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Abstract

Network analytics has started to become increasingly popular and various specialised
graph systems for network analytics have been proposed in recent years. However,
most network data is still collected and managed in relational databases and the use
of relational databases for network analytics is largely ignored.

This situation then raises a question of whether or not relational databases have lim-
itations for network analytics. The relational model is indeed inefficient for some
network analysis tasks which often require multiple expensive joins for tables and the
SQL query language also makes it difficult to express network analysis operations.
Even so, relational databases are already used for a variety of other analysis tasks and
they are filled with many great features, such as query optimisation, fault tolerance,
secure transaction, integrity constraints and so on.

In this thesis, we present a unified framework for network analytics, which provides
a data model that extends relational databases with network analysis capability and a
query language to manipulate data for relational analysis, network analysis or a mix
of them. In addition, this unified framework also includes a query engine that is built
with an open-source relational database (PostgreSQL) for processing queries that are
written in the query language of this framework. The experimental result indicates
the query engine is flexible to process different types of queries and is able to achieve
comparable or better performance in most cases.
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Chapter 1

Introduction

“Network analytics” is a broad term that is widely used in various areas such as social
networks, transportation systems, bioinformatics, communication networks and so
on. From the computer science perspective, it can be subsumed under “applied graph
theory”, since the structural and algorithmic aspects of abstract graphs are the preva-
lent methodological determinants in many applications of network analytics [26].

Nowadays, more and more large networks become available. Analysing these net-
works to derive key insights for business is critical for many enterprises and organi-
sations. As a result, in recent years, network analytics has started to become increas-
ingly popular. In response to the growing popularity for network analytics, a deluge
of specialised graph systems have been developed, including Pregel [39], Giraph [6],
GraphLab [38], Giraph++ [49], NScale [44], AllegroGraph [2], and Neo4;j [14].

For many enterprises and organisations, these specialised graph systems are typi-
cally used in conjunction with relational databases because network data are often
stored and managed in relational databases in the first place. As a result, within two
separate systems, a common usage pattern for network analytics is described as fol-
lows: (1) exporting data from a relational database to text files (e.g. CSV, XML, TXT),
(2) importing those text files into graph systems, (3) running analysis and getting re-
sults from those graph systems, (4) possibly reloading results into relational databases
for further processing [36]. In this pattern, data analysts need to move data around,
which is an expensive step. It is also cumbersome to learn and maintain two separate
systems.

Currently, most network analysis tasks follow this pattern. This is because relational
databases have limitations for network analytics. For example, it is difficult to use
SQL, the query language of relational databases, to express network analysis oper-
ations. Even for simple operations such as neighbourhood accesses, a SQL query
would require multiple joins and become complex. Moreover, even if we can write
an SQL query for network analysis operations, relational databases are inefficient for
running iterative algorithms (e.g. PageRank, finding shortest paths) [36].
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However, in real-world networks, vertices and edges are often accompanied by some
attributes. For example, in a social network, vertices may have attributes to describe
the properties of each person, such as name, gender and location. Edges may also
be of different types, such as friends, classmates and colleagues. Accessing these at-
tributes is typically about relational analysis.

Therefore, we come up with a question: “what if we can perform network analyt-
ics directly with relational databases?”. If it is convenient and efficient to perform
network analytics with relational databases, the following benefits can be derived:

* We do not need to export or import data between two kinds of systems.

* We can combine network analysis and relational analysis to retrieve more valu-
able and interesting information.

¢ We can inherit many great features of relational databases, such as query opti-
misation, fault tolerance, secure transaction, integrity constraints and so on.

Furthermore, some existing works indicate relational databases, via using some opti-
misation techniques, can achieve a better or comparable performance than specialized
graph systems for some network analysis tasks, such as triangle counting [36], sub-
graph pattern matching [35], and weakly connected component [32].

Therefore, unlike those graph systems, the motivation of this thesis is to develop a
unified framework which is able to extend relational databases with network analysis
capability.

1.1 Objectives

The goal of this thesis is to develop a unified framework for network analytics. This
framework aims to provide users a unified method to deal with network analysis
tasks, relational analysis tasks, and even a mix of them. The specific objectives are
described as follows:

¢ Develop a data model that supports data analysis over both relations and graphs.

¢ Design a query language that enables users to write queries for network analysis
operations, relational analysis operations and even a mix of them.

¢ Implement an efficient query engine that is able to efficiently process different
types of queries.

1.2 Contributions

This thesis has four main contributions:
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* We have developed a new data model for network analytics, called Relation-
Graph (RG) model. This RG model takes a relational core in the center and
the relation core is surrounded by a number of graphical views. Between the
relational core and the graphical views, there are a number of Relation-Graph
mappers (RG mappers) that take a number of relations to generate a graph. Us-
ing the RG model, users are able to manage data in a relational database and
perform network analytics with it.

¢ Wehave designed a SQL-like query language for network analytics, called Relation-

Graph Structured Query Language (RG-SQL). It extends SQL with ranking, clus-
tering, path finding and graph constructing operations. In essence, RG-SQL is
a relation-graph interactive query language. Users can use traditional SELECT-
FROM-WHERE statements to extract a sub-graph or use aggregate and join op-
erations for further processing network analysis results. It also supports nested
queries for advanced network analysis tasks that involve analysis over both
graphs and relations.

* We have designed an implementation architecture for a query engine, called
RG engine, and have implemented it with an open-source relational database
(PostgreSQL). This architecture allows us to incorporates different graph analy-
sis tools as plug-ins for supporting network analysis algorithms. It is flexible to
add, modify or delete algorithms within this architecture.

* We have conducted two experiments. One experiment is to evaluate the perfor-
mance of three existing graph analysis tools (SNAP [21], NetworkX [16], Graph-
tool [7]). In this experiment, we use the Erdos-Renyi methods [31] to create
random graphs as inputs, run different network analysis algorithms using these
tools and evaluate their time performance and memory performance. Another
experiment is to compare the RG engine with the query engines of a relational
database (PostgreSQL) and a graph database (Neo4j) to indicate the efficiency of
the RG engine.

1.3 Outline

The rest of this thesis is divided into the following 6 chapters:

¢ Chapter 2 introduces three typical types of existing systems for network ana-
lytics. We discuss the advantages and limitations of these existing systems and
explains why a unified framework is needed.

¢ Chapter 3 presents the formal definition of the RG model and introduces the
main features of RG-SQL. We use the ACM bibliographical network as an exam-
ple to illustrate the key concepts of our data model and to demonstrate how to
write queries using RG-SQL.
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¢ Chapter 4 discusses the main phrases in the query processing, presents the ar-
chitecture of our query engine and proposes some query optimization strategies
that can be incorporated into the implementation of the query engine.

¢ Chapter 5 presents our experimental results. One experiment we have con-
ducted is to evaluate the performance of three graph analysis tools. Another
experiment is to compare our query engine with the query engines of a rela-
tional database (PostgreSQL) and a graph database (Neo4j).

¢ Chapter 6 concludes the thesis and discusses the future work.



Chapter 2

Background and Related Work

In this chapter, we introduce three types of systems that have been proposed in the
past few years. In Section 2.1, we first present vertex-centric systems (e.g. Pregel [39],
Giraph [6], GraphLab [38]) and neighbourhood-centric systems (e.g. Giraph++ [49],
NScale [44]). These two kinds of systems are closely related because neighbourhood-
centric systems are developed upon the concepts of vertex-centric systems. In Sec-
tion 2.2, we introduce the embryonic-but-growing-significantly graph databases such
as Neo4j [14] and AllegroGraph [2]. Then Section 2.3 describes two SQL-based sys-
tems, GraphiQL [36] and Grail [32], which are built upon the traditional relational
databases. We will discuss how our work is different from these SQL-based systems.
A summary for different types network analysis systems is given in Section 2.4.

2.1 Vertex-centric and Neighbourhood-centric Systems

Vertex-centric systems were developed for efficiently processing large-scale graphs in
a distributed environment. In vertex-centric systems, generally, a large-scale graph is
divided into several partitions. Each of them has vertices and outgoing edges that are
stored distributively. Figure 2.1 shows an example data model used in vertex-centric
systems. In Figure 2.1, an input graph is divided into three partitions (P1, P2, P3) and
each partition contains a set of vertices. One vertex has a unique ID (e.g. V1), a set of
values (a vertex has one value about out-degree in this example) and a set of outgoing
edges for finding targets to pass messages.

In vertex-centric systems, each vertex is considered as an independent computing unit
and users are required to express their network analysis algorithms in the so-called
“thinking like a vertex” programming mode [39]. The algorithm computation is pro-
cessed at the vertex level but the computation models of different systems are slightly
different. The representative vertex-centric systems include Pregel [39], Giraph [6] (an
open source implementation of Pregel) and GraphLab [38]. For Pregel and Giraph,
their computation models are both based on message passing which enables vertices
to be computed in parallel. Each vertex is associated with two states — active and
inactive. At the beginning, all vertices are active. Then following a sequence of iter-
ations, called supersteps, messages are passed from one vertex to anther vertex. In

5
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Figure 2.1: Data Model Example for Vertex-centric Systems

a superstep i, each active vertex receives messages from other vertices in the super-
step i-1, updates its values and sends messages to other vertices in the superstep i+1.
When passing messages among vertices, the states of vertices will be changed from
active to inactive. When all vertices become inactive, the overall program terminates.
For GraphLab, unlike Pregel, the computation is a stateless function that operates
on the values of vertices which are associated with small neighbourhood in a graph.
A vertex reads and updates its values or values of its neighbours. Hence, without
passing message, GraphLab allows asynchronous iterative computation. Moreover,
GraphLab requires the graph structure to be static while Pregel supports graph muta-
tion during computation. In addition to the systems mentioned above, there are other
vertex-centric systems such as Trinity [48], GRACE [50], Kineograph [28] and so on.

Neighbourhood-centric systems were developed soon after vertex-centric systems
were proposed. This is because the vertex-centric model hides the subgraph informa-
tion via using a collection of unrelated vertices instead of a proper subgraph of the
original input graph. So the vertex-centric model restricts optimization for some algo-
rithms (e.g. connected component and PageRank) [49]. The typical neighbourhood-
centric systems include Giraph++ [49] (developed upon Giraph) and NScale [44]. Fig-
ure 2.2 shows an example data model for neighbourhood-centric systems based on
the concepts of Giraph++. In Figure 2.2, the neighbourhood-centric model divides the
original input graph into partitions as subgraphs (G1, G2, G3). The subgraph stores
the information about vertices and their connections. Each vertex has a unique id (e.g.
V1) and a set of values (this example considers the out-degree value). The model cate-
gorises vertices into two types —internal vertices and boundary vertices. The vertices
that are used to divide the input graph are the boundary vertices (V4 in G2 and V6 in



§2.1 Vertex-centric and Neighbourhood-centric Systems 7

G3 are boundary vertices). A vertex is an internal vertex in an exactly one subgraph
and this subgraph is called the owner of the vertex (G1 is the owner of vertex V4 and
G2 is the owner of vertex V6), but this internal vertex can be a boundary vertex in zero
or more subgraphs. The vertices V1, V2, V3 and V4 are the internal vertices in G1, The
vertices V5, V6 and V7 are the internal vertices in G2 and the vertices V8, V9 are the
internal vertices in G3. For all internal vertices in a subgraph, the owner subgraph
stores all the values. But for a boundary vertex, the vertex value is just a temporary
local copy and its primary information resides in its owner subgraph.

Input Graph Subgraph Values
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Figure 2.2: Data Model Example for Neighbourhood-centric Systems

In terms of the computation model of neighbourhood-centric systems, it is similar to
the message passing model, but the messages are only sent from boundary vertices to
their corresponding internal vertices. As message passing through internal vertices is
cheap and immediate, this model can reduce the number of messages passing through
cross-partition edges so as to improve the efficiency.

The vertex-centric model is simple-to-use for programming and has been proved to
be useful for many network analysis algorithms. The neighbourhood-centric model
is not intended to replace the vertex-centric model, instead, it can be implemented
in the same system such as Giraph and Giraph++ for achieving better performance.
Our concern for both vertex-centric and neighbourhood-centric systems is that they
require users to do imperative programming as they do not provide any declarative
languages for querying data. Moreover, some recent works indicate that simply using
a SQL-based system can achieve a better or comparable performance than vertex-
centric systems for some network analysis tasks, such as PageRank, triangle counting,
connected components and single source shortest path [32] [36].
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2.2 Graph Databases

Graph databases emphasise on efficiently managing and processing data as graphs
for network analytics. For example, for the network analysis tasks like finding friends
of friends, relational databases need to use expensive join operations on tables. The
key idea of data model in graph databases is to include all connections between ob-
jects so as to generate a cohesive picture of the whole data. As a result, there are two
typical data models used in graph databases — Property graphs and RDF triple stores.

Property graphs are often said to be “whiteboard-friendly” by data analysts because
when they draw a picture to describe data, it is often naturally a property graph [40].
Figure 2.3 shows an example property graph. A standard graph structure consists of
vertices and edges, denoted by G = (V, E) where V represents vertices and E rep-
resents edges. However, a current popular property graph structure also contains
properties in addition to vertices and edges, denoted by G = (V,E,A) where A rep-
resents properties. In Figure 2.3, vertices contains properties in the form of arbitrary
key-value pairs where keys (e.g. T1, U5) are strings and values (e.g. Name, State,
Comment Count) have various data types (e.g. string, integer). An edge (e.g. Tweets,
Follows, Re-tweets) that connects two vertices is directed and labelled. Like vertices,
edges can also have properties (e.g. Date, Time) which is useful for providing ex-
tra metadata for network analysis algorithms and adding semantics to relationships
such as quality and weight [46]. Some typical graph databases that are using prop-
erty graphs include Neo4j [14], Titan [24] and OrientDB [15]. Although these graph
databases use the same data model, they have different query languages for data ma-
nipulation. Neo4j has its exclusive Cypher query language for graph traversal and Ti-
tan uses Gremlin as its graph traversal language. As OrientDB supports both schema-
less (OrientDB graph model) and schema-based model (OrientDB document model),
it not only uses Gremlin for graph traversal but also uses SQL on top of Gremlin for
querying structured data.

RDF (Resource Description Framework) triple stores, created in 1999 [41], were de-
signed to support the semantic web by adding semantic markup to the links that con-
nect web resources. In fact, a typical RDF triple is a subject-predicate-object data
structure and RDF databases do not store data as a graph. So RDF databases do not
support index-free adjacency [40]. As noted in [40], the reason why RDF triple stores
fall under the category of graph databases is that they do offer optimised graph query
capabilities when connected structures are created for different independent triples
(refer to Figure 2.4 ). Some representative graph databases include AllegroGraph [2],
Stardog [22], and Apache Jena [3] and SPARQL is the standard query language for
RDF triple store.

Unlike vertex-centric and neighbourhood-centric systems, graph databases provide
different kinds of declarative query languages to retrieve information. In some net-

Isource: http:/ /franz.com/agraph/support/documentation/current/agraph-introduction.html
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Figure 2.3: Data Model Example for Property Graph

work analysis tasks, particularly in “friends of friends” queries [30], they are able
to achieve far better performance than relational databases that have to use expen-
sive multiple joins on tables. However, relational databases are still widely used by
enterprises or organisations and they provide a number of sophisticated optimiza-
tion technologies (e.g. indexing, materialised views) for managing and processing
schema-based data. So relational databases are still our preference for some tasks
such as accessing attributes of entities, using aggregate functions and so on.
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Figure 2.4: RDF Triple Store Model
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2.3 SQL-based Systems

As various specialised systems for network analytics have been created in recent
years, the use of SQL-based systems for network analytics is largely ignored since
users have an impression that systems with a graph model (graph systems) are in the
nature of better performance for network analysis tasks. Then some researchers come
up with a natural question — "Is it really bad to simply use a SQL-based relational sys-
tem for both managing and processing network data?”. Recently, using SQL-based
relational systems for network analytics becomes popular in the research field and
some papers demonstrate SQL-based relational systems, compared with graph sys-
tems, do have better or competitive performance in some network analysis tasks. The
work in [51] shows that Oracle database can achieve better performance for finding
shortest paths. The work in [35] proposes query optimization techniques for efficient
subgraph pattern matching in PostgreSQL. The works in [37] and [32] both indicate
that SQL-based systems are competitive in queries for PageRank, finding single source
shortest paths and calculating connected components.

Vertex Edge Graph Table
A .. 100 A B 1 Vi VERTEX  Alice ACT
B 100 A c 2 V2 VERTEX Bob NSW
c .. 100 B D 2 V3  VERTEX Carl vic
D 100 c D 3 E1  EDGE Vi V2
(a) (b)

Figure 2.5: Data Model Example for SQL-based Relational Systems

Figure 2.5.(a) shows an example data model for Grail [32], one SQL-based relational
system with a syntactic layer for network analytics. This data model consists of a
vertex table and an edge table. In Figure 2.5.(a), id (e.g. V1, V2) in the vertex table
represents the unique identifier of a vertex, src and dest in the edge table respectively
represent the source vertex id and the destination vertex id, data in both tables contain
vertex or edge properties that are irrelevant to the computation and val in both tables
represents the properties that are relevant to the computation.

Then Figure 2.5.(b) shows an example data model for GraphiQL [36], another SQL-
based system with a graph intuitive query language. Unlike the data model of Grail,
GraphiQL includes all graph elements in one table called Graph Table with a purpose
that helps users to easily access neighbourhood of vertices and edges without joining
tables. In Figure 2.5.(b), every element (either vertex or edge) in a graph table has
the default properties id (e.g. V1, V2) and type (e.g. VERTEX, EDGE) and a number
of associated properties (e.g. property 1, 2 for vertices respectively relate to name and
state whilst for edges they respectively relates to the source vertex and the destination
vertex. ).
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In terms of the computation model of these systems, they are similar but with differ-
ent implementation methods. Computation of Grail and GraphiQL are vertex-centric
with the message passing model (refer to Section 2.1). They translate a vertex-centric
program to SQL by creating some intermediate tables and using different relational
operators to implement the program. For Grail, it creates temporary tables, such as
next table and message table, to simulate the message passing model. Next table
contains id and values for vertices in the next superstep and message table contains
id of the target vertices and messages that change vertices’ values. For GraphiQL, it
creates computation tables that store computation values for vertices and edges, but
they are not temporary. In each superstep of the message passing model, old compu-
tation tables are replaced by new computation tables with latest values.

In essence, these SQL-based systems (e.g. Grail and GraphiQL) are vertex-centric
but they provide declarative query languages for users to do vertex-centric program-
ming and then translate the program into SQL. As these systems need to translate
their query languages into SQL, there is a gap between two levels of query languages,
which indicates these query languages lack of capability to well interact with SQL,
such as using SQL joins or aggregate functions for further querying. In addition, since
they use SQL and relational operators for vertex-centric programming, it should have
limitations or poor performance for running some network analysis tasks (e.g. find
friends-of-friends) which are inefficient via using relational systems.

2.4 Summary

In this chapter, we have introduced three types of systems for network analytics. For
vertex-centric and neighbourhood-centric systems, they do not provide declarative
languages for users to retrieve data easily. In terms of graph databases, we have de-
mands on not only querying data in graphs but also querying schema-based data.
Moreover, most of applications are still using relational databases to manage and pro-
cess data. As a result, we want a system which is SQL-based, provides a declarative
query language and has competitive performance for network analysis tasks. Cur-
rently, existing SQL-based relational systems still have limitations: (1) the query lan-
guages lack of capability to interact with SQL so we want a declarative query language
that is able to well interact with SQL (e.g. using SQL to create graphs or subgraphs,
combining the analysis results with SQL joins and aggregate functions to get more
information). (2) they can achieve competitive performance for only a few network
analysis tasks so we want a flexible way to cope with most of network analysis tasks
(e.g. for some tasks we can leverage the graph model and graph computing engines to
efficiently get the results, for other tasks we can take advantage of SQL optimization
techniques to achieve better performance). Therefore, we propose the our data model
and query language in Chapter 3 to meet these requirements.
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Chapter 3

Data Model and Query Language

In this chapter, we describe our data model and query language. In Section 3.1, we
first define our data model. Then based on our data model, in Section 3.2, we intro-
duce a new query language for network analytics. A summary of our data model and
query language is given in Section 3.3.

3.1 Data Model

Our data model consists of a relational core, graphical views and relation-graph
mappers. A relational core that contains different relations is in the center of our data
model and surrounded by a number of graphical views. Relation-graph mappers are
used to map relations to graphical views. As our data model allows to build graphs
upon relations, we call it Relation-Graph data model (RG model). Figure 3.1 gives
an overview of the RG model based on the ACM bibliographical network !.

3.1.1 Relational Core

In the RG model, a relational core consists of a collection of relations. Each relation
is described by a relation schema, and contains a number of tuples. Each tuple rep-
resents a fact about objects in real-life applications. Now, we define the following
concepts for the relational core.

e Let D = {D;} where i € N be a family of possibly infinite domains and each D;
is referred to one domain. For instance, we could have domains such as string,
integer, boolean and so forth.

¢ A relation schema R consists of a relation name R and a finite set of attributes
{A1, ..., An} together with an assignment of domains, dom : R — D, such that
each A, is associated with a domain dom(A;) where i € [1,n]. We use attr(R) to
refer to the set of attributes of R, i.e., attr(R) = {A1,..., As}.

IProvided by ACM Digital Library (http://dl.acm.org/)

13


http://dl.acm.org/

14 Data Model and Query Language

Qus) e Graph A Graph B AU7 s

a0 AU
AR3 / / \
AU9 (AR1 Au2 AU6)  (AU9
AR2 AU2
Q < AUTHOR \ / AUL—
N
as) on oo T  auia | Frame | name | Lrame | astiaion | Emai | % X
ézg 2, Aus)  (Au4——Aus
‘s .
&L L R
CITES ARTICLE WRITES &

e CIETNCTEEYEET gy

PROCEEDING

o e st | s [con-ty | con- st con-cuny | Pttt

JOURNAL PUBLISHER

i e i s ottt e 2ot s cour

o
@ @ )&%Z" The Relation Core
(o) —Goa—009)

Figure 3.1: Overview of Data Model

Graph D

e A tuple over R (or an R-tuple for short) is a mapping, t : R — D, with t(A) €
dom(A) for all A € attr(R). We use t(A) indicates the value that corresponds to
the attribute A in tuple .

¢ A relation over R (or an R-relation for short) is a finite set of R-tuples.
* A relational core C is a set of relation schemas, i.e., C = {R1,Ry,..., Ry }.

In the relation core, there are two types of domains: D;; C D is a set of identifier do-
mains and D,, C D is a set of value domains with D;; N D,, = () and D;; U D,, = D.
An identifier domain contains a set of entity identifiers. A value domain contains a set
of permissible values. All identifier domains in D;; are pairwise disjoint (the reason
will be described in Section 3.1.2). The following example illustrates these concepts of
the relational core.

Example 3.1.1 The Association for Computing Machinery (ACM) is an organization for
academic and scholarly interests in computing. It manages a large bibliographical net-
work data. In the ACM bibliographical network, each article is written by one or more
authors, an article is published in a conference proceeding or a journal, one article may
cite a number of other articles, and each journal or conference proceeding is published
by a publisher. Figure 3.2 shows a relational core for the ACM bibliographical net-
work ACM = {AUTHOR, ARTICLE, PROCEEDING, JOURNAL, PUBLISHER,
WRITES, CITES}. The underlined attributes represent primary keys and each di-
rected arc represents a foreign key. Each relation schema has one or more attributes
with an identifier domain. In this case, we have D; = {dom(AUid), dom(ARid),
dom(Cited ARid), dom(JOid), dom(PRid), dom(PUid)}.
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Figure 3.2: The Relational Core of ACM Bibliographical Network
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3.1.2 Graphical Views

Based on a relational core, a number of graphical views can be established in the RG
model. Each graphical view is a graph in which a vertex represents an entity and an
edge represents a link between two entities. Each graph can be described by a graph
schema. Informally, a graph schema describes what kinds of entities the vertices of a
graph may represent and the connections of such entities represented by the edges. In
this work, we use entity class to describe one kind of entities and link class to describe
a type of connection between entities.

Formal definitions are presented as follows:

* An entity class £ describes a set of (physical or abstract) entities that have the
same behaviour and characteristics. In the RG model, each entity class £ con-
tains a set of entity identifiers from the same identifier domain.

¢ Alink class £ describes relationships among two (possible same) entity classes
&1 and &;. For a link class £ and any two entities £; and &;, £ is symmetric if it
satisfies a condition: whenever (€1, &) € L, then we must have (&,,&1) € L. A
link class is asymmetric if it is not symmetric.

¢ A graph schema G consists of two entity classes and one link class, denoted by
G = (&1, L, &), where the link class L is defined as £ C & x &. If L is symmet-
ric, then graphs over this graph schema G are undirected graphs. Otherwise,
graphs are undirected.

e Agraph G = (V,E) over G = (&1, L, &) consists of a set of vertices & U & and
asetof edges E C L.

A standard graph structure, G = (V, E), consists of vertices and edges. V is a set of
vertex identifiers and E is a set of vertex identifier pairs. Therefore, in our data model,
only entity identifiers are stored in graphs. Other information are stored in the rela-
tional core. We also require all identifier domains in D;; must be pairwise disjoint so
as to guarantee one vertex in a graph represent exactly one entity.

Example 3.1.2 In the ACM bibliographical network, we may have two entity classes
— Equ for authors and &, for articles. &, contains the entity identifiers in dom(AUid)
in the relation schema AUTHOR and &,, contains the entity identifiers in dom(ARid)
in the relation schema ARTICLE. For example, the article AR1 is written by three
authors AU1, AU2 and AU3. The article AR2 is written by two authors AU4 and
AUS5. In Figure 3.3(a), we have an undirected graph over a graph schema G =
(Eaur Leoauthorships Eau) Where Leoqumorship is symmetric and indicates that two entities
are linked if they have co-authored at least one article. For another example, the arti-
cle AR1 cites two articles AR2 and AR3. Both AR2 and AR3 cite the article AR4. In
Figure 3.3.(b), we have a directed graph over a graph schema G = (Eu, Leitation, Ear)
where Ljtati0n is asymmetric and indicates that two entities are linked if one cites an-
other one.
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Figure 3.3: Graphs of ACM Bibliographical Network

3.1.3 Relation-Graph Mappers

In the RG model, we define relation-graph mappers (RG mappers), each of which
takes a set of relations as input and generate a graph as output.

We define the following related concepts for RG mappers.

e An input schema I, is a set of relation schemas, Iny; = {R1,R2,..., Rm}. A
set of relations over the relation schemas in I is denoted by Z(In ).

* An output schema Outy, is a graph schema, i.e.,Outyg = (&1, L, &). A graph
over the graph schema is denoted by Z(Out ).

* An RG mapper M, which is a mapping, maps a set of relations over an input
schema In y to a graph over an output schema Out pq, i.e., Z(Inpyg) — Z(Out py).

Example 3.1.3 Figure 3.4.(a) presents two RG mappers M oautnorship @nd Mitation-
In Figure 3.4.(a), the RG mappers Moauinorship generates the co-authorship graph
over the graph schema (&, L coauthorships Eau) from a relation over the relation schema
WRITES, s0 IN Meppiporssiy = {WRITES} and OUt M pputhorsiy = (Eaur Leoauthorships Eau)-
In Figure 3.4.(b), another RG mappers M _isqtion generates the citation graph over the
graph schema (Eu, Leitation, Ear) from a relation over the relation schema CITES, so
IN M ygion = {CITES} and Out pm.pion = (Ears Leitations Ear)-
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Figure 3.4: RG Mappers of ACM Bibliographical Network, we use relational algebra
to represent an RG mapper in this section.
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3.2 Query Language

In this section, we present a query language that is based upon the RG model. Our
query language, called RG-SQL, extends the traditional SQL (Structured Query Lan-
guage) with the following main features..

* graphical views providing flexible choices for building graphs on-the-fly or ma-
terialising graphs.

* Incorporating graph operators to support common graph algorithms for net-
work analytics, such as vertex centrality, community detection, reachability and
shortest path.

Here, we discuss three types of graph operations which are ranking, clustering and
path finding. We also demonstrate how such operators can be incorporated into SQL
to provide a unified data analysis framework for relational analysis, network analysis
or a mix of them.

Below is the basic syntax (SQL-style syntax) of graph queries in our query language
(we will provide more details in the following subsections):

SELECT  <attribute list>
FROM  <graph operator>
WHERE  <condition>;

e <attribute list> is a list of attribute names of a relation that contains the result
generated by a graph operation.

¢ <graph operator> indicates which operator (RANK, CLUSTER or PATH) a user
wants to use.

¢ <condition> in the WHERE clause is optional for ranking and clustering opera-
tions to construct a graph on-the-fly, but it is required for path finding operation
to specify vertex condition.

3.2.1 Create Graphical Views

In our data model, graphs can be constructed over a relational core using RG map-
pers. Thus, graphs are supposed to be dynamic, i.e., graphs change if we modify the
tuples of the relational core. In general, there are two approaches to specify graphs in
our work.

Graphs On-the-fly The first approach is to create graphs on-the-fly. In this case, graphs
are not persistently stored in the database, which provides us a flexible way to create
small graphs or different subgraphs of a large one. For graphs that are created on-the-
fly, they are stored in the main memory, so the I/O cost can be significantly reduced.
However, this approach is also limited by the size of a graph and the size of available
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main memory. If a graph is too large, then it may not be able to fit into the main mem-
ory, and fails to be created on the fly. Another disadvantage of this approach is that it
is inefficient for a frequently-used graph when a RG mapper is a complex query that
is time-consuming to execute. The syntax of creating a graph on-the-fly is defined by:

SELECT <attribute list>
FROM <graph operator
WHERE <graph name> IS <graph type> AS (RG mapper);

<graph type> := UNGRAPH | DIGRAPH

If users want to create a graph on-the-fly, they need to specify the graph name, the
graph type (UNGRAPH means undirected graph, DIGRAPH means directed graph)
and the RG mapper in the WHERE clause. In Example 3.2.1, it shows how to create the
citation graph on-the-fly, where the citation graph is generated by an RG mapper (SE-
LECT ARid, CitedARid FROM CITES). Details about the VertexID, Value and RANK
operator are given in the next subsection.

Example 3.2.1 The following citation graph is created on the fly.

SELECT VertexID, Value
FROM RANK (citation, indegree)
WHERE citation IS DIGRAPH AS

(
SELECT ARid, CitedARid FROM CITES

);

Materialised Graphs The second approach is called graph materialisation which per-
sistently creates a graph in the database. The same as materialised views in relational
databases, incremental update is the technique that keeps the graph up-to-date [25].
This approach is efficient when a graph query needs to be executed multiple times, or
a graph query provides results that can be further analysed. However, we need space
to store materialised graphs. The syntax of creating a materialised graph is defined by:

CREATE <graph type > <graph name> AS (RG mapper);
<graph type> := UNGRAPH | DIGRAPH

Users can use the CREATE command to create a materialised graph in the database.
As same as creating a graph on-the-fly, users are required to specify the graph type,
the graph name and the RG mapper. We take the coauthorship graph and the RG
mapper M coauthorship mentioned in the previous section as an example to demonstrate
the syntax of creating a materialised graph:
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Example 3.2.2 The following creates a coauthorship materialised graph.

CREATE UNGRAPH coauthorship AS
(
SELECT w1.AUid AS AUid, w2.AUid as CoAUid
FROM WRITES as w1, WRITES as w2
WHERE w1l.ARid = w2.ARid AND w1.AUid '=w2.AUid

);

If we do not need a materialised graph any more, we can use the DROP command to
dispose of it. We define the following syntax of dropping a materialised graph along
with an example of dropping the coauthorship graph.

DROP <graph type > <graph name>;

<graph type> := UNGRAPH | DIGRAPH

Example 3.2.3 The following drops the coauthorship materialised graph.

DROP UNGRAPH coauthorship;

3.2.2 Use Graph Operators

In our query language, graph operations are provided as building blocks in the FROM
clause for expressing queries over graphs. We have incorporated three typical opera-
tions — ranking, clustering and path finding.

Ranking In network analytics, we are interested in vertex centrality which indicate
the importance of vertices within a graph. A number of measures have been previ-
ously proposed to determine the importance of vertices such as degree, betweenness,
closeness, pagerank and so forth [26]. We develop a graph operator RANK to specify
the ranking operation with the following syntax:

RANK ( <graph name>, <measure>)

<measure> := degree | indegree | outdegree |
betweenness | closeness | pagerank

Note that different measures support different graph types. When creating a graph,
we are required to specify the type of the graph. We will check the measures with
the graph type when running ranking operations on a graph. Table 3.1 shows all
measures that have been incorporated into our query language, along with their sup-

porting graph types.
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Supporting Graph Types
Operator | Measures Undireclt)(fd gragh [gireczgd graph

degree Vv

indegree Vv

outdegree Vv
RANK betweenness vV
closeness vV

pagerank Vv v

Table 3.1: Measures of the RANK Operator

After running a ranking operation over a graph, the results are stored in a temporary
table which consists of two attributes — "VertexID” and ”Value”. The value of the
"VertexID” attribute in a tuple is an entity identifier of the graph. The value of the
”Value” arrtibute in a tuple is the ranking score of the vertex corresponding to the en-
tity identifier in “VertexID”. The results are sorted by a descending order of “Value”.
We can also add the LIMIT clause to return only the top k results. In the following,
we show a query that is based on the data model of the ACM bibliographical network
mentioned in the previous section.

Example 3.2.4 The following query is to find the top 3 influential articles according
to their citation counts.

SELECT VertexID, Value
FROM RANK (citation, indegree)
WHERE citation IS DIGRAPH AS

(
SELECT ARid, Cited ARid FROM CITES

)
LIMIT 3;

Clustering A large number of clustering algorithms have been developed for solv-
ing problems in different application areas [26]. In network analytics applications,
two typical clustering-related tasks are: community detection and finding connected
components. In real-life networks, the distribution of edges normally is locally in-
homogeneous, which means high concentrations of edges with special groups of ver-
tices and low concentrations between these groups. This feature is called community
structure [33]. In addition to finding community, we often want to find the biggest
connected component or find all strongly connected components in a network. We
develop a graph operator CLUSTER to specify a group of vertices by using algo-
rithms for connected components and community detection. For algorithms, we use
five keywords including CC for the algorithm of finding connected components [26],
SCC for the algorithm of finding strongly connected components [26], GN for Girvan-
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Newman algorithm [34], CNM for Clauset-Newman-Moore Algorithm [29] and MC
for Peixoto’s modified Monte Carlo Algorithm [42]. The syntax of the clustering op-
eration is defined by:

CLUSTER ( <graph name>, <algorithm>)

<algorithm> := CC | SCC | GN | CNM | MC

As same as the ranking operation, clustering algorithms support different graph types.
Table 3.2 shows all algorithms along with their supporting graph types.

. Supporting Graph Types
Operator | Algorithms UndirecIt)epd grash [I))irec{elzod graph
cC v v
SCC V4
CLUSTER GN Vv
CNM Vv
MC N, N

Table 3.2: Measures of the CLUSTER Operator

The result generated by a clustering operation over a graph is stored in a temporary
table which consists of three attributes — ”ClusterID”, ”Size” and “"Members”. Users
can add the ORDER BY clause with the ”Size” attribute to get the biggest connected
component or community. The value of the "Members” attribute in a tuple is an array
of entity identifiers, which indicates who are in this tuple’s cluster. Assume that we
have already created a materialised graph called coauthorship mentioned in Example
3.2.2. Example 3.2.5 shows how to find the biggest communities of authors in the ACM
bibliographical network.

Example 3.2.5 The following query is to find the biggest communities that consist
of authors who collaborate with each other to publish articles together.

SELECT ClusterlID, Size, Members
FROM CLUSTER (coauthorship, GN)
ORDER BY Size DESC

LIMIT 1;
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Path Finding A pathis a sequence of pairwise disjoint vertices V1, ..., V,, where (V}, Vii1)
is an edge for i = 1,...,n — 1. Finding paths is also one of typical tasks in network
analytics and it includes two primary problems — reachability and shortest path. In
addition, users often want to add more conditions on a path such as finding a path
with a specific length or with a specific vertex in the middle of it. The syntax of PATH
graph operator is defined by:

PATH ( <graph name>, <path expression>)

<path expression> :=. | V | <path expression>/ <path expression>|
<path expression>// <path expression>

where V is a vertex expression defined by conditions in the WHERE clause
(refer to the basic syntax of graph queries at the beginning of Section 3.2)
and ”.” is the do-not-care symbol which indicates any vertex is allowed.

A path expression is valid if it contains a vertex expression in the first and last po-
sitions. In path expression, ”/” represents one edge and ”//” represents any number
of edges. Table 3.3 shows some examples about path expression.

Operator Path Expression
vi/././V2
(paths between V1 and V2, where the length is 3)
V1//V2
PATH (paths between V1 and V2 with any length)

Vi/./V2/./V3
(V2 in the 3rd position of paths between V1 and V3, where the length is 4)
v1//V2//V3
(V2 in the middle of paths between V1 and V3 with any length)

Table 3.3: Examples of Path Expression

When using path finding operation, users are required to specify vertex expressions
in the WHERE clause. A temporary table that stores the results of a path finding
operation over a graph consists of three attributes — “PathID”, “Length” and “Path”.
Users can add the ORDER BY clause with the “Length” attribute to get the shortest
path and the ”//” symbol is for reachability problem between two vertices. The value
of “Path” attribute in a tuple is an array of entity identifiers, which demonstrates the
sequence of vertices in the path. Still, assume that we already have the coauthorship
materialised graph and we use Example 3.2.6 and Example 3.2.7 to illustrate queries
about reachability and finding shortest path in the ACM bibliographical network.
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Example 3.2.6 The following query is to find two authors V1 and V2, where V1 and V2
are connected by a path of any length, the author V1 is affiliated at ANU (Australian
National University) and the author V2 is affiliated at Microsoft.

SELECT PathID, Length, Path

FROM PATH (coauthorship, V1//V2)

WHERE V1 AS

(
SELECT AUid FROM AUTHOR
WHERE Affiliation like '%ANU%'

) AND V2 AS

(
SELECT AUid FROM AUTHOR
WHERE Affiliation like '%Microsoft%'

);

Example 3.2.7 The following query is to find shortest paths between two authors V1
and V3, where in the middle of the shortest path there is an author V2 who is affili-
ated at Microsoft. Author V1 is affiliated at ANU and Author V3 is affiliated at NICTA
(National ICT Australia).

SELECT PathID, Length, Path

FROM PATH (coauthorship, V1//V2//V3)

WHERE V1 AS

(
SELECT AUid FROM AUTHOR
WHERE Affiliation like '%ANU%'

) AND V2 AS

(
SELECT AUid FROM AUTHOR
WHERE Affiliation like '%Microsoft%'

) AND V3 AS

(
SELECT AUid FROM AUTHOR
WHERE Affiliation like '%NICTA%'

)
ORDER BY Length ASC;
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3.3 Summary

In this chapter, we have presented our data model (RG model) and query language
(RG-SQL). The RG model is a hybrid model with relations and graphs. It consists of
a relational core, graphical views and relation-graph mappers (RG mappers). A re-
lational core is similar to the relational data model in traditional relational databases
and the entity identifiers from identifier domains are used to specify the vertices of
graphs. Therefore, all identifier domains in the relational core must be pairwise dis-
joint so as to guarantee each vertex in a graph can only represent exactly one entity.
An RG mapper is a query that is used to map a set of relations to one graph. In the
RG model, a relational core provides a basis for a number of graphical views that are
generated by using a number of RG mappers. Based upon the RG model, we propose
a query language (RG-SQL) for data manipulation. RG-SQL extends traditional SQL
with creating/dropping graphs, and conducting queries over graphs. Users can use
RG-SQL to create graphs on-the-fly or materialised graphs. The ranking operation is
to sort vertices in a graph according to certain measure of vertex centrality. The clus-
tering operation is to find a group of vertices and the path finding operation is to find
a sequence of vertices in a graph.
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Query Engine

In this chapter, we describe the query engine developed for the RG model and RG-
SQL. As we develop our query engine with PostgreSQL, we follow the PostgreSQL
concepts when describing the query processing and each component of the query
engine. In Section 4.1, we first demonstrate how queries written in RG-SQL are pro-
cessed in our query engine. In Section 4.2, we present the architecture of our query
engine and give more details about its components. Then we propose some query op-
timisation strategies in Section 4.3. Section 4.4 gives a summary of the query engine.

4.1 Query Processing

Similar to relational query processing, a query written in the RG-SQL is processed to
follow a parser-optimiser-executor pattern. An RG-SQL query created in the query
console is first validated by the query parser and then converted into a plan tree.
The query optimiser enumerates alternative plan trees, estimates their cost and deter-
mines the best plan tree for execution. A plan tree (refer to Section 4.2 for more details)
consists of different types of operation nodes including graph operation nodes (rank
operation, cluster operation and path operation) and other relational operation nodes
(selection operation, join operation, aggregate operation). The query optimiser will
extract graph operations from the plan tree and pass them to the graph executors.

For all graph operations, they are executed by three graph executors: (1) rank ex-
ecutor is for rank operations, (2) cluster executor is for cluster operations and, (3) path
executor is for path operations. During these executions, the graph executors need to
retrieve the graph data from the data storage to generate graphs and run algorithms
over those graphs. After graph operations are executed, their corresponding execu-
tors will store the results into the data storage as the network analysis results.

After the query optimiser determines the best plan tree, the plan executor executes
the plan tree by processing its operation nodes from the bottom to the top. During
the execution, the plan executor needs to retrieve the network analytics results and
the relational data from the data storage. After the execution, the plan executor will
return the query result to the query console.

27
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Next section will give more details about each component of our query engine.
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Figure 4.1: RG-SQL Query Processing

4.2 Architecture

Our query engine, called RG Engine, is built for processing RG-SQL queries that
contain graph sub-queries (queries with graph operators) and relational sub-queries.
The RG engine is developed in Python programming language with the official Post-
greSQL client library — libpq [11]. We use Psycopg [17], the current mature wrapper
for the libpq, as the PostgreSQL adapter for our query engine. Figure 4.2 shows the
main components of the RG Engine.

Query Console

The query console is a user interface that allows users to submit RG-SQL queries.
The same as traditional SQL queries, each RG-SQL query ends with a semicolon. The
console also displays query result and error messages, such as graph type error, path
expression errot, and so on.
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Figure 4.2: Architecture of the RG Engine

Query Parser

The query parser consists of four main sub-components — Validator, Analyser, Rewriter
and Translator. Given an RG-SQL query, the validator first checks whether or not the
query syntax is correct, such as checking the keyword’s spelling, checking the num-
ber of parentheses, checking if path expressions are in correct format and so forth.
Then, the validator is involved with the system catalog to validate the query. The
system catalog is the place where PostgreSQL stores schema metadata, such as infor-
mation about tables, attributes, operators, data types and other internal information
[18]. We add a schema metadata about materialised graphs into the system catalog -
the pg_matgraph. The following describes some typical query validation tasks:

* To check whether or not the graphs and tables of the query are registered in the
system catalog. The corresponding schema metadata contain the pg_matgraph,
the pg_table, the pg_matviews and the pg_views.

¢ To ensure that the attribute references are correct. The corresponding schema
metadata is the pg_attribute.

* To examine if the operators used in the query are consistent with data types. The
corresponding schema metadata contain the pg_operator and the pg_type.

After a query is validated, the analyser starts to differentiate graph sub-queries and
relational sub-queries. There will be a query tree that indicates the query execution
order (refer to Figure 4.3, queries at the bottom will be executed first). In Figure 4.3,
the ”Graph Sub-query 1” retrieves a materialised graph and the “Graph Sub-query 2”
with a relational sub-query retrieves a graph that is created on-the-fly.



30 Query Engine

Relational Query
SELECT Fname, Mname, Lname, Affiliation S SN AT TR, R, AT
FROM AUTHOR
FROM AUTHOR WHERE AUid IN (Inner Relational Query);
WHERE AUid IN '
(
SELECT AUid
FROM WRITES AS w,

( Relational Sub-query 1
SELECT Members SELECT AUid

FROM CLUSTER (coauthorship, GN) FROM WRITES AS w, (Inner Graph Query 1) AS c, (Inner Graph Query 2) AS r
ORDER BY Size DESC

WHERE w.AUid = ANY(c.Members) AND w.ARid = r.VertexID
LIMIT 1
JASC LIMIT 3

( / V\
SELECT VertexID

FROM RANK (citation, pagerank) Graph Sub-query 1
For Graph Sub-query 2
WHERE citation IS DIGRAPH AS Graph Sub-query 2

SELECT Members ) SELECT VertexID
SELECT * FROM CITES FROM CLUSTER (coauthorship, GN) FROM RANK (citation, pagerank)

) SI?II[I)TE? BY Size DESC WHERE citation IS DIGRAPH AS (RG Mapper)
)AST

WHERE w.AUid = ANY(c.Members) AND w.ARid = r.VertexID *
LIMIT 3

); Relational Sub-query 2
SELECT * FROM CITES

Figure 4.3: Query Tree Example for a Query of the ACM Bibliographical Network

For all the graph sub-queries, the rewriter replaces the graph operators with some spe-
cific table names. These table names will be used for temporary tables to store results
after executing graph operations. For example, the “Graph Sub-query 1” in Figure 4.3
will become "SELECT Members FROM cluster_coauthorship_-1 ORDER BY Size DESC
LIMIT 1,”. These table names follow a specific format:

<graph operator>_<graph name>_<graph operator ID>

<graph operator>:= rank | cluster | path

<graph name> is the name of the graph stored in the data storage.
<graph operator ID> corresponds to the order that graph operators occur
in the query.

In our query engine, the text string of graph operators and the specific table names
are stored in the data dictionary. If a graph operator contains a graph that is cre-
ated on-the-fly, then the graph operator and its corresponding relational sub-query
will be rewritten to one specific table name. For example, the “Graph Sub-query 2”
and the “Relational Sub-query 2” in Figure 4.3 will become ”"SELECT VertexID FROM
rank_citation_2;” .

After all these steps, the translator converts the query into an internal format of the
query (i.e. a plan tree) that will be passed on to the query optimiser for optimisation
[18]. A plan tree can be represented by a relational algebra expression.
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Query Optimiser

In general, what the query optimiser does are: (1) enumerating alternative plan trees
based on the plan tree that is received from the query parser (done by the Plan Gener-
ator); (2) estimating the cost for the alternative plan trees (done by the Cost Estimator);
(3) choosing the plan tree with the lowest cost for execution.

In order to identify alternative plan trees (typically a subset of all possible plan trees),
one important method used by a query optimiser is using heuristic rules that trans-
form a relational algebra expression (RA expression) into another equivalent-but-
more-efficient RA expression. Some typical transformation rules include: to decon-
struct conjunctive select operations into a sequence of individual selection, to com-
bine selections and cross-products into joins, to push selections and projections ahead
of joins and so forth [20][45]. After identifying the alternative plan trees, the query
optimiser estimates costs of each plan tree in terms of disk page fetches (I/Os) and
CPU time [1]. Then it determines the best plan tree for execution. There is one more
thing: the query optimiser extracts all graph operations from the execution plan tree,
passes them to the three graph executors.

Graph Operation Executors

All graph operations will be executed by three graph operation executors according
to their operation types, which rank executor is for rank operations, cluster executor
is for cluster operations and path executor is for path operations. For the graph op-
eration executors, we use three graph analysis tools as algorithm support, including
SNAP [21], NetworkX [16] and Graph-tool [7]. Based on the performance evaluation
for these three graph analysis tools (refer to Section 5.2), we make decisions about
algorithm support as follows:

¢ Rank Executor: choose SNAP to support algorithms for four ranking measures
(i.e. degree, indegree, outdegree and pagerank) and Graph-tool to support algo-
rithms for other two ranking measures (i.e. closeness and betweenness).

* Cluster Executor: choose SNAP to support four clustering algorithms (i.e. find-
ing connected components [26], finding strongly connected components [26],
the Girvan-Newman algorithm [34] and the Clauset-Newman-Moore algorithm
[29]) and Graph-tool to support the Monte Carlo algorithm [42].

* Path Executor: choose NetworkX to support the path finding algorithm.
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Table 4.1 shows the methods that are used in our graph operation executors. More
details about those methods refer to the reference manuals of these graph analysis
tools?. After executing the corresponding operations, three graph operation executors
will store the results into temporary tables with specific table names (mentioned in
the Query Parser). These temporary tables will be stored in the data storage as the
network analysis results before the query processing terminates. The rank executor
will first sort the results according to the measure values and then store the results
into a table that consists of two columns — VertexID and Value. Likewise, the cluster
executor will store the results into a table with three columns (i.e. ClusterID, Size and
Members) and the path executor will create a table that also consists of three columns
(i.e. PathID, Length and Path).

Algorithms Methods Tools
Degree GetDegreeCentr( )

Indegree GetNodeInDegV( )

Outdegree GetNodeOutDegV( )

Pagerank GetPageRank( ) SNAP
Connected Component GetWees()

Girvan-Newman CommunityGirvanNewman( )
Clauset-Newman-Moore | CommunityCNM( )

Betweenness centrality.betweenness( )

Closeness centrality.closeness( ) Graph-tool
Monte Carlo community.minimize_blockmodel_dI( )

Path Algorithm all_simple_paths() NetworkX

Table 4.1: Algorithm Support

Plan Executor

The basic idea of the plan executor is to execute the plan tree chosen by the query opti-
miser, to extract the required set of tuples, and to return the tuples as a query result to
the query console. The plan tree is a pipelined demand-pull graph with different types
of operation nodes and these nodes will be recursively processed by the plan executor
[18]. The bottom-level nodes produce tuples as the input for the upper-level nodes.
In general, the bottom-level nodes often relate to selection and projection operations
which require the executor to scan physical tables (e.g. sequential scan for non-index
tables and index scan for tables with index attributes) and the upper-level nodes often
relate to join operations (e.g. nested-loop, merge join and hash join). There are other
special-purpose operation nodes, such as sorting and aggregate operations [1]. Fig-
ure 4.4 shows an example about how an plan tree is processed for a query to find the
affiliations of top 10 influential authors in the co-authorship network.

2SNAP’s manual: http:/ /snap.stanford.edu/snappy/doc/reference/index-ref html;
NetworkX’s manual: http:/ /networkx.github.io/documentation /networkx-1.9.1/;
Graph-tool’s manual: http:/ /graph-tool.skewed.de/static/doc/index.html


http://snap.stanford.edu/snappy/doc/reference/index-ref.html
http://networkx.github.io/documentation/networkx-1.9.1/
http://graph-tool.skewed.de/static/doc/index.html
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Query Result

T Adjacent duplicated tuples removed

niqu

T Tuples sorted to bring duplicates together
Sort
Sort Column: Affiliation

SELECT Affiliation FROM AUTHOR,
rank_coauthor_1 WHERE AUid = VertexID

Nestloop Join
Target List: Affiliation
SELECT DISTINCT Affiliation Qualification: AUid = VertexID
FROM AUTHOR . o
WHERE AUid IN SELECT AUid, Affiliation \ SELECT VertexID
( FROM AUTHOR FROM rank_coauthor_1 LIMIT 10
SELECT VertexID » Index Scan Index Scan
FROM RANK (coauthorship, betweenness) Table: AUTHOR Table: rank_coauthor_1
LIMIT 10 Index: AUTHOR(AUid) Index: rank_coauthor_1 (VertexID)
) Target List: AUid, Affiliation Target List: VertexID
’ Qualification: Null Qualification: LIMIT 10

Figure 4.4: Plan Tree Processing for a Query of the ACM Bibliographical Network

4.3 Query Optimisation

In this section, we propose some query optimisation strategies for our query opti-
miser. As we adopt the query optimiser of PostgreSQL in our query engine, the spe-
cific optimisation techniques of PostgreSQL have already been used in our query en-
gine, such as the transformation rules for relational algebraic equivalence, the genetic
optimisation algorithm for searching alternative plan trees and so forth [18]. However,
our RG-SQL queries may have graph sub-queries and relational sub-queries. How to
optimise those graph sub-queries and relational sub-queries in a unified framework
is the focus of this section. We divide our optimisation strategies into two groups —
Sub-query equivalence and Query caching.

Sub-query equivalence A complex RG-SQL query always contains a number of
graph sub-queries and these graph sub-queries often contain a number of relational
sub-queries. Figure 4.5 shows a query tree example for a path finding query. In Figure
4.5, the relational sub-queries 1,2 3 are very similar, which are to select author iden-
tifiers from the AUTHOR relation. Moreover, for the relational sub-query 1 and the
relational sub-query 3, the results of them are very close because many authors who
work in NICTA are researchers in ANU.

The basic idea of sub-query equivalence is to decompose an RG-SQL query Q into a
set of sub-queries {41,492, ...,q9,},1.e. Q = {q1,92, ..., 9n }. Then we reduce or rewrite
the equivalent sub-queries to make the sub-query set smaller so as to improve effi-
ciency.
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SELECT PathID, Length, Path Graph Query
FROM PATH (coauthorship, V1 // V2 // V3) SELECT PathiD, Length, Path
WHERE V1 AS FROM PATH (coauthorship, V1 // V2 // V3)
( WHERE V1 AS (Inner Relational Query 1)
SELECT AUid FROM AUTHOR AND V2 AS (Inner Relational Query 2)
WHERE Affiliation LIKE ‘%ANU%’ AND V3 AS (Inner Relational Query 3)
) AND V2 AS ORDER BY Length ASC;
(
SELECT AUid FROM AUTHOR +
WHERE Affiliation LIKE “%Microsoft%’
) AND V3 AS
SELECT AUid FROM AUTHOR
WHERE Affiliation LIKE ‘%NICTA%’ Relational Sub-query 1 RelatienallGariquery? Relational Sub-query 3

) SELECT AUid FROM AUTHOR SELECT AUid FROM AUTHOR SELECT AUid FROM AUTHOR
ORDER BY Length ASC; WHERE Affiliation LIKE ‘%ANU%’  WHERE Affiiation LIKE “%Microsoft%'  WHERE Affiliation LIKE ‘%NICTA%’

Figure 4.5: Query Tree Example for Sub-query Equivalence

Query caching  Similar to some existing works for caching results of relational
queries [27] [43], we can also cache the query results so as to avoid repeated com-
putation. Given a complex RG-SQL query, its sub-queries can be transformed into
a number of equivalent queries using different cached results and then this revised
query is fed to the query optimiser to generate an optimal execution plan. However,
there are some issues that need to be solved during the implementation including:

¢ Cache replacement strategy: we need to decide what kind of caches should be
replaced when the cache space is full. Should we replace the caches that are the
least recently used, or the caches that are the least frequently used, or the caches
that require the largest cache space?

¢ Cache update strategy: we need to decide how to update the outdated caches.
Should we update the caches once their base relations are changed (immediate
update), or according to certain periods (periodical update), or when the caches
are on demand (on-demand update)?

* Query matching strategy: we need to decide the requirements for two queries
that can be considered as equivalent queries. If two queries are exactly the same,
they certainly are equivalent. How about one query contains another query or
two queries are overlapped? In these situations, can we still reuse the cached
results?
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44 Summary

In this chapter, we have described the RG-SQL query processing and the architecture
of the RG engine. RG-SQL queries typically go through a parser-optimiser-executor
pattern in the query engine. In the query parser of the RG engine, we have a valida-
tor to check and validate queries, a analyser to differentiate graph sub-queries and
relational sub-queries, a rewriter to rewrite all graph sub-queries and a translator to
convert queries into plan trees. Given a plan tree from the query parser, the query
optimiser enumerates alternative plan trees, estimates their cost and determines the
plan tree with the lowest cost to be executed. Then three graph operation executors
execute the graph operations extracted from the execution plan tree and the plan ex-
ecutor processes each operation nodes of the plan tree from bottom to top. At last,
the plan executor returns the query result to the query console. In addition, we also
propose two query optimisation strategies for RG-SQL queries including sub-query
equivalence and query caching.

Since the RG engine is developed with the PostgreSQL, it takes advantage of the
existing PostgreSQL components to process queries including the query parser, the
query optimiser and the plan executor. The source code of the RG engine refers to
https:/ /gitlab.com /RG_Framework/RG_Engine. We extend the PostgreSQL compo-
nents with capability of processing RG-SQL queries, but we have not yet incorporated
those query optimisation strategies with the RG engine. We take the implementation
for query optimisation as one of our future work.


https://gitlab.com/RG_Framework/RG_Engine
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Chapter 5

Performance Evaluation

In this chapter, before showing the results of our performance evaluation experiments,
we first describe our experimental environment including the hardware and software
information in Section 5.1. We conduct two experiments in this chapter. The first one,
in Section 5.2, is about the performance of the graph analysis tools that we use as
the RG engine’s algorithm support (i.e. SNAP [21], NetworkX [16], Graph-tool [7]). In
Section 5.3, the second experiment, we compare our RG engine with the query engines
of a relational database (PostgreSQL [19]) and a graph database (Neo4j [14]) through
running different types of queries. A summary is given in Section 5.4.

5.1 Experimental Environment

Hardware Information

All of our experiments were performed on the Dell Optiplex 9020 desktop computer
with the Intel(R) Core(TM) i7-4790 CPU 3.6GHz 8 cores processor, 16 GB of memory
and the 256GB SAMSUNG SSD PM851 disk.

Software Information

The experiment-related software information is presented in Table 5.1.

Operating System Ubuntu 14.04 LTS with Linux kernel 3.16.0-50 generic
Programming Language Python 2.7.6
Relational Database PostgreSQL 9.4.4
Graph Database Neo4j community 2.2.5
Snap.py 1.2
Graph Analysis Tools NetworkX 1.10
Graph-tool 2.9
PostgreSQL Adapter psycopg2 2.6.1
Time Measure Package timeit 2.6
Memory Measure Package | psutil 3.2.1

Table 5.1: Software Information

37
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5.2 Performance of Graph Analysis Tools

As we mentioned in Section 4.2, for the graph operation executors, we use three graph
analysis tools as algorithm supports, including SNAP [21], NetworkX [16] and Graph-
tool [7]. Table 5.2 shows that all three graph analysis tools can support the first six al-
gorithms including “Degree”, “PageRank”, “Betweenness”, “Closeness”, “Connected
Component” and ”Strongly Connected Component”. However, for the other five al-
gorithms, each algorithm can be supported by only one tool. Therefore, we choose
SNAP to support the "Girvan-Newman” and “Clauset-Newman-Moore” algorithms,
Graph-tool to support the "Monte Carlo” algorithm and NetworkX to support path
finding algorithms.

Algorithms SNAP | NetworkX | Graph-tool
Degree vV vV Vv
. PageRank
Ranking Betv%eenness \\? y y
Closeness Vv v v
Connected Component v V vV
Strongly Connected Component Vv Vv v
Clustering Girvan-Newman v/ - -
Clauset-Newman-Moore Vv - -
Monte Carlo - - vV
1. Shortest Path * * % %
Path Finding Path with Specific Length ok y -
Note:
* SNAP has the snap.GetShortPath( ) method but only returns the length of the path.
** SNAP has the snap.GetNodesAtHop( ) method but only returns vertex identifiers
of the destination vertices.
* x * Graph-tool has the graph_tool.topology.shortest_path( ) but only returns one
of all shortest paths.

Table 5.2: Algorithm Support of Graph Analysis Tools

We have first conducted an experiment to evaluate the time performance and memory
performance of the three graph analysis tools through running the first six algorithms.
For the experiment input, we used the graph generator of SNAP to create twelve
Erdos-Renyi random graphs [5] [31], rather than graphs of a specific type of network.
Table 5.3 shows the details of these Erdos-Renyi random graphs.

In the experiment, we ran each of these six algorithms over the twelve random graphs
using the three graph analysis tools. Note that Graph-tool performs some algorithms
(e.g. PageRank, Betweenness, Closeness) on multi-core architectures, which allows
parallel computation [4]. However, SNAP and NetworkX do not support multi-core
architectures. Therefore, we compare SNAP and NetworkX both with Graph-tool (us-
ing 1 core) and Graph-tool (using 4 cores). For the time performance evaluation, we
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Number of Vertices | Number of Edges | Size (KB)

Graph 1 100 200 1
Graph 2 100 1,000 6
Graph 3 100 5,000 29
Graph 4 500 1,000 8
Graph 5 500 5,000 38
Graph 6 500 25,000 189
Graph 7 2,500 5,000 46
Graph 8 2,500 25,000 228
Graph 9 2,500 125,000 1,100
Graph 10 12,500 25,000 256
Graph 11 12,500 125,000 1,300
Graph 12 12,500 625,000 6,400

Table 5.3: Erdos-Renyi Random Graphs

have run each algorithm five times and taken the average time for plotting. The av-
erage time is the sum of graph constructing time and algorithm computation time.
For the memory performance evaluation, we also have run each algorithm five times,
taken the peak value of each time as the memory consumption, and taken the average
memory consumption for plotting.

Figure 5.1 shows the time performance comparison of the graph analysis tools. Note
that the value of the Y axis of Figure 5.1.(3) and Figure 5.1.(4) is scaled in logarithm.
Based on the plots in Figure 5.1, we have the following observations:

* For the algorithms about degree, page rank, connected components and strongly
connected component), SNAP has the better time performance than NetworkX.
This is mostly because the core library of SNAP is a C/C++ library and Net-
workX is a pure Python implementation, which in general is known to be sub-
stantially slower than C/C++ [23] [10].

¢ However, although Graph-tool use a pure C/C++ library, it requires more time
than SNAP when running the algorithms mentioned in the last bullet point.
This is because Graph-tool spends more time on constructing graphs (refer to
Appendix B for details). When constructing graphs, Graph-tool always creates
vertices starting from ID 0. Simply speaking, if Graph-tool constructs a graph
that only consists of one vertex with an identifier 100, it will create 101 vertices
from ID 0 to ID 100. So when using Graph-tool to construct graphs, we need
to create dictionaries that map vertex identifiers with the Graph-tool internal
IDs. Because of the dictionary operations, Graph-tool requires more time for
constructing graphs than the other two graph analysis tools.

¢ In terms of algorithms about betweenness and closeness, despite more graph
constructing time, Graph-tool (4 Cores) takes advantage of its multi-core archi-
tectures to achieve better performance, especially in large graphs.
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Figure 5.1: Time Performance of the Graph Analysis Tools

Figure 5.2 is about the memory performance comparison of the graph analysis tools.
From Figure 5.2.(3) and Figure5.2.(4), we can conclude that Graph-tool’s better time
performance of betweenness and closeness algorithms comes at the cost of memory
required during compilation. Due to different implementations, the memory perfor-
mance varies among the graph analysis tools. Overall, SNAP has a better memory
performance in this experiment.
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Based on the experimental result above, we choose SNAP to support algorithms for
degree, page rank, connected component, and strongly connected component. We
choose Graph-tool to support algorithms for betweenness and closeness.
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Figure 5.2: Memory Performance of the Graph Analysis Tools
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5.3 Performance of the RG Engine

In this experiment, we set up different types of queries over three datasets. Through
processing these queries, we compare our RG engine with the query engines of a
relational database (PostgreSQL) and a graph database (Neo4j). We first introduce the
three datasets used in the experiment in Section 5.3.1. In Section 5.3.2, we describes
the queries processed by the query engines. Section 5.3.3 presents the experimental
results about processing these queries.

5.3.1 Datasets

In this experiment, we used three datasets: (1) ACM bibliographical network (ACM
network)® , (2) Stack Overflow network (ST network)* and (3) Twitter network (TW
network)®. The data in these three datasets can be described as follows:

¢ In the ACM network, each article is written by one or more authors, an article is
published in a conference proceeding or a journal, one article may cite a number
of other articles, and each journal or conference proceeding is published by a
publisher (refer to the ER diagram of Appendix A).

¢ In the ST network, each question and each answer is posted by one user, an
answer is accepted for one question as the accepted answer, one question can
have zero or more answers and one question can be labelled by zero or more
tags (refer to the ER diagram of Appendix A).

¢ In the TW network, each tweet is posted by one user, a tweet can be labelled by
zero or more tags, a tweet can mention zero or more users and a user can follow
zero or more other users (refer to the ER diagram of Appendix A).

The data of the ACM network and the ST network are both in the XML format and
the data of the TW network is in the TXT format. We write a Python program (refer
to https:/ /gitlab.com /RG_Framework /Data_Import) to transform the data into the
PostgreSQL relational database (refer to the relation schemas of Appendix A) and
follow the instruction [9] [8] of the Neo4j official website to transform data into the
Neo4j. Table 5.4 shows the information about the datasets.

5.3.2 Queries

Based on the three datasets mentioned in the previous subsection, we set up 12 queries
that can be divided into three categories. Table 5.5 shows more details about the
queries. In Table 5.5, Queries 1 — 3 are relational queries including join operations,
sorting operations, aggregate operations and set operations. Queries 4 — 10 are about

3Provided by ACM Digital Library (http://dl.acm.org/)
4Provided by Stanford Network Analysis Platform (http:/ /snap.stanford.edu/proj/snap-icwsm/)
SProvided by Haewoon Kwak (http:/ /an kaist.ac.kr/traces/ WWW2010.html) and

Stanford Network Analysis Platform (http://snap.stanford.edu/data/twitter7.html)


https://gitlab.com/RG_Framework/Data_Import
http://dl.acm.org/
http://snap.stanford.edu/proj/snap-icwsm/
http://an.kaist.ac.kr/traces/WWW2010.html
http://snap.stanford.edu/data/twitter7.html
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Raw Number Number Number of
Data | of Vertices | of Edges Records in
Size in Neo4;j in Neo4;j PostgreSQ

PUBLISHER : 50
JOURNAL : 128

14.9 PROCEEDING : 6,421
ACM GB 1,128,243 2,488,849 ARTICLE : 337,006
Network | (XML) AUTHOR : 784,638

WRITES : 932,400
CITES : 1,212,894

QUESTION : 7,990,787

30.6
ST ANSWER : 13,684,117
Network (Xcl;\/IIBL) 21,713,109 | 31,747,662 TAG : 38,205
LABELLED_BY : 13,466,686
TWEET : 10,762,104
297 TAG : 210,121
™ . TW_USER : 2,277,971
Network (TC);EF) 13,250,196 | 264,368,797 FOLLOW : 259,602,970

MENTIONED_IN : 3,108,776
LABELLED BY : 1,657,051

Table 5.4: Dataset Characteristics

some typical network analytics tasks including pattern matching, triangle counting,
pagerank centrality, finding connected components, path finding and community de-
tection. Queries 11 — 12 are advanced queries that combine two different types of net-
work analytics tasks together, in which Query 11 combines pagerank centrality with
finding connected components and Query 12 combines pagerank centrality with path
finding. In terms of how to write these queries in SQL, RG-SQL and Cypher (Neo4j’s
query language), please refer to the Appendix C.

5.3.3 Experimental Results

We have evaluated all these experiment queries using 3 query engines. However,
as shown in Table 5.6, PostgreSQL cannot process Queries 6 — 12 and Neo4j cannot
process Queries 10 — 12. This is due to the limited expressive power of SQL and
Cypher: we cannot use SQL to express Queries 6 — 12 and Queries 10 — 12 cannot be
expressed using Cypher. One advantage of our work is that all these queries can be
expressed in RG-SQL and processed by the RG engine.

To compare the RG engine with PostgreSQL and Neo4j for Queries 1 -5 and compare
the RG engine with Neo4j for Queries 6 — 10, we have conducted an experiment to
evaluate their time performance. Note that for Query 6 and Query 7, Neo4j needs
to use an extension called Neo4j Mazerunner that extends Neo4j to run network an-
alytics algorithms at scale with Hadoop HDFS and Apache Spark [12]. For the time
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Query 1

Query 2

Query 3

ST
Network
Join Opera

ST
Network

Join Operation + Sorting Operation + Aggregate Operation + Set Operation

ACM
Network

tion + Sorting Operation + Aggregate Operation

Join Operation + Sorting Operation
Show the question id, the owner id and the tag label of top
10 questions that have the most view count.

Show the top 5 answerers and their latest reputation score
in an descending order based on the number of their
answers that accepted by questions.

Show the number of articles of each journal and
proceeding along with the journal name and the
proceeding title in a descending order.

Query 4

Query 5

Query 6

Query 7

Query 8

Query 9

Query 10

™
Network

ACM
Network

ACM
Network

ACM
Network

ACM
Network

ACM
Network

ST
Network

Pattern Matching
Recommend 10 twitter users for Jack who currently does
not follow these users but Jack follows somebody who are
following them.
Triangle Counting
Count the number of triangles of the co-authorship
network.
PageRank Centrality
Find the top 10 influential authors according to the
pagerank centrality in the co-authorship network.
Connected Component
Count the number of connected components of the
co-authorship network.
Path Finding
Find paths with length less than 2, which connect two
author V1 and V2 in the co-authorship network where
author V1 is affiliated at ANU and author V2 is affiliated at
UNSW.
Shortest Path
Find a shortest paths between two authors Michael
Norrish and Kevin Elphinstone in the co-author network.
Community Detection
Find a group of tags that they are often used together to
label a question.

Query 11

Query 12

Page

ACM
Network

ACM
Network

Rank Centrality + Connected Component

According to the pagerank centrality, find the top 3
authors of the biggest collaborative community in the
co-authorship network.
PageRank Centrality + Path Finding

According to the pagerank centrality, show how the top 2
authors connect with each other in the co-authorship
network.

Table 5.5: Queries Used in Our Experiment
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PostgreSQL | RG Engine | Neo4j

Query 1
Query 2
Query 3
Query 4
Query 5
Query 6
Query 7
Query 8 -
Query 9 -
Query 10 -
Query 11 -
Query 12 -

BSOSO

HEOSOS OSSOSO

|
S S S S S

Table 5.6: Queries Processed by three Query Engines

performance evaluation, we have run each query 5 times and taken the average time
for plotting. For Queries 1 -5 and Queries 8 — 9, once a query is submitted, we started
to record the time until the result of each query was returned. For Query 6 -7, as
Neo4j is required to send an HTTP GET request to the Mazerunner extension to begin
a network analytics algorithm, the time of Neo4j for these two queries is the sum of
the request processing time and the query processing time. As shown in Figure 5.3, for
Queries 1 - 5, the RG engine has nearly the same time performance with PostgreSQL
since our query engine is developed with the official PostgreSQL library — libpq (refer
to Section 4.2). The RG engine can achieve better performance for most queries except
Queries 4, 8 and 9. This is mostly due to the following reasons.

* For Queries 1 -3, which are the relational queries, the RG engine achieves better
performance by taking advantage of the query optimisation techniques from
relational databases. For Query 5, triangle counting, it has already been proved
that relation databases can perform the triangle counting task very efficiently
through expressing a three-way self-join [36].

* For Queries 6 — 7, as Neo4j needs to rely on the Mazerunner extension, it re-
quires more time on sending the algorithm requests and waiting for the request
completion.

* Query 4 is about pattern matching. Queries 8 — 9 are about finding path. These
two types of tasks are required to navigate hyper-connectivity on graphs. Neo4j
is completely optimised for these kinds of tasks [13] [47]. We, however, have not
yet implemented the query optimisation strategies (refer to Section 4.3) for the
RG engine.
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Figure 5.3: Time Performance of three Query Engines
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In addition to all the queries mentioned above, we have also run queries about close-
ness centrality over the Twitter network using the RG engine and Neo4j. The RG
engine can successfully process the queries. However, Neo4; failed to process these
queries and the system reported the “OutOfMemory” error. We suspect the reason is
that the number of edges in Twitter network is too large, which exceeds the memory
limitation of Neo4;j.

5.4 Summary

In this chapter, we have conducted two experiments. One experiment is to evaluate
three graph analysis tools (as algorithm support for the RG engine) with their time
performance and memory performance. Another experiment is to compare the RG
engine with other two query engines (one is PostgreSQL, another is Neo4j) in terms
of query processing. According to the experiment results, the RG engine is able to
process more types of queries and achieve better performance for most queries. How-
ever, for pattern matching and path finding queries, the RG engine is not efficient as
Neo4j. In the future, We attempt to implement some query optimisation techniques
for RG engine to improve its efficiency.
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Chapter 6

Conclusion

Network analytics is one of the popular fields in computer science and its effect has
already been augmented since the “Big Data” era approaches. Nowadays, relational
databases are still widely used by enterprises and organisations to process and man-
age their data. However, because of the rigid data model of relational databases, most
of network analytics tasks do not fit well with relational databases. Therefore, the
main purpose of this thesis is to describe a unified framework for network analytics
via using data stored in relational databases. This unified framework includes a data
model, a query language and a query engine.

Our data model is called RG model, which is a hybrid model of relations and graphs.
Using the RG model, we are able to flexibly manage data in relations or in graphs.
Correspondingly, we present a novel query language, called RG-SQL, which extends
SQL with graph operators and graph construction features. RG-SQL aims to enable
users to flexibly manipulate data from relations and graphs, supporting interactive
data analysis between relational analysis and network analysis.

In terms of query processing, we leverage some components of an open-source re-
lational database (PostgreSQL) to develop a query engine called RG engine. The
main differences between the RG engine and traditional query engines of relational
databases are: (1) the query parser of the RG engine is required to validate the syntax
of graph sub-queries and differentiate between graph sub-queries and relational sub-
queries; (2) the RG engine contains three additional executors for graph operations;
(3) the query optimiser of the RG engine may incorporate some query optimisation
strategies that are specially designed for RG-SQL queries. In addition to these, the ex-
periments for performance evaluation demonstrate that RG engine is able to process
various types of queries and achieve better performance in most cases. However, our
experiments also expose some limitations of the RG engine when coping with pattern
matching and path finding. The real advantage of the RG engine is the capability to
combine different types of network analytics tasks with relational analysis.
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50 Conclusion

There are a number of directions we may continue to explore as the future work,
including;:

¢ Toincorporate query optimisation strategies into our query engine such as query
equivalence and query caching.

¢ To support more network analytics tasks, such as sub-graph matching, K-core
finding, link prediction and so forth.

¢ To support more graph types including weighted graphs and hyper graphs.

¢ To apply this unified framework on a distributed relational database architec-
ture.

In conclusion, this thesis develops a unified framework which extends relational databases
with network analytics capability. This unified framework is still in its fledgeling stage
and we have a pile of ideas to enrich and maturate it. We hope, in the future, this uni-
fied framework would become full of vigour and vitality.
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Appendix A

ER Diagrams and Relation Schemas

AUTHOR

WRITES

ICLE

CITES
M
N N
PUBLISHED_IN PUBLISHED_IN
1 1
JOURNAL PROCEEDING
N N

PUBLISHED_BY PUBLISHED_BY

1 1

PUBLISHER

Figure A.1: The Entity-Relationship Diagram of ACM Bibliographical Network
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ER Diagrams and Relation Schemas

AUTHOR

AUid | Fname | Mname | Lname | Affiliation | Email

|

WRITES

Lo Dene

CITES

ARTICLE

Publication_date
|1

PROCEEDING

r 3

JOURNAL

m Periodical_type | Publication_date m
I A

PUBLISHER

PUid | Name | Zipcode | City | State | Country
| |

Figure A.2: The Relation Schema of ACM Bibliographical Network
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1
ST_USER POSTS

ACCEPTED_BY ANSWER

1

1 N

ASKS —'EESE— REPLIES_FOR
N 1

M

LABELLED_BY

N

TAG

Figure A.3: The Entity-Relationship Diagram of Stack Overflow Network

LABELLED_BY

ot

TAG

Tid | Tag_label

QUESTION

Qid | Accepted_Aid | Owner_id | Score | Creation_date | View_count | Comment_count

ANSWER

Aid | Parent_Qid | Owner_id | Score | Creation_date | Comment_count

¢

ST_USER

Uid | Display_name
| |

Figure A.4: The Relation Schema of Stack Overflow Network
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Figure A.5: The Entity-Relationship Diagram of Twitter Network
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Figure A.6: The Relation Schema of Twitter Network




Appendix B

Experimental Data

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 Query 7 Query 8 Query 9
PostgreSQL = PostgreSQL  PostgreSQL = PostgreSQL = PostgreSQL = PostgreSQL  PostgreSQL  PostgreSQL = PostgreSQL
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
1.316 8.198 0.216 57.239 17.375 - — - -
1.406 8.280 0.170 54.426 17.783 - - - -
1.316 8.310 0.219 52.085 17.540 — — — —
1.319 8.213 0.214 58.010 17.875 — - — -
1.313 8.117 0.212 56.198 18.172 - - - -

RG Engine = RG Engine = RG Engine = RG Engine = RG Engine | RG Engine | RG Engine | RG Engine = RG Engine

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
1.408 8.223 0.189 54.123 17.948 48.313 11.332 11.345 19.354
1.315 8.135 0.212 57.235 17.394 47.195 12.346 11.590 19.347
1.313 8.235 0.212 56.235 18.219 48.124 13.104 11.437 20.125
1.323 8.575 0.216 58.225 17.346 47.591 12.124 11.345 19.458
1.369 8.345 0.218 52.453 17.084 47.987 12.898 11.679 19.335

Neo4j Time Neo4jTime = Neo4jTime Neo4jTime Neo4jTime NeodjTime Neo4jTime Neo4jTime Neo4jTime
(s) (s) (s) (s) (s) () (s) (s) (s)

81.592 19.186 2.593 1.112 154.521 152.661 21.782 5.713 11.406
81.359 19.287 2.387 1.284 140.896 152.377 22.013 5.455 11.126
81.692 18.289 2.129 2122 141.836 151.837 21.485 5.123 11.841
82.531 19.297 2.936 0.993 140.467 151.478 21.198 5.178 12.003
82.181 20.116 2.137 1.654 139.268 152.862 21.973 5.468 11.853

Figure B.1: Time Performance Data of Query Engines
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Figure B.12
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Experimental Data




Appendix C

Experimental Queries

Query 1 (Join Operation + Sorting Operation): Show the question id, the owner id
and the tag label of top 10 questions that have the most view count.

For PostgreSQL and RG engine:

SELECT topQ.Qid, topQ.Owner_id, tag.Tag label

FROM LABELLED_BY AS b, TAG,

(
SELECT Qid, Owner_id, View _count
FROM QUESTION
ORDER BY View_count DESC
LIMIT 10

) AS topQ
WHERE 1b.Qid = topQ.Qid AND Ib.Tid = tag.Tid;

For Neo4;j:

MATCH (t:Tag) —[:LABELS]—> (q:Question)
RETURN q.Qid, q.Owner_id, t.Tag_label
ORDER BY q.View_count DESC

LIMIT 10;
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Query 2 (Join Operation + Sorting Operation + Aggregate Operation): Show the top 5
answerers and their latest reputation score in an descending order based on the num-
ber of their answers that accepted by questions.

For PostgreSQL and RG engine:

SELECT Owner_id, max(Score) AS score
FROM ANSWER
WHERE Owner_id IN
(
SELECT a.Owner_id
FROM ANSWER AS a, QUESTION AS q
WHERE g.Accepted_aid = a.Aid AND a.Owner_id != 0
GROUP BY a.Owner_id
ORDER BY count(a.Aid) DESC
LIMIT 5
)
GROUP BY Owner_id
ORDER BY score DESC;

For Neo4j:

MATCH (q:Question) —[r:ACCEPTS_USER]—>(user:User)
RETURN user.Uid, user.Score, count(r)

ORDER BY COUNT(r) DESC

LIMIT 5;
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Query 3 (Join Operation + Sorting Operation + Aggregate Operation + Set Opera-
tion): Show the number of articles of each journal and proceeding along with the
journal name and the proceeding title in a descending order.

For PostgreSQL and RG engine:

SELECT jo.Name AS name, jo.Publication_date, arcount.count
FROM JOURNAL AS jo,
(
SELECT ar.JOid, count(ar.ARid)
FROM ARTICLE AS ar
GROUP BY ar.JOid
) AS arcount
WHERE jo.JOid = arcount.JOid AND jo.Name !="
UNION
SELECT pr.Title AS name, pr.Publication_date, arcount.count
FROM PROCEEDING AS pr,
(
SELECT ar.PRid, count(ar.ARid)
FROM ARTICLE AS ar
GROUP BY ar.PRid
) AS arcount
WHERE pr.PRid = arcount.PRid AND pr.Title !="
ORDER BY count DESC;

For Neo4;j:

MATCH (ar:Article) —[r:PUBLISHED_IN]—> (jo:Journal)

RETURN jo.Name AS name, jo.Publication_date AS date, count(r) AS count
ORDER BY count DESC

UNION

MATCH (ar:Article) —[r:PUBLISHED_IN]—> (pr:Proceeding)

RETURN pr.Title AS name, pr.Publication_date AS date, count(r) AS count
ORDER BY count DESC;
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Query 4 (Pattern Matching): Recommend 10 twitter users for Jack who currently does
not follow these users but Jack follows somebody who are following them.

For PostgreSQL and RG engine:

SELECT Uid, Display_name FROM TW_USER
WHERE Display_name != ‘jack' AND Uid IN
(
SELECT f1.Uid
FROM FOLLOW AS {1, FOLLOW AS {2
WHERE f1.Follower_id = f2.Uid AND f1.Uid NOT IN
(
SELECT Uid FROM FOLLOW WHERE Follower_id IN
(SELECT Uid FROM TW_USER WHERE Display_name = ‘jack’)
)

)
LIMIT 10;

For Neo4j:

MATCH (jack:User {Display_name: jack'}) —[:FOLLOWS]—> (),
( )—[:FOLLOWS]—> (other:TW _user)

WHERE NOT ((jack) —[:FOLLOWS]—> (other))

RETURN other.Uid, other.Display_name

LIMIT 10;

Query 5 (Triangle Counting): Count the number of triangles of the co-authorship net-
work.
For PostgreSQL and RG engine:

SELECT count(*)
FROM coauthorship AS c1
JOIN coauthorship AS c2 ON c1.CoAUid = c2.AUid AND c1.AUid < c2.AUid
JOIN coauthorship AS c3 ON
c2.CoAUid = c3.AUid AND c3.CoAuid = c1.AUid AND c2.AUid < c3.AUid;

For Neo4;:

:GET /service/mazerunner/analysis/triangle_count/ COAUTHOR

MATCH (aul:Author) —[r1:COAUTHOR]—> (au2:Author),
(au2:Author)—[r2: COAUTHOR]—> (au3:Author),
(au3:Author)—[r3:COAUTHOR]—> (aul:Author)

WHERE au2.AUid <> aul.AUid AND au3.AUid <> au2.AUid
AND au3.AUid <> aul.AUid

RETURN count(x);
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Query 6 (PageRank Centrality): Find the top 10 influential authors according to the
pagerank centrality in the co-authorship network.

For RG engine:

SELECT Fname, Mname, Lname
FROM author WHERE AUid IN
(
SELECT VertexID
FROM RANK (coauthorship, pagerank)
LIMIT 10

);

For Neo4;j:

:GET /service/mazerunner/analysis/pagerank/COAUTHOR

MATCH (au:Author) WHERE has(au.pagerank)

RETURN au.Fname, au.Mname, au.Lname, au.pagerank AS pagerank
ORDER BY pagerank DESC

LIMIT 10;

Query 7 (Connected Component): Count the number of connected components of
the co-authorship network.

For RG engine:

SELECT count(ClusterID) FROM CLUSTER (coauthorship, CC)

For Neo4;:

:GET /service/mazerunner/analysis/connected_components/COAUTHOR

MATCH (au:Author) WHERE has(au.connected_components)
RETURN count(DISTINCT au.connected_components)
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Query 8 (Path Finding): Find paths with length less than 2, which connect two au-
thor V1 and V2 in the co-authorship network where author V1 is affiliated at ANU
and author V2 is affiliated at UNSW.

For RG engine:

SELECT =

FROM PATH (coauthorship, V1/./V2)

WHERE V1 AS

(
SELECT AUid FROM AUTHOR WHERE affiliation like "% ANU%'

) AND V2 AS

(
SELECT AUid FROM AUTHOR WHERE affiliation like '7%UNSW%'

);

For Neo4j:

MATCH p=((nl1:Author) —[r:COAUTHOR+1..2]— (n2:Author))
WHERE nl.affiliation =~ ".x ANU.*' AND n2.affiliation =" ".x UNSW.«'
RETURN [ n IN nodes(p) | n.AUid]

Query 9 (Shortest Path): Find a shortest paths between two authors Michael Norrish
and Kevin Elphinstone in the co-author network.

For RG engine:

SELECT =
FROM PATH (coauthorship, V1//V2)
WHERE V1 AS
(
SELECT AUid FROM AUTHOR
WHERE Fname = 'Michael' AND Lname = 'Norrish'
) AND V2 AS
(
SELECT AUid FROM AUTHOR
WHERE Fname = Kevin' AND Lname = 'Elphinstone’

)
ORDER BY Length ASC;

For Neo4;:

MATCH p=shortestPath((n1:Author) —[r:COAUTHOR=]— (n2:Author))

WHERE n1.Fname='Michael' AND nl.Lname = 'Norrish' AND n2.Fname = 'Kevin'
AND n2.Lname = 'Elphinstone’

RETURN [ n IN nodes(p) | n.AUid]
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Query 10 (Community Detection): Find a group of tags that they are often used to-
gether to label a question.

For RG engine:

CREATE UNGRAPH cotag AS
(
SELECT Ib1.Tid as Tid, 1b2.Tid AS CoTid

FROM LABELLED_BY AS 1b1, LABELLED_BY AS 1b2
WHERE 1b1.Qid = 1b2.Qid AND Ib1.Tid != 1b2.Tid

);

SELECT Tag_label

FROM TAG,

(
SELECT Members
FROM CLUSTER (cotag, CNM)
LIMIT 1

) ASc

WHERE Tid = ANY(c.Members);

Query 11 (PageRank Centrality + Connected Component): According to the pager-
ank centrality, find the top 3 authors of the biggest collaborative community in the
co-authorship network

For RG engine:

SELECT VertexID, Value
FROM RANK (coauthorship, pagerank) AS r,
(
SELECT Members
FROM CLUSTER (coauthorship, CC)
ORDER BY Size DESC
LIMIT 1
) ASc
WHERE r.VertexID = ANY(c.Members)
LIMIT 3;
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Query 12 (PageRank Centrality + Path Finding): According to the pagerank central-
ity, show how the top 2 authors connect with each other in the co-authorship network.

For RG engine:

SELECT PathID, Length, Path
FROM PATH (coauthorship, V//V)
WHERE V AS

(
SELECT VertexID

FROM RANK (coauthorship, pagerank)
LIMIT 2

);
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