] Michelle Girvan and Mark E] Newman. Community structure in social and biologi-
cal networks. Proceedings of the national academy of sciences, 99(12):7821-7826, 2002.

[35] Jiewen Huang, Kartik Venkatraman, and Daniel] Abadi. Query optimization of dis-
tributed pattern matching. In Data Engineering (ICDE), 2014 IEEE 30th Interna-
tional Conference on, pages 64-75. IEEE, 2014.

[36] Abhishek Jindal and Steve Madden. GRAPHIQL: A graph intuitive query language
for relational databases. In Big Data (Big Data), 2014 IEEE International Conference
on, pages 441-450. IEEE, 2014.

[37] Alekh Jindal, Samuel Madden, Malu Castellanos, and Meichun Hsu. Graph Analyt-
ics using the Vertica Relational Database. arXiv preprint arXiv:1412.5263, 2014.

[38] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. Graphlab: A new framework for parallel machine learn-
ing. arXiv preprint arXiv:1408.2041, 2014.

http://stardog.com
http://benchmarksgame.alioth.debian.org
http://benchmarksgame.alioth.debian.org
http://thinkaurelius.github.io/titan/
http://mashable.com/2012/09/26/graph-databases/
http://mashable.com/2012/09/26/graph-databases/

Bibliography 85

[39] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pages 135-146. ACM, 2010.

[40] Yuhanna Noel, Owens Leslie, and Elizabeth Cullen. Market Overview: Graph
Databases. https:/ /www.forrester.com /Market+Overview+Graph+Databases /
fulltext/-/E-res121473.

[41] Lassila Ora and Swick Ralph. Resource Description Framework (RDF)
Model and Syntax Specification. http:/ / www. w3 .org / TR / 1999 /
REC-rdf-syntax-19990222/.

[42] Tiago P Peixoto. Efficient Monte Carlo and greedy heuristic for the inference of
stochastic block models. Physical Review E, 89(1):012804, 2014.

[43] Luis L Perez and Christopher M Jermaine. History-aware query optimization with
materialized intermediate views. In Data Engineering (ICDE), 2014 IEEE 30th In-
ternational Conference on, pages 520-531. IEEE, 2014.

[44] Abdul Quamar, Amol Deshpande, and Jimmy Lin. NScale: neighborhood-centric
analytics on large graphs. Proceedings of the VLDB Endowment, 7(13):1673-1676,
2014.

[45] Ramakrishnan Raghu and Gehrke Johannes. Database Management Systems, 3rd Edi-
tion. McGraw-Hill Education, 2003.

[46] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases. ” O’Reilly Media, Inc.”,
2013.

[47] Sherif Sakr, Sameh Elnikety, and Yuxiong He. G-SPARQL: a hybrid engine for query-
ing large attributed graphs. In Proceedings of the 21st ACM international conference
on Information and knowledge management, pages 335-344. ACM, 2012.

[48] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine on a
memory cloud. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, pages 505-516. ACM, 2013.

[49] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. From think like a vertex to think like a graph. Proceedings of the
VLDB Endowment, 7(3):193-204, 2013.

[50] Guozhang Wang, Wenlei Xie, Alan] Demers, and Johannes Gehrke. Asynchronous
Large-Scale Graph Processing Made Easy. In CIDR, 2013.

[61] Adam Welc, Raghavan Raman, Zhe Wu, Sungpack Hong, Hassan Chafi, and Jay
Banerjee. Graph analysis: do we have to reinvent the wheel? In First International
Workshop on Graph Data Management Experiences and Systems, page 7. ACM, 2013.

https://www.forrester.com/Market+Overview+Graph+Databases/fulltext/-/E-res121473
https://www.forrester.com/Market+Overview+Graph+Databases/fulltext/-/E-res121473
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

	Acknowledgements
	Abstract
	Introduction
	Objectives
	Contributions
	Outline

	Background and Related Work
	Vertex-centric and Neighbourhood-centric Systems
	Graph Databases
	SQL-based Systems
	Summary

	Data Model and Query Language
	Data Model
	Relational Core
	Graphical Views
	Relation-Graph Mappers

	Query Language
	Create Graphical Views
	Use Graph Operators

	Summary

	Query Engine
	Query Processing
	Architecture
	Query Optimisation
	Summary

	Performance Evaluation
	Experimental Environment
	Performance of Graph Analysis Tools
	Performance of the RG Engine
	Datasets
	Queries
	Experimental Results

	Summary

	Conclusion
	Appendices
	ER Diagrams and Relation Schemas
	Experimental Data
	Experimental Queries
	Bibliography

