
Towards a Unified Framework for
Network Analytics

Minjian Liu

A thesis submitted in partial fulfillment of the degree of

Master of Computing at
The Department of Computer Science

Australian National University

October 2015

© Minjian Liu

Typeset in Palatino by TEX and LATEX 2ε.

Except where otherwise indicated, this thesis is my own original work.

Minjian Liu
25 October 2015

To my parents, for supporting me all the way.

Acknowledgements

First and foremost, an enormous thank you to my supervisor, Qing Wang for giving
me an opportunity to do this research project with you, even though you know my
bachelor degree is about medicine. Without your wealth of knowledge in network an-
alytics and your dedicated assistance, I would never get the current achievement for
this project. In this year, we met, we discussed, we argued and finally we consented
for every point in this project. Thank you for imparting me knowledge like a teacher,
thank you for giving me encouragement like a friend , and thank you for showing me
patience like a sister.

Thank you to Peter Christen, Dinusha Vatsalan, Jeffrey Fisher, and Thilina Ranbaduge
for spending time to listen to my presentation rehearsal and giving me so many great
advices about the slides and the presentation skills.

Thank you to John Slaney for organising all honours cohort meetings and honours
talks. It was interesting and exciting to communicate with other honours students
about their projects.

Thank you to the trainers of Uplooking Technology Co,.Ltd for training and teach-
ing me how to be a Linux Architect and Server Developer in the year before I came
to ANU. Without this training, it is difficult for me to survive in the computer science
field with a medicine background.

Thank you to my fiancee, Wen, for making delicious food for me when I was tied
up with the project and giving me courage when I was stressed and frustrated.

Finally, thank you to my parent and my sister for understanding me to give up five-
year medicine study to pursue my real interest and dream in computer science field
and giving me supports all the way.

vii

Abstract

Network analytics has started to become increasingly popular and various specialised
graph systems for network analytics have been proposed in recent years. However,
most network data is still collected and managed in relational databases and the use
of relational databases for network analytics is largely ignored.

This situation then raises a question of whether or not relational databases have lim-
itations for network analytics. The relational model is indeed inefficient for some
network analysis tasks which often require multiple expensive joins for tables and the
SQL query language also makes it difficult to express network analysis operations.
Even so, relational databases are already used for a variety of other analysis tasks and
they are filled with many great features, such as query optimisation, fault tolerance,
secure transaction, integrity constraints and so on.

In this thesis, we present a unified framework for network analytics, which provides
a data model that extends relational databases with network analysis capability and a
query language to manipulate data for relational analysis, network analysis or a mix
of them. In addition, this unified framework also includes a query engine that is built
with an open-source relational database (PostgreSQL) for processing queries that are
written in the query language of this framework. The experimental result indicates
the query engine is flexible to process different types of queries and is able to achieve
comparable or better performance in most cases.

ix

x

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 2
1.3 Outline . 3

2 Background and Related Work 5
2.1 Vertex-centric and Neighbourhood-centric Systems 5
2.2 Graph Databases . 8
2.3 SQL-based Systems . 10
2.4 Summary . 11

3 Data Model and Query Language 13
3.1 Data Model . 13

3.1.1 Relational Core . 13
3.1.2 Graphical Views . 16
3.1.3 Relation-Graph Mappers . 17

3.2 Query Language . 19
3.2.1 Create Graphical Views . 19
3.2.2 Use Graph Operators . 21

3.3 Summary . 26

4 Query Engine 27
4.1 Query Processing . 27
4.2 Architecture . 28
4.3 Query Optimisation . 33
4.4 Summary . 35

5 Performance Evaluation 37
5.1 Experimental Environment . 37
5.2 Performance of Graph Analysis Tools . 38
5.3 Performance of the RG Engine . 42

5.3.1 Datasets . 42
5.3.2 Queries . 42
5.3.3 Experimental Results . 43

xi

xii Contents

5.4 Summary . 47

6 Conclusion 49

Appendices 51

A ER Diagrams and Relation Schemas 53

B Experimental Data 57

C Experimental Queries 75

Bibliography 83

List of Figures

2.1 Data Model Example for Vertex-centric Systems 6
2.2 Data Model Example for Neighbourhood-centric Systems 7
2.3 Data Model Example for Property Graph 9
2.4 RDF Triple Store Model . 9
2.5 Data Model Example for SQL-based Relational Systems 10

3.1 Overview of Data Model . 14
3.2 The Relational Core of ACM Bibliographical Network 15
3.3 Graphs of ACM Bibliographical Network 17
3.4 RG Mappers of ACM Bibliographical Network, we use relational alge-

bra to represent an RG mapper in this section. 18

4.1 RG-SQL Query Processing . 28
4.2 Architecture of the RG Engine . 29
4.3 Query Tree Example for a Query of the ACM Bibliographical Network . 30
4.4 Plan Tree Processing for a Query of the ACM Bibliographical Network . 33
4.5 Query Tree Example for Sub-query Equivalence 34

5.1 Time Performance of the Graph Analysis Tools 40
5.2 Memory Performance of the Graph Analysis Tools 41
5.3 Time Performance of three Query Engines 46

A.1 The Entity-Relationship Diagram of ACM Bibliographical Network . . . 53
A.2 The Relation Schema of ACM Bibliographical Network 54
A.3 The Entity-Relationship Diagram of Stack Overflow Network 55
A.4 The Relation Schema of Stack Overflow Network 55
A.5 The Entity-Relationship Diagram of Twitter Network 56
A.6 The Relation Schema of Twitter Network 56

B.1 Time Performance Data of Query Engines 57
B.2 Time Performance Data of SNAP – Part 1 58
B.3 Time Performance Data of SNAP – Part 2 59
B.4 Memory Performance Data of SNAP – Part 1 60
B.5 Memory Performance Data of SNAP – Part 2 61
B.6 Time Performance Data of NetworkX – Part 1 62
B.7 Time Performance Data of NetworkX – Part 2 63
B.8 Memory Performance Data of NetworkX – Part 1 64

xiii

xiv LIST OF FIGURES

B.9 Memory Performance Data of NetworkX – Part 2 65
B.10 Time Performance Data of Graph-tool (1 Core) – Part 1 66
B.11 Time Performance Data of Graph-tool (1 Core) – Part 2 67
B.12 Memory Performance Data of Graph-tool (1 Core) – Part 1 68
B.13 Memory Performance Data of Graph-tool (1 Core) – Part 2 69
B.14 Time Performance Data of Graph-tool (4 Cores) – Part 1 70
B.15 Time Performance Data of Graph-tool (4 Cores) – Part 2 71
B.16 Memory Performance Data of Graph-tool (4 Cores) – Part 1 72
B.17 Memory Performance Data of Graph-tool (4 Cores) – Part 2 73

List of Tables

3.1 Measures of the RANK Operator . 22
3.2 Measures of the CLUSTER Operator . 23
3.3 Examples of Path Expression . 24

4.1 Algorithm Support . 32

5.1 Software Information . 37
5.2 Algorithm Support of Graph Analysis Tools 38
5.3 Erdos-Renyi Random Graphs . 39
5.4 Dataset Characteristics . 43
5.5 Queries Used in Our Experiment . 44
5.6 Queries Processed by three Query Engines 45

xv

xvi LIST OF TABLES

Chapter 1

Introduction

”Network analytics” is a broad term that is widely used in various areas such as social
networks, transportation systems, bioinformatics, communication networks and so
on. From the computer science perspective, it can be subsumed under ”applied graph
theory”, since the structural and algorithmic aspects of abstract graphs are the preva-
lent methodological determinants in many applications of network analytics [26].

Nowadays, more and more large networks become available. Analysing these net-
works to derive key insights for business is critical for many enterprises and organi-
sations. As a result, in recent years, network analytics has started to become increas-
ingly popular. In response to the growing popularity for network analytics, a deluge
of specialised graph systems have been developed, including Pregel [39], Giraph [6],
GraphLab [38], Giraph++ [49], NScale [44], AllegroGraph [2], and Neo4j [14].

For many enterprises and organisations, these specialised graph systems are typi-
cally used in conjunction with relational databases because network data are often
stored and managed in relational databases in the first place. As a result, within two
separate systems, a common usage pattern for network analytics is described as fol-
lows: (1) exporting data from a relational database to text files (e.g. CSV, XML, TXT),
(2) importing those text files into graph systems, (3) running analysis and getting re-
sults from those graph systems, (4) possibly reloading results into relational databases
for further processing [36]. In this pattern, data analysts need to move data around,
which is an expensive step. It is also cumbersome to learn and maintain two separate
systems.

Currently, most network analysis tasks follow this pattern. This is because relational
databases have limitations for network analytics. For example, it is difficult to use
SQL, the query language of relational databases, to express network analysis oper-
ations. Even for simple operations such as neighbourhood accesses, a SQL query
would require multiple joins and become complex. Moreover, even if we can write
an SQL query for network analysis operations, relational databases are inefficient for
running iterative algorithms (e.g. PageRank, finding shortest paths) [36].

1

2 Introduction

However, in real-world networks, vertices and edges are often accompanied by some
attributes. For example, in a social network, vertices may have attributes to describe
the properties of each person, such as name, gender and location. Edges may also
be of different types, such as friends, classmates and colleagues. Accessing these at-
tributes is typically about relational analysis.

Therefore, we come up with a question: ”what if we can perform network analyt-
ics directly with relational databases?”. If it is convenient and efficient to perform
network analytics with relational databases, the following benefits can be derived:

• We do not need to export or import data between two kinds of systems.

• We can combine network analysis and relational analysis to retrieve more valu-
able and interesting information.

• We can inherit many great features of relational databases, such as query opti-
misation, fault tolerance, secure transaction, integrity constraints and so on.

Furthermore, some existing works indicate relational databases, via using some opti-
misation techniques, can achieve a better or comparable performance than specialized
graph systems for some network analysis tasks, such as triangle counting [36], sub-
graph pattern matching [35], and weakly connected component [32].

Therefore, unlike those graph systems, the motivation of this thesis is to develop a
unified framework which is able to extend relational databases with network analysis
capability.

1.1 Objectives

The goal of this thesis is to develop a unified framework for network analytics. This
framework aims to provide users a unified method to deal with network analysis
tasks, relational analysis tasks, and even a mix of them. The specific objectives are
described as follows:

• Develop a data model that supports data analysis over both relations and graphs.

• Design a query language that enables users to write queries for network analysis
operations, relational analysis operations and even a mix of them.

• Implement an efficient query engine that is able to efficiently process different
types of queries.

1.2 Contributions

This thesis has four main contributions:

§1.3 Outline 3

• We have developed a new data model for network analytics, called Relation-
Graph (RG) model. This RG model takes a relational core in the center and
the relation core is surrounded by a number of graphical views. Between the
relational core and the graphical views, there are a number of Relation-Graph
mappers (RG mappers) that take a number of relations to generate a graph. Us-
ing the RG model, users are able to manage data in a relational database and
perform network analytics with it.

• We have designed a SQL-like query language for network analytics, called Relation-
Graph Structured Query Language (RG-SQL). It extends SQL with ranking, clus-
tering, path finding and graph constructing operations. In essence, RG-SQL is
a relation-graph interactive query language. Users can use traditional SELECT-
FROM-WHERE statements to extract a sub-graph or use aggregate and join op-
erations for further processing network analysis results. It also supports nested
queries for advanced network analysis tasks that involve analysis over both
graphs and relations.

• We have designed an implementation architecture for a query engine, called
RG engine, and have implemented it with an open-source relational database
(PostgreSQL). This architecture allows us to incorporates different graph analy-
sis tools as plug-ins for supporting network analysis algorithms. It is flexible to
add, modify or delete algorithms within this architecture.

• We have conducted two experiments. One experiment is to evaluate the perfor-
mance of three existing graph analysis tools (SNAP [21], NetworkX [16], Graph-
tool [7]). In this experiment, we use the Erdos-Renyi methods [31] to create
random graphs as inputs, run different network analysis algorithms using these
tools and evaluate their time performance and memory performance. Another
experiment is to compare the RG engine with the query engines of a relational
database (PostgreSQL) and a graph database (Neo4j) to indicate the efficiency of
the RG engine.

1.3 Outline

The rest of this thesis is divided into the following 6 chapters:

• Chapter 2 introduces three typical types of existing systems for network ana-
lytics. We discuss the advantages and limitations of these existing systems and
explains why a unified framework is needed.

• Chapter 3 presents the formal definition of the RG model and introduces the
main features of RG-SQL. We use the ACM bibliographical network as an exam-
ple to illustrate the key concepts of our data model and to demonstrate how to
write queries using RG-SQL.

4 Introduction

• Chapter 4 discusses the main phrases in the query processing, presents the ar-
chitecture of our query engine and proposes some query optimization strategies
that can be incorporated into the implementation of the query engine.

• Chapter 5 presents our experimental results. One experiment we have con-
ducted is to evaluate the performance of three graph analysis tools. Another
experiment is to compare our query engine with the query engines of a rela-
tional database (PostgreSQL) and a graph database (Neo4j).

• Chapter 6 concludes the thesis and discusses the future work.

Chapter 2

Background and Related Work

In this chapter, we introduce three types of systems that have been proposed in the
past few years. In Section 2.1, we first present vertex-centric systems (e.g. Pregel [39],
Giraph [6], GraphLab [38]) and neighbourhood-centric systems (e.g. Giraph++ [49],
NScale [44]). These two kinds of systems are closely related because neighbourhood-
centric systems are developed upon the concepts of vertex-centric systems. In Sec-
tion 2.2, we introduce the embryonic-but-growing-significantly graph databases such
as Neo4j [14] and AllegroGraph [2]. Then Section 2.3 describes two SQL-based sys-
tems, GraphiQL [36] and Grail [32], which are built upon the traditional relational
databases. We will discuss how our work is different from these SQL-based systems.
A summary for different types network analysis systems is given in Section 2.4.

2.1 Vertex-centric and Neighbourhood-centric Systems

Vertex-centric systems were developed for efficiently processing large-scale graphs in
a distributed environment. In vertex-centric systems, generally, a large-scale graph is
divided into several partitions. Each of them has vertices and outgoing edges that are
stored distributively. Figure 2.1 shows an example data model used in vertex-centric
systems. In Figure 2.1, an input graph is divided into three partitions (P1, P2, P3) and
each partition contains a set of vertices. One vertex has a unique ID (e.g. V1), a set of
values (a vertex has one value about out-degree in this example) and a set of outgoing
edges for finding targets to pass messages.

In vertex-centric systems, each vertex is considered as an independent computing unit
and users are required to express their network analysis algorithms in the so-called
”thinking like a vertex” programming mode [39]. The algorithm computation is pro-
cessed at the vertex level but the computation models of different systems are slightly
different. The representative vertex-centric systems include Pregel [39], Giraph [6] (an
open source implementation of Pregel) and GraphLab [38]. For Pregel and Giraph,
their computation models are both based on message passing which enables vertices
to be computed in parallel. Each vertex is associated with two states – active and
inactive. At the beginning, all vertices are active. Then following a sequence of iter-
ations, called supersteps, messages are passed from one vertex to anther vertex. In

5

6 Background and Related Work

Figure 2.1: Data Model Example for Vertex-centric Systems

a superstep i, each active vertex receives messages from other vertices in the super-
step i-1, updates its values and sends messages to other vertices in the superstep i+1.
When passing messages among vertices, the states of vertices will be changed from
active to inactive. When all vertices become inactive, the overall program terminates.
For GraphLab, unlike Pregel, the computation is a stateless function that operates
on the values of vertices which are associated with small neighbourhood in a graph.
A vertex reads and updates its values or values of its neighbours. Hence, without
passing message, GraphLab allows asynchronous iterative computation. Moreover,
GraphLab requires the graph structure to be static while Pregel supports graph muta-
tion during computation. In addition to the systems mentioned above, there are other
vertex-centric systems such as Trinity [48], GRACE [50], Kineograph [28] and so on.

Neighbourhood-centric systems were developed soon after vertex-centric systems
were proposed. This is because the vertex-centric model hides the subgraph informa-
tion via using a collection of unrelated vertices instead of a proper subgraph of the
original input graph. So the vertex-centric model restricts optimization for some algo-
rithms (e.g. connected component and PageRank) [49]. The typical neighbourhood-
centric systems include Giraph++ [49] (developed upon Giraph) and NScale [44]. Fig-
ure 2.2 shows an example data model for neighbourhood-centric systems based on
the concepts of Giraph++. In Figure 2.2, the neighbourhood-centric model divides the
original input graph into partitions as subgraphs (G1, G2, G3). The subgraph stores
the information about vertices and their connections. Each vertex has a unique id (e.g.
V1) and a set of values (this example considers the out-degree value). The model cate-
gorises vertices into two types – internal vertices and boundary vertices. The vertices
that are used to divide the input graph are the boundary vertices (V4 in G2 and V6 in

§2.1 Vertex-centric and Neighbourhood-centric Systems 7

G3 are boundary vertices). A vertex is an internal vertex in an exactly one subgraph
and this subgraph is called the owner of the vertex (G1 is the owner of vertex V4 and
G2 is the owner of vertex V6), but this internal vertex can be a boundary vertex in zero
or more subgraphs. The vertices V1, V2, V3 and V4 are the internal vertices in G1, The
vertices V5, V6 and V7 are the internal vertices in G2 and the vertices V8, V9 are the
internal vertices in G3. For all internal vertices in a subgraph, the owner subgraph
stores all the values. But for a boundary vertex, the vertex value is just a temporary
local copy and its primary information resides in its owner subgraph.

Figure 2.2: Data Model Example for Neighbourhood-centric Systems

In terms of the computation model of neighbourhood-centric systems, it is similar to
the message passing model, but the messages are only sent from boundary vertices to
their corresponding internal vertices. As message passing through internal vertices is
cheap and immediate, this model can reduce the number of messages passing through
cross-partition edges so as to improve the efficiency.

The vertex-centric model is simple-to-use for programming and has been proved to
be useful for many network analysis algorithms. The neighbourhood-centric model
is not intended to replace the vertex-centric model, instead, it can be implemented
in the same system such as Giraph and Giraph++ for achieving better performance.
Our concern for both vertex-centric and neighbourhood-centric systems is that they
require users to do imperative programming as they do not provide any declarative
languages for querying data. Moreover, some recent works indicate that simply using
a SQL-based system can achieve a better or comparable performance than vertex-
centric systems for some network analysis tasks, such as PageRank, triangle counting,
connected components and single source shortest path [32] [36].

8 Background and Related Work

2.2 Graph Databases

Graph databases emphasise on efficiently managing and processing data as graphs
for network analytics. For example, for the network analysis tasks like finding friends
of friends, relational databases need to use expensive join operations on tables. The
key idea of data model in graph databases is to include all connections between ob-
jects so as to generate a cohesive picture of the whole data. As a result, there are two
typical data models used in graph databases – Property graphs and RDF triple stores.

Property graphs are often said to be ”whiteboard-friendly” by data analysts because
when they draw a picture to describe data, it is often naturally a property graph [40].
Figure 2.3 shows an example property graph. A standard graph structure consists of
vertices and edges, denoted by G = (V, E) where V represents vertices and E rep-
resents edges. However, a current popular property graph structure also contains
properties in addition to vertices and edges, denoted by G = (V, E, λ) where λ rep-
resents properties. In Figure 2.3, vertices contains properties in the form of arbitrary
key-value pairs where keys (e.g. T1, U5) are strings and values (e.g. Name, State,
Comment Count) have various data types (e.g. string, integer). An edge (e.g. Tweets,
Follows, Re-tweets) that connects two vertices is directed and labelled. Like vertices,
edges can also have properties (e.g. Date, Time) which is useful for providing ex-
tra metadata for network analysis algorithms and adding semantics to relationships
such as quality and weight [46]. Some typical graph databases that are using prop-
erty graphs include Neo4j [14], Titan [24] and OrientDB [15]. Although these graph
databases use the same data model, they have different query languages for data ma-
nipulation. Neo4j has its exclusive Cypher query language for graph traversal and Ti-
tan uses Gremlin as its graph traversal language. As OrientDB supports both schema-
less (OrientDB graph model) and schema-based model (OrientDB document model),
it not only uses Gremlin for graph traversal but also uses SQL on top of Gremlin for
querying structured data.

RDF (Resource Description Framework) triple stores, created in 1999 [41], were de-
signed to support the semantic web by adding semantic markup to the links that con-
nect web resources. In fact, a typical RDF triple is a subject-predicate-object data
structure and RDF databases do not store data as a graph. So RDF databases do not
support index-free adjacency [40]. As noted in [40], the reason why RDF triple stores
fall under the category of graph databases is that they do offer optimised graph query
capabilities when connected structures are created for different independent triples
(refer to Figure 2.4 1). Some representative graph databases include AllegroGraph [2],
Stardog [22], and Apache Jena [3] and SPARQL is the standard query language for
RDF triple store.

Unlike vertex-centric and neighbourhood-centric systems, graph databases provide
different kinds of declarative query languages to retrieve information. In some net-

1source: http://franz.com/agraph/support/documentation/current/agraph-introduction.html

§2.2 Graph Databases 9

Figure 2.3: Data Model Example for Property Graph

work analysis tasks, particularly in ”friends of friends” queries [30], they are able
to achieve far better performance than relational databases that have to use expen-
sive multiple joins on tables. However, relational databases are still widely used by
enterprises or organisations and they provide a number of sophisticated optimiza-
tion technologies (e.g. indexing, materialised views) for managing and processing
schema-based data. So relational databases are still our preference for some tasks
such as accessing attributes of entities, using aggregate functions and so on.

Figure 2.4: RDF Triple Store Model

10 Background and Related Work

2.3 SQL-based Systems

As various specialised systems for network analytics have been created in recent
years, the use of SQL-based systems for network analytics is largely ignored since
users have an impression that systems with a graph model (graph systems) are in the
nature of better performance for network analysis tasks. Then some researchers come
up with a natural question – ”Is it really bad to simply use a SQL-based relational sys-
tem for both managing and processing network data?”. Recently, using SQL-based
relational systems for network analytics becomes popular in the research field and
some papers demonstrate SQL-based relational systems, compared with graph sys-
tems, do have better or competitive performance in some network analysis tasks. The
work in [51] shows that Oracle database can achieve better performance for finding
shortest paths. The work in [35] proposes query optimization techniques for efficient
subgraph pattern matching in PostgreSQL. The works in [37] and [32] both indicate
that SQL-based systems are competitive in queries for PageRank, finding single source
shortest paths and calculating connected components.

Figure 2.5: Data Model Example for SQL-based Relational Systems

Figure 2.5.(a) shows an example data model for Grail [32], one SQL-based relational
system with a syntactic layer for network analytics. This data model consists of a
vertex table and an edge table. In Figure 2.5.(a), id (e.g. V1, V2) in the vertex table
represents the unique identifier of a vertex, src and dest in the edge table respectively
represent the source vertex id and the destination vertex id, data in both tables contain
vertex or edge properties that are irrelevant to the computation and val in both tables
represents the properties that are relevant to the computation.

Then Figure 2.5.(b) shows an example data model for GraphiQL [36], another SQL-
based system with a graph intuitive query language. Unlike the data model of Grail,
GraphiQL includes all graph elements in one table called Graph Table with a purpose
that helps users to easily access neighbourhood of vertices and edges without joining
tables. In Figure 2.5.(b), every element (either vertex or edge) in a graph table has
the default properties id (e.g. V1, V2) and type (e.g. VERTEX, EDGE) and a number
of associated properties (e.g. property 1, 2 for vertices respectively relate to name and
state whilst for edges they respectively relates to the source vertex and the destination
vertex.).

§2.4 Summary 11

In terms of the computation model of these systems, they are similar but with differ-
ent implementation methods. Computation of Grail and GraphiQL are vertex-centric
with the message passing model (refer to Section 2.1). They translate a vertex-centric
program to SQL by creating some intermediate tables and using different relational
operators to implement the program. For Grail, it creates temporary tables, such as
next table and message table, to simulate the message passing model. Next table
contains id and values for vertices in the next superstep and message table contains
id of the target vertices and messages that change vertices’ values. For GraphiQL, it
creates computation tables that store computation values for vertices and edges, but
they are not temporary. In each superstep of the message passing model, old compu-
tation tables are replaced by new computation tables with latest values.

In essence, these SQL-based systems (e.g. Grail and GraphiQL) are vertex-centric
but they provide declarative query languages for users to do vertex-centric program-
ming and then translate the program into SQL. As these systems need to translate
their query languages into SQL, there is a gap between two levels of query languages,
which indicates these query languages lack of capability to well interact with SQL,
such as using SQL joins or aggregate functions for further querying. In addition, since
they use SQL and relational operators for vertex-centric programming, it should have
limitations or poor performance for running some network analysis tasks (e.g. find
friends-of-friends) which are inefficient via using relational systems.

2.4 Summary

In this chapter, we have introduced three types of systems for network analytics. For
vertex-centric and neighbourhood-centric systems, they do not provide declarative
languages for users to retrieve data easily. In terms of graph databases, we have de-
mands on not only querying data in graphs but also querying schema-based data.
Moreover, most of applications are still using relational databases to manage and pro-
cess data. As a result, we want a system which is SQL-based, provides a declarative
query language and has competitive performance for network analysis tasks. Cur-
rently, existing SQL-based relational systems still have limitations: (1) the query lan-
guages lack of capability to interact with SQL so we want a declarative query language
that is able to well interact with SQL (e.g. using SQL to create graphs or subgraphs,
combining the analysis results with SQL joins and aggregate functions to get more
information). (2) they can achieve competitive performance for only a few network
analysis tasks so we want a flexible way to cope with most of network analysis tasks
(e.g. for some tasks we can leverage the graph model and graph computing engines to
efficiently get the results, for other tasks we can take advantage of SQL optimization
techniques to achieve better performance). Therefore, we propose the our data model
and query language in Chapter 3 to meet these requirements.

12 Background and Related Work

Chapter 3

Data Model and Query Language

In this chapter, we describe our data model and query language. In Section 3.1, we
first define our data model. Then based on our data model, in Section 3.2, we intro-
duce a new query language for network analytics. A summary of our data model and
query language is given in Section 3.3.

3.1 Data Model

Our data model consists of a relational core, graphical views and relation-graph
mappers. A relational core that contains different relations is in the center of our data
model and surrounded by a number of graphical views. Relation-graph mappers are
used to map relations to graphical views. As our data model allows to build graphs
upon relations, we call it Relation-Graph data model (RG model). Figure 3.1 gives
an overview of the RG model based on the ACM bibliographical network 1.

3.1.1 Relational Core

In the RG model, a relational core consists of a collection of relations. Each relation
is described by a relation schema, and contains a number of tuples. Each tuple rep-
resents a fact about objects in real-life applications. Now, we define the following
concepts for the relational core.

• Let D = {Di} where i ∈ N be a family of possibly infinite domains and each Di
is referred to one domain. For instance, we could have domains such as string,
integer, boolean and so forth.

• A relation schema R consists of a relation name R and a finite set of attributes
{A1, . . . , An} together with an assignment of domains, dom : R → D, such that
each Ai is associated with a domain dom(Ai) where i ∈ [1, n]. We use attr(R) to
refer to the set of attributes of R, i.e., attr(R) = {A1, . . . , An}.

1Provided by ACM Digital Library (http://dl.acm.org/)

13

http://dl.acm.org/

14 Data Model and Query Language

Figure 3.1: Overview of Data Model

• A tuple over R (or an R-tuple for short) is a mapping, t : R → D, with t(A) ∈
dom(A) for all A ∈ attr(R). We use t(A) indicates the value that corresponds to
the attribute A in tuple t.

• A relation over R (or an R-relation for short) is a finite set of R-tuples.

• A relational core C is a set of relation schemas, i.e., C = {R1, R2, . . . , Rm}.

In the relation core, there are two types of domains: Did ⊆ D is a set of identifier do-
mains and Dva ⊆ D is a set of value domains with Did ∩Dva = ∅ and Did ∪Dva = D.
An identifier domain contains a set of entity identifiers. A value domain contains a set
of permissible values. All identifier domains in Did are pairwise disjoint (the reason
will be described in Section 3.1.2). The following example illustrates these concepts of
the relational core.

Example 3.1.1 The Association for Computing Machinery (ACM) is an organization for
academic and scholarly interests in computing. It manages a large bibliographical net-
work data. In the ACM bibliographical network, each article is written by one or more
authors, an article is published in a conference proceeding or a journal, one article may
cite a number of other articles, and each journal or conference proceeding is published
by a publisher. Figure 3.2 shows a relational core for the ACM bibliographical net-
work ACM = {AUTHOR, ARTICLE, PROCEEDING, JOURNAL, PUBLISHER,
WRITES, CITES}. The underlined attributes represent primary keys and each di-
rected arc represents a foreign key. Each relation schema has one or more attributes
with an identifier domain. In this case, we have Did = {dom(AUid), dom(ARid),
dom(CitedARid), dom(JOid), dom(PRid), dom(PUid)}.

§3.1 Data Model 15

Figure 3.2: The Relational Core of ACM Bibliographical Network

16 Data Model and Query Language

3.1.2 Graphical Views

Based on a relational core, a number of graphical views can be established in the RG
model. Each graphical view is a graph in which a vertex represents an entity and an
edge represents a link between two entities. Each graph can be described by a graph
schema. Informally, a graph schema describes what kinds of entities the vertices of a
graph may represent and the connections of such entities represented by the edges. In
this work, we use entity class to describe one kind of entities and link class to describe
a type of connection between entities.

Formal definitions are presented as follows:

• An entity class E describes a set of (physical or abstract) entities that have the
same behaviour and characteristics. In the RG model, each entity class E con-
tains a set of entity identifiers from the same identifier domain.

• A link class L describes relationships among two (possible same) entity classes
E1 and E2. For a link class L and any two entities E1 and E2, L is symmetric if it
satisfies a condition: whenever (E1, E2) ∈ L, then we must have (E2, E1) ∈ L. A
link class is asymmetric if it is not symmetric.

• A graph schema G consists of two entity classes and one link class, denoted by
G = 〈E1,L, E2〉, where the link class L is defined as L ⊆ E1×E2. If L is symmet-
ric, then graphs over this graph schema G are undirected graphs. Otherwise,
graphs are undirected.

• A graph G = (V, E) over G = 〈E1,L, E2〉 consists of a set of vertices E1 ∪ E2 and
a set of edges E ⊆ L.

A standard graph structure, G = (V, E), consists of vertices and edges. V is a set of
vertex identifiers and E is a set of vertex identifier pairs. Therefore, in our data model,
only entity identifiers are stored in graphs. Other information are stored in the rela-
tional core. We also require all identifier domains in Did must be pairwise disjoint so
as to guarantee one vertex in a graph represent exactly one entity.

Example 3.1.2 In the ACM bibliographical network, we may have two entity classes
– Eau for authors and Ear for articles. Eau contains the entity identifiers in dom(AUid)
in the relation schema AUTHOR and Ear contains the entity identifiers in dom(ARid)
in the relation schema ARTICLE. For example, the article AR1 is written by three
authors AU1, AU2 and AU3. The article AR2 is written by two authors AU4 and
AU5. In Figure 3.3(a), we have an undirected graph over a graph schema G =
〈Eau,Lcoauthorship, Eau〉 where Lcoauthorship is symmetric and indicates that two entities
are linked if they have co-authored at least one article. For another example, the arti-
cle AR1 cites two articles AR2 and AR3. Both AR2 and AR3 cite the article AR4. In
Figure 3.3.(b), we have a directed graph over a graph schema G = 〈Ear,Lcitation, Ear〉
where Lcitation is asymmetric and indicates that two entities are linked if one cites an-
other one.

§3.1 Data Model 17

Figure 3.3: Graphs of ACM Bibliographical Network

3.1.3 Relation-Graph Mappers

In the RG model, we define relation-graph mappers (RG mappers), each of which
takes a set of relations as input and generate a graph as output.

We define the following related concepts for RG mappers.

• An input schema InM is a set of relation schemas, InM = {R1,R2, . . . ,Rm}. A
set of relations over the relation schemas in InM is denoted by I(InM).

• An output schema OutM is a graph schema, i.e.,OutM = 〈E1,L, E2〉. A graph
over the graph schema is denoted by I(OutM).

• An RG mapperM, which is a mapping, maps a set of relations over an input
schema InM to a graph over an output schema OutM, i.e., I(InM)→ I(OutM).

Example 3.1.3 Figure 3.4.(a) presents two RG mappers Mcoauthorship and Mcitation.
In Figure 3.4.(a), the RG mappers Mcoauthorship generates the co-authorship graph
over the graph schema 〈Eau,Lcoauthorship, Eau〉 from a relation over the relation schema
WRITES, so InMcoauthorship = {WRITES} and OutMcoauthorship = 〈Eau,Lcoauthorship, Eau〉.
In Figure 3.4.(b), another RG mappersMcitation generates the citation graph over the
graph schema 〈Ear,Lcitation, Ear〉 from a relation over the relation schema CITES, so
InMcitation = {CITES} and OutMcitation = 〈Ear,Lcitation, Ear〉.

18 Data Model and Query Language

Figure 3.4: RG Mappers of ACM Bibliographical Network, we use relational algebra
to represent an RG mapper in this section.

§3.2 Query Language 19

3.2 Query Language

In this section, we present a query language that is based upon the RG model. Our
query language, called RG-SQL, extends the traditional SQL (Structured Query Lan-
guage) with the following main features..

• graphical views providing flexible choices for building graphs on-the-fly or ma-
terialising graphs.

• Incorporating graph operators to support common graph algorithms for net-
work analytics, such as vertex centrality, community detection, reachability and
shortest path.

Here, we discuss three types of graph operations which are ranking, clustering and
path finding. We also demonstrate how such operators can be incorporated into SQL
to provide a unified data analysis framework for relational analysis, network analysis
or a mix of them.

Below is the basic syntax (SQL-style syntax) of graph queries in our query language
(we will provide more details in the following subsections):

SELECT <attribute list>
FROM <graph operator>
WHERE <condition>;

• <attribute list> is a list of attribute names of a relation that contains the result
generated by a graph operation.

• <graph operator> indicates which operator (RANK, CLUSTER or PATH) a user
wants to use.

• <condition> in the WHERE clause is optional for ranking and clustering opera-
tions to construct a graph on-the-fly, but it is required for path finding operation
to specify vertex condition.

3.2.1 Create Graphical Views

In our data model, graphs can be constructed over a relational core using RG map-
pers. Thus, graphs are supposed to be dynamic, i.e., graphs change if we modify the
tuples of the relational core. In general, there are two approaches to specify graphs in
our work.

Graphs On-the-fly The first approach is to create graphs on-the-fly. In this case, graphs
are not persistently stored in the database, which provides us a flexible way to create
small graphs or different subgraphs of a large one. For graphs that are created on-the-
fly, they are stored in the main memory, so the I/O cost can be significantly reduced.
However, this approach is also limited by the size of a graph and the size of available

20 Data Model and Query Language

main memory. If a graph is too large, then it may not be able to fit into the main mem-
ory, and fails to be created on the fly. Another disadvantage of this approach is that it
is inefficient for a frequently-used graph when a RG mapper is a complex query that
is time-consuming to execute. The syntax of creating a graph on-the-fly is defined by:

SELECT <attribute list>
FROM <graph operator
WHERE <graph name> IS <graph type> AS (RG mapper);

<graph type> := UNGRAPH | DIGRAPH

If users want to create a graph on-the-fly, they need to specify the graph name, the
graph type (UNGRAPH means undirected graph, DIGRAPH means directed graph)
and the RG mapper in the WHERE clause. In Example 3.2.1, it shows how to create the
citation graph on-the-fly, where the citation graph is generated by an RG mapper (SE-
LECT ARid, CitedARid FROM CITES). Details about the VertexID, Value and RANK
operator are given in the next subsection.

Example 3.2.1 The following citation graph is created on the fly.

SELECT VertexID, Value
FROM RANK (citation, indegree)
WHERE citation IS DIGRAPH AS
(

SELECT ARid, CitedARid FROM CITES
) ;

Materialised Graphs The second approach is called graph materialisation which per-
sistently creates a graph in the database. The same as materialised views in relational
databases, incremental update is the technique that keeps the graph up-to-date [25].
This approach is efficient when a graph query needs to be executed multiple times, or
a graph query provides results that can be further analysed. However, we need space
to store materialised graphs. The syntax of creating a materialised graph is defined by:

CREATE <graph type > <graph name> AS (RG mapper);

<graph type> := UNGRAPH | DIGRAPH

Users can use the CREATE command to create a materialised graph in the database.
As same as creating a graph on-the-fly, users are required to specify the graph type,
the graph name and the RG mapper. We take the coauthorship graph and the RG
mapperMcoauthorship mentioned in the previous section as an example to demonstrate
the syntax of creating a materialised graph:

§3.2 Query Language 21

Example 3.2.2 The following creates a coauthorship materialised graph.

CREATE UNGRAPH coauthorship AS
(

SELECT w1.AUid AS AUid, w2.AUid as CoAUid
FROM WRITES as w1, WRITES as w2
WHERE w1.ARid = w2.ARid AND w1.AUid != w2.AUid

) ;

If we do not need a materialised graph any more, we can use the DROP command to
dispose of it. We define the following syntax of dropping a materialised graph along
with an example of dropping the coauthorship graph.

DROP <graph type > <graph name>;

<graph type> := UNGRAPH | DIGRAPH

Example 3.2.3 The following drops the coauthorship materialised graph.

DROP UNGRAPH coauthorship;

3.2.2 Use Graph Operators

In our query language, graph operations are provided as building blocks in the FROM
clause for expressing queries over graphs. We have incorporated three typical opera-
tions – ranking, clustering and path finding.

Ranking In network analytics, we are interested in vertex centrality which indicate
the importance of vertices within a graph. A number of measures have been previ-
ously proposed to determine the importance of vertices such as degree, betweenness,
closeness, pagerank and so forth [26]. We develop a graph operator RANK to specify
the ranking operation with the following syntax:

RANK (<graph name>, <measure>)

<measure> := degree | indegree | outdegree |
betweenness | closeness | pagerank

Note that different measures support different graph types. When creating a graph,
we are required to specify the type of the graph. We will check the measures with
the graph type when running ranking operations on a graph. Table 3.1 shows all
measures that have been incorporated into our query language, along with their sup-
porting graph types.

22 Data Model and Query Language

Operator Measures
Supporting Graph Types

Undirected graph Directed graph

RANK

degree
√

indegree
√

outdegree
√

betweenness
√

closeness
√

pagerank
√ √

Table 3.1: Measures of the RANK Operator

After running a ranking operation over a graph, the results are stored in a temporary
table which consists of two attributes – ”VertexID” and ”Value”. The value of the
”VertexID” attribute in a tuple is an entity identifier of the graph. The value of the
”Value” arrtibute in a tuple is the ranking score of the vertex corresponding to the en-
tity identifier in ”VertexID”. The results are sorted by a descending order of ”Value”.
We can also add the LIMIT clause to return only the top k results. In the following,
we show a query that is based on the data model of the ACM bibliographical network
mentioned in the previous section.

Example 3.2.4 The following query is to find the top 3 influential articles according
to their citation counts.

SELECT VertexID, Value
FROM RANK (citation, indegree)
WHERE citation IS DIGRAPH AS
(

SELECT ARid, CitedARid FROM CITES
)
LIMIT 3;

Clustering A large number of clustering algorithms have been developed for solv-
ing problems in different application areas [26]. In network analytics applications,
two typical clustering-related tasks are: community detection and finding connected
components. In real-life networks, the distribution of edges normally is locally in-
homogeneous, which means high concentrations of edges with special groups of ver-
tices and low concentrations between these groups. This feature is called community
structure [33]. In addition to finding community, we often want to find the biggest
connected component or find all strongly connected components in a network. We
develop a graph operator CLUSTER to specify a group of vertices by using algo-
rithms for connected components and community detection. For algorithms, we use
five keywords including CC for the algorithm of finding connected components [26],
SCC for the algorithm of finding strongly connected components [26], GN for Girvan-

§3.2 Query Language 23

Newman algorithm [34], CNM for Clauset-Newman-Moore Algorithm [29] and MC
for Peixoto’s modified Monte Carlo Algorithm [42]. The syntax of the clustering op-
eration is defined by:

CLUSTER (<graph name>, <algorithm>)

<algorithm> := CC | SCC | GN | CNM |MC

As same as the ranking operation, clustering algorithms support different graph types.
Table 3.2 shows all algorithms along with their supporting graph types.

Operator Algorithms
Supporting Graph Types

Undirected graph Directed graph

CLUSTER

CC
√ √

SCC
√

GN
√

CNM
√

MC
√ √

Table 3.2: Measures of the CLUSTER Operator

The result generated by a clustering operation over a graph is stored in a temporary
table which consists of three attributes – ”ClusterID”, ”Size” and ”Members”. Users
can add the ORDER BY clause with the ”Size” attribute to get the biggest connected
component or community. The value of the ”Members” attribute in a tuple is an array
of entity identifiers, which indicates who are in this tuple’s cluster. Assume that we
have already created a materialised graph called coauthorship mentioned in Example
3.2.2. Example 3.2.5 shows how to find the biggest communities of authors in the ACM
bibliographical network.

Example 3.2.5 The following query is to find the biggest communities that consist
of authors who collaborate with each other to publish articles together.

SELECT ClusterID, Size, Members
FROM CLUSTER (coauthorship, GN)
ORDER BY Size DESC
LIMIT 1;

24 Data Model and Query Language

Path Finding A path is a sequence of pairwise disjoint vertices V1, . . . , Vn where (Vi, Vi+1)
is an edge for i = 1, . . . , n− 1. Finding paths is also one of typical tasks in network
analytics and it includes two primary problems – reachability and shortest path. In
addition, users often want to add more conditions on a path such as finding a path
with a specific length or with a specific vertex in the middle of it. The syntax of PATH
graph operator is defined by:

PATH (<graph name>, <path expression>)

<path expression> := . | V | <path expression>/ <path expression>|
<path expression>// <path expression>

where V is a vertex expression defined by conditions in the WHERE clause
(refer to the basic syntax of graph queries at the beginning of Section 3.2)
and ”.” is the do-not-care symbol which indicates any vertex is allowed.

A path expression is valid if it contains a vertex expression in the first and last po-
sitions. In path expression, ”/” represents one edge and ”//” represents any number
of edges. Table 3.3 shows some examples about path expression.

Operator Path Expression

PATH

V1 /. /. / V2
(paths between V1 and V2, where the length is 3)

V1 // V2
(paths between V1 and V2 with any length)

V1/. / V2 /. / V3
(V2 in the 3rd position of paths between V1 and V3, where the length is 4)

V1 // V2 // V3
(V2 in the middle of paths between V1 and V3 with any length)

Table 3.3: Examples of Path Expression

When using path finding operation, users are required to specify vertex expressions
in the WHERE clause. A temporary table that stores the results of a path finding
operation over a graph consists of three attributes – ”PathID”, ”Length” and ”Path”.
Users can add the ORDER BY clause with the ”Length” attribute to get the shortest
path and the ”//” symbol is for reachability problem between two vertices. The value
of ”Path” attribute in a tuple is an array of entity identifiers, which demonstrates the
sequence of vertices in the path. Still, assume that we already have the coauthorship
materialised graph and we use Example 3.2.6 and Example 3.2.7 to illustrate queries
about reachability and finding shortest path in the ACM bibliographical network.

§3.2 Query Language 25

Example 3.2.6 The following query is to find two authors V1 and V2, where V1 and V2
are connected by a path of any length, the author V1 is affiliated at ANU (Australian
National University) and the author V2 is affiliated at Microsoft.

SELECT PathID, Length, Path
FROM PATH (coauthorship, V1//V2)
WHERE V1 AS
(

SELECT AUid FROM AUTHOR
WHERE Affiliation like '%ANU%'

) AND V2 AS
(

SELECT AUid FROM AUTHOR
WHERE Affiliation like '%Microsoft%'

) ;

Example 3.2.7 The following query is to find shortest paths between two authors V1
and V3, where in the middle of the shortest path there is an author V2 who is affili-
ated at Microsoft. Author V1 is affiliated at ANU and Author V3 is affiliated at NICTA
(National ICT Australia).

SELECT PathID, Length, Path
FROM PATH (coauthorship, V1//V2//V3)
WHERE V1 AS
(

SELECT AUid FROM AUTHOR
WHERE Affiliation like '%ANU%'

) AND V2 AS
(

SELECT AUid FROM AUTHOR
WHERE Affiliation like '%Microsoft%'

) AND V3 AS
(

SELECT AUid FROM AUTHOR
WHERE Affiliation like '%NICTA%'

)
ORDER BY Length ASC;

26 Data Model and Query Language

3.3 Summary

In this chapter, we have presented our data model (RG model) and query language
(RG-SQL). The RG model is a hybrid model with relations and graphs. It consists of
a relational core, graphical views and relation-graph mappers (RG mappers). A re-
lational core is similar to the relational data model in traditional relational databases
and the entity identifiers from identifier domains are used to specify the vertices of
graphs. Therefore, all identifier domains in the relational core must be pairwise dis-
joint so as to guarantee each vertex in a graph can only represent exactly one entity.
An RG mapper is a query that is used to map a set of relations to one graph. In the
RG model, a relational core provides a basis for a number of graphical views that are
generated by using a number of RG mappers. Based upon the RG model, we propose
a query language (RG-SQL) for data manipulation. RG-SQL extends traditional SQL
with creating/dropping graphs, and conducting queries over graphs. Users can use
RG-SQL to create graphs on-the-fly or materialised graphs. The ranking operation is
to sort vertices in a graph according to certain measure of vertex centrality. The clus-
tering operation is to find a group of vertices and the path finding operation is to find
a sequence of vertices in a graph.

Chapter 4

Query Engine

In this chapter, we describe the query engine developed for the RG model and RG-
SQL. As we develop our query engine with PostgreSQL, we follow the PostgreSQL
concepts when describing the query processing and each component of the query
engine. In Section 4.1, we first demonstrate how queries written in RG-SQL are pro-
cessed in our query engine. In Section 4.2, we present the architecture of our query
engine and give more details about its components. Then we propose some query op-
timisation strategies in Section 4.3. Section 4.4 gives a summary of the query engine.

4.1 Query Processing

Similar to relational query processing, a query written in the RG-SQL is processed to
follow a parser-optimiser-executor pattern. An RG-SQL query created in the query
console is first validated by the query parser and then converted into a plan tree.
The query optimiser enumerates alternative plan trees, estimates their cost and deter-
mines the best plan tree for execution. A plan tree (refer to Section 4.2 for more details)
consists of different types of operation nodes including graph operation nodes (rank
operation, cluster operation and path operation) and other relational operation nodes
(selection operation, join operation, aggregate operation). The query optimiser will
extract graph operations from the plan tree and pass them to the graph executors.

For all graph operations, they are executed by three graph executors: (1) rank ex-
ecutor is for rank operations, (2) cluster executor is for cluster operations and, (3) path
executor is for path operations. During these executions, the graph executors need to
retrieve the graph data from the data storage to generate graphs and run algorithms
over those graphs. After graph operations are executed, their corresponding execu-
tors will store the results into the data storage as the network analysis results.

After the query optimiser determines the best plan tree, the plan executor executes
the plan tree by processing its operation nodes from the bottom to the top. During
the execution, the plan executor needs to retrieve the network analytics results and
the relational data from the data storage. After the execution, the plan executor will
return the query result to the query console.

27

28 Query Engine

Next section will give more details about each component of our query engine.

Figure 4.1: RG-SQL Query Processing

4.2 Architecture

Our query engine, called RG Engine, is built for processing RG-SQL queries that
contain graph sub-queries (queries with graph operators) and relational sub-queries.
The RG engine is developed in Python programming language with the official Post-
greSQL client library – libpq [11]. We use Psycopg [17], the current mature wrapper
for the libpq, as the PostgreSQL adapter for our query engine. Figure 4.2 shows the
main components of the RG Engine.

Query Console

The query console is a user interface that allows users to submit RG-SQL queries.
The same as traditional SQL queries, each RG-SQL query ends with a semicolon. The
console also displays query result and error messages, such as graph type error, path
expression error, and so on.

§4.2 Architecture 29

Figure 4.2: Architecture of the RG Engine

Query Parser

The query parser consists of four main sub-components – Validator, Analyser, Rewriter
and Translator. Given an RG-SQL query, the validator first checks whether or not the
query syntax is correct, such as checking the keyword’s spelling, checking the num-
ber of parentheses, checking if path expressions are in correct format and so forth.
Then, the validator is involved with the system catalog to validate the query. The
system catalog is the place where PostgreSQL stores schema metadata, such as infor-
mation about tables, attributes, operators, data types and other internal information
[18]. We add a schema metadata about materialised graphs into the system catalog –
the pg matgraph. The following describes some typical query validation tasks:

• To check whether or not the graphs and tables of the query are registered in the
system catalog. The corresponding schema metadata contain the pg matgraph,
the pg table, the pg matviews and the pg views.

• To ensure that the attribute references are correct. The corresponding schema
metadata is the pg attribute.

• To examine if the operators used in the query are consistent with data types. The
corresponding schema metadata contain the pg operator and the pg type.

After a query is validated, the analyser starts to differentiate graph sub-queries and
relational sub-queries. There will be a query tree that indicates the query execution
order (refer to Figure 4.3, queries at the bottom will be executed first). In Figure 4.3,
the ”Graph Sub-query 1” retrieves a materialised graph and the ”Graph Sub-query 2”
with a relational sub-query retrieves a graph that is created on-the-fly.

30 Query Engine

Figure 4.3: Query Tree Example for a Query of the ACM Bibliographical Network

For all the graph sub-queries, the rewriter replaces the graph operators with some spe-
cific table names. These table names will be used for temporary tables to store results
after executing graph operations. For example, the ”Graph Sub-query 1” in Figure 4.3
will become ”SELECT Members FROM cluster coauthorship 1 ORDER BY Size DESC
LIMIT 1;”. These table names follow a specific format:

<graph operator> <graph name> <graph operator ID>

<graph operator>:= rank | cluster | path
<graph name> is the name of the graph stored in the data storage.
<graph operator ID> corresponds to the order that graph operators occur
in the query.

In our query engine, the text string of graph operators and the specific table names
are stored in the data dictionary. If a graph operator contains a graph that is cre-
ated on-the-fly, then the graph operator and its corresponding relational sub-query
will be rewritten to one specific table name. For example, the ”Graph Sub-query 2”
and the ”Relational Sub-query 2” in Figure 4.3 will become ”SELECT VertexID FROM
rank citation 2;”.

After all these steps, the translator converts the query into an internal format of the
query (i.e. a plan tree) that will be passed on to the query optimiser for optimisation
[18]. A plan tree can be represented by a relational algebra expression.

§4.2 Architecture 31

Query Optimiser

In general, what the query optimiser does are: (1) enumerating alternative plan trees
based on the plan tree that is received from the query parser (done by the Plan Gener-
ator); (2) estimating the cost for the alternative plan trees (done by the Cost Estimator);
(3) choosing the plan tree with the lowest cost for execution.

In order to identify alternative plan trees (typically a subset of all possible plan trees),
one important method used by a query optimiser is using heuristic rules that trans-
form a relational algebra expression (RA expression) into another equivalent-but-
more-efficient RA expression. Some typical transformation rules include: to decon-
struct conjunctive select operations into a sequence of individual selection, to com-
bine selections and cross-products into joins, to push selections and projections ahead
of joins and so forth [20][45]. After identifying the alternative plan trees, the query
optimiser estimates costs of each plan tree in terms of disk page fetches (I/Os) and
CPU time [1]. Then it determines the best plan tree for execution. There is one more
thing: the query optimiser extracts all graph operations from the execution plan tree,
passes them to the three graph executors.

Graph Operation Executors

All graph operations will be executed by three graph operation executors according
to their operation types, which rank executor is for rank operations, cluster executor
is for cluster operations and path executor is for path operations. For the graph op-
eration executors, we use three graph analysis tools as algorithm support, including
SNAP [21], NetworkX [16] and Graph-tool [7]. Based on the performance evaluation
for these three graph analysis tools (refer to Section 5.2), we make decisions about
algorithm support as follows:

• Rank Executor: choose SNAP to support algorithms for four ranking measures
(i.e. degree, indegree, outdegree and pagerank) and Graph-tool to support algo-
rithms for other two ranking measures (i.e. closeness and betweenness).

• Cluster Executor: choose SNAP to support four clustering algorithms (i.e. find-
ing connected components [26], finding strongly connected components [26],
the Girvan-Newman algorithm [34] and the Clauset-Newman-Moore algorithm
[29]) and Graph-tool to support the Monte Carlo algorithm [42].

• Path Executor: choose NetworkX to support the path finding algorithm.

32 Query Engine

Table 4.1 shows the methods that are used in our graph operation executors. More
details about those methods refer to the reference manuals of these graph analysis
tools2. After executing the corresponding operations, three graph operation executors
will store the results into temporary tables with specific table names (mentioned in
the Query Parser). These temporary tables will be stored in the data storage as the
network analysis results before the query processing terminates. The rank executor
will first sort the results according to the measure values and then store the results
into a table that consists of two columns – VertexID and Value. Likewise, the cluster
executor will store the results into a table with three columns (i.e. ClusterID, Size and
Members) and the path executor will create a table that also consists of three columns
(i.e. PathID, Length and Path).

Algorithms Methods Tools
Degree GetDegreeCentr()

SNAP

Indegree GetNodeInDegV()
Outdegree GetNodeOutDegV()
Pagerank GetPageRank()
Connected Component GetWccs()
Girvan-Newman CommunityGirvanNewman()
Clauset-Newman-Moore CommunityCNM()
Betweenness centrality.betweenness()

Graph-toolCloseness centrality.closeness()
Monte Carlo community.minimize blockmodel dl()
Path Algorithm all simple paths() NetworkX

Table 4.1: Algorithm Support

Plan Executor

The basic idea of the plan executor is to execute the plan tree chosen by the query opti-
miser, to extract the required set of tuples, and to return the tuples as a query result to
the query console. The plan tree is a pipelined demand-pull graph with different types
of operation nodes and these nodes will be recursively processed by the plan executor
[18]. The bottom-level nodes produce tuples as the input for the upper-level nodes.
In general, the bottom-level nodes often relate to selection and projection operations
which require the executor to scan physical tables (e.g. sequential scan for non-index
tables and index scan for tables with index attributes) and the upper-level nodes often
relate to join operations (e.g. nested-loop, merge join and hash join). There are other
special-purpose operation nodes, such as sorting and aggregate operations [1]. Fig-
ure 4.4 shows an example about how an plan tree is processed for a query to find the
affiliations of top 10 influential authors in the co-authorship network.

2SNAP’s manual: http://snap.stanford.edu/snappy/doc/reference/index-ref.html;
NetworkX’s manual: http://networkx.github.io/documentation/networkx-1.9.1/;
Graph-tool’s manual: http://graph-tool.skewed.de/static/doc/index.html

http://snap.stanford.edu/snappy/doc/reference/index-ref.html
http://networkx.github.io/documentation/networkx-1.9.1/
http://graph-tool.skewed.de/static/doc/index.html

§4.3 Query Optimisation 33

Figure 4.4: Plan Tree Processing for a Query of the ACM Bibliographical Network

4.3 Query Optimisation

In this section, we propose some query optimisation strategies for our query opti-
miser. As we adopt the query optimiser of PostgreSQL in our query engine, the spe-
cific optimisation techniques of PostgreSQL have already been used in our query en-
gine, such as the transformation rules for relational algebraic equivalence, the genetic
optimisation algorithm for searching alternative plan trees and so forth [18]. However,
our RG-SQL queries may have graph sub-queries and relational sub-queries. How to
optimise those graph sub-queries and relational sub-queries in a unified framework
is the focus of this section. We divide our optimisation strategies into two groups –
Sub-query equivalence and Query caching.

Sub-query equivalence A complex RG-SQL query always contains a number of
graph sub-queries and these graph sub-queries often contain a number of relational
sub-queries. Figure 4.5 shows a query tree example for a path finding query. In Figure
4.5, the relational sub-queries 1,2 3 are very similar, which are to select author iden-
tifiers from the AUTHOR relation. Moreover, for the relational sub-query 1 and the
relational sub-query 3, the results of them are very close because many authors who
work in NICTA are researchers in ANU.

The basic idea of sub-query equivalence is to decompose an RG-SQL query Q into a
set of sub-queries {q1, q2, . . . , qn}, i.e. Q⇒ {q1, q2, . . . , qn}. Then we reduce or rewrite
the equivalent sub-queries to make the sub-query set smaller so as to improve effi-
ciency.

34 Query Engine

Figure 4.5: Query Tree Example for Sub-query Equivalence

Query caching Similar to some existing works for caching results of relational
queries [27] [43], we can also cache the query results so as to avoid repeated com-
putation. Given a complex RG-SQL query, its sub-queries can be transformed into
a number of equivalent queries using different cached results and then this revised
query is fed to the query optimiser to generate an optimal execution plan. However,
there are some issues that need to be solved during the implementation including:

• Cache replacement strategy: we need to decide what kind of caches should be
replaced when the cache space is full. Should we replace the caches that are the
least recently used, or the caches that are the least frequently used, or the caches
that require the largest cache space?

• Cache update strategy: we need to decide how to update the outdated caches.
Should we update the caches once their base relations are changed (immediate
update), or according to certain periods (periodical update), or when the caches
are on demand (on-demand update)?

• Query matching strategy: we need to decide the requirements for two queries
that can be considered as equivalent queries. If two queries are exactly the same,
they certainly are equivalent. How about one query contains another query or
two queries are overlapped? In these situations, can we still reuse the cached
results?

§4.4 Summary 35

4.4 Summary

In this chapter, we have described the RG-SQL query processing and the architecture
of the RG engine. RG-SQL queries typically go through a parser-optimiser-executor
pattern in the query engine. In the query parser of the RG engine, we have a valida-
tor to check and validate queries, a analyser to differentiate graph sub-queries and
relational sub-queries, a rewriter to rewrite all graph sub-queries and a translator to
convert queries into plan trees. Given a plan tree from the query parser, the query
optimiser enumerates alternative plan trees, estimates their cost and determines the
plan tree with the lowest cost to be executed. Then three graph operation executors
execute the graph operations extracted from the execution plan tree and the plan ex-
ecutor processes each operation nodes of the plan tree from bottom to top. At last,
the plan executor returns the query result to the query console. In addition, we also
propose two query optimisation strategies for RG-SQL queries including sub-query
equivalence and query caching.

Since the RG engine is developed with the PostgreSQL, it takes advantage of the
existing PostgreSQL components to process queries including the query parser, the
query optimiser and the plan executor. The source code of the RG engine refers to
https://gitlab.com/RG Framework/RG Engine. We extend the PostgreSQL compo-
nents with capability of processing RG-SQL queries, but we have not yet incorporated
those query optimisation strategies with the RG engine. We take the implementation
for query optimisation as one of our future work.

https://gitlab.com/RG_Framework/RG_Engine

36 Query Engine

Chapter 5

Performance Evaluation

In this chapter, before showing the results of our performance evaluation experiments,
we first describe our experimental environment including the hardware and software
information in Section 5.1. We conduct two experiments in this chapter. The first one,
in Section 5.2, is about the performance of the graph analysis tools that we use as
the RG engine’s algorithm support (i.e. SNAP [21], NetworkX [16], Graph-tool [7]). In
Section 5.3, the second experiment, we compare our RG engine with the query engines
of a relational database (PostgreSQL [19]) and a graph database (Neo4j [14]) through
running different types of queries. A summary is given in Section 5.4.

5.1 Experimental Environment

Hardware Information

All of our experiments were performed on the Dell Optiplex 9020 desktop computer
with the Intel(R) Core(TM) i7-4790 CPU 3.6GHz 8 cores processor, 16 GB of memory
and the 256GB SAMSUNG SSD PM851 disk.

Software Information

The experiment-related software information is presented in Table 5.1.

Operating System Ubuntu 14.04 LTS with Linux kernel 3.16.0-50 generic
Programming Language Python 2.7.6
Relational Database PostgreSQL 9.4.4
Graph Database Neo4j community 2.2.5

Graph Analysis Tools
Snap.py 1.2
NetworkX 1.10
Graph-tool 2.9

PostgreSQL Adapter psycopg2 2.6.1
Time Measure Package timeit 2.6
Memory Measure Package psutil 3.2.1

Table 5.1: Software Information

37

38 Performance Evaluation

5.2 Performance of Graph Analysis Tools

As we mentioned in Section 4.2, for the graph operation executors, we use three graph
analysis tools as algorithm supports, including SNAP [21], NetworkX [16] and Graph-
tool [7]. Table 5.2 shows that all three graph analysis tools can support the first six al-
gorithms including ”Degree”, ”PageRank”, ”Betweenness”, ”Closeness”, ”Connected
Component” and ”Strongly Connected Component”. However, for the other five al-
gorithms, each algorithm can be supported by only one tool. Therefore, we choose
SNAP to support the ”Girvan-Newman” and ”Clauset-Newman-Moore” algorithms,
Graph-tool to support the ”Monte Carlo” algorithm and NetworkX to support path
finding algorithms.

Algorithms SNAP NetworkX Graph-tool

Ranking

Degree
√ √ √

PageRank
√ √ √

Betweenness
√ √ √

Closeness
√ √ √

Clustering

Connected Component
√ √ √

Strongly Connected Component
√ √ √

Girvan-Newman
√

– –
Clauset-Newman-Moore

√
– –

Monte Carlo – –
√

Path Finding
Shortest Path ∗

√
∗ ∗ ∗

Path with Specific Length ∗∗
√

–
Note:
∗ SNAP has the snap.GetShortPath() method but only returns the length of the path.
∗∗ SNAP has the snap.GetNodesAtHop() method but only returns vertex identifiers
of the destination vertices.
∗ ∗ ∗ Graph-tool has the graph tool.topology.shortest path() but only returns one
of all shortest paths.

Table 5.2: Algorithm Support of Graph Analysis Tools

We have first conducted an experiment to evaluate the time performance and memory
performance of the three graph analysis tools through running the first six algorithms.
For the experiment input, we used the graph generator of SNAP to create twelve
Erdos-Renyi random graphs [5] [31], rather than graphs of a specific type of network.
Table 5.3 shows the details of these Erdos-Renyi random graphs.

In the experiment, we ran each of these six algorithms over the twelve random graphs
using the three graph analysis tools. Note that Graph-tool performs some algorithms
(e.g. PageRank, Betweenness, Closeness) on multi-core architectures, which allows
parallel computation [4]. However, SNAP and NetworkX do not support multi-core
architectures. Therefore, we compare SNAP and NetworkX both with Graph-tool (us-
ing 1 core) and Graph-tool (using 4 cores). For the time performance evaluation, we

§5.2 Performance of Graph Analysis Tools 39

Number of Vertices Number of Edges Size (KB)
Graph 1 100 200 1
Graph 2 100 1,000 6
Graph 3 100 5,000 29
Graph 4 500 1,000 8
Graph 5 500 5,000 38
Graph 6 500 25,000 189
Graph 7 2,500 5,000 46
Graph 8 2,500 25,000 228
Graph 9 2,500 125,000 1,100

Graph 10 12,500 25,000 256
Graph 11 12,500 125,000 1,300
Graph 12 12,500 625,000 6,400

Table 5.3: Erdos-Renyi Random Graphs

have run each algorithm five times and taken the average time for plotting. The av-
erage time is the sum of graph constructing time and algorithm computation time.
For the memory performance evaluation, we also have run each algorithm five times,
taken the peak value of each time as the memory consumption, and taken the average
memory consumption for plotting.

Figure 5.1 shows the time performance comparison of the graph analysis tools. Note
that the value of the Y axis of Figure 5.1.(3) and Figure 5.1.(4) is scaled in logarithm.
Based on the plots in Figure 5.1, we have the following observations:

• For the algorithms about degree, page rank, connected components and strongly
connected component), SNAP has the better time performance than NetworkX.
This is mostly because the core library of SNAP is a C/C++ library and Net-
workX is a pure Python implementation, which in general is known to be sub-
stantially slower than C/C++ [23] [10].

• However, although Graph-tool use a pure C/C++ library, it requires more time
than SNAP when running the algorithms mentioned in the last bullet point.
This is because Graph-tool spends more time on constructing graphs (refer to
Appendix B for details). When constructing graphs, Graph-tool always creates
vertices starting from ID 0. Simply speaking, if Graph-tool constructs a graph
that only consists of one vertex with an identifier 100, it will create 101 vertices
from ID 0 to ID 100. So when using Graph-tool to construct graphs, we need
to create dictionaries that map vertex identifiers with the Graph-tool internal
IDs. Because of the dictionary operations, Graph-tool requires more time for
constructing graphs than the other two graph analysis tools.

• In terms of algorithms about betweenness and closeness, despite more graph
constructing time, Graph-tool (4 Cores) takes advantage of its multi-core archi-
tectures to achieve better performance, especially in large graphs.

40 Performance Evaluation

Figure 5.1: Time Performance of the Graph Analysis Tools

Figure 5.2 is about the memory performance comparison of the graph analysis tools.
From Figure 5.2.(3) and Figure5.2.(4), we can conclude that Graph-tool’s better time
performance of betweenness and closeness algorithms comes at the cost of memory
required during compilation. Due to different implementations, the memory perfor-
mance varies among the graph analysis tools. Overall, SNAP has a better memory
performance in this experiment.

§5.2 Performance of Graph Analysis Tools 41

Based on the experimental result above, we choose SNAP to support algorithms for
degree, page rank, connected component, and strongly connected component. We
choose Graph-tool to support algorithms for betweenness and closeness.

Figure 5.2: Memory Performance of the Graph Analysis Tools

42 Performance Evaluation

5.3 Performance of the RG Engine

In this experiment, we set up different types of queries over three datasets. Through
processing these queries, we compare our RG engine with the query engines of a
relational database (PostgreSQL) and a graph database (Neo4j). We first introduce the
three datasets used in the experiment in Section 5.3.1. In Section 5.3.2, we describes
the queries processed by the query engines. Section 5.3.3 presents the experimental
results about processing these queries.

5.3.1 Datasets

In this experiment, we used three datasets: (1) ACM bibliographical network (ACM
network)3 , (2) Stack Overflow network (ST network)4 and (3) Twitter network (TW
network)5. The data in these three datasets can be described as follows:

• In the ACM network, each article is written by one or more authors, an article is
published in a conference proceeding or a journal, one article may cite a number
of other articles, and each journal or conference proceeding is published by a
publisher (refer to the ER diagram of Appendix A).

• In the ST network, each question and each answer is posted by one user, an
answer is accepted for one question as the accepted answer, one question can
have zero or more answers and one question can be labelled by zero or more
tags (refer to the ER diagram of Appendix A).

• In the TW network, each tweet is posted by one user, a tweet can be labelled by
zero or more tags, a tweet can mention zero or more users and a user can follow
zero or more other users (refer to the ER diagram of Appendix A).

The data of the ACM network and the ST network are both in the XML format and
the data of the TW network is in the TXT format. We write a Python program (refer
to https://gitlab.com/RG Framework/Data Import) to transform the data into the
PostgreSQL relational database (refer to the relation schemas of Appendix A) and
follow the instruction [9] [8] of the Neo4j official website to transform data into the
Neo4j. Table 5.4 shows the information about the datasets.

5.3.2 Queries

Based on the three datasets mentioned in the previous subsection, we set up 12 queries
that can be divided into three categories. Table 5.5 shows more details about the
queries. In Table 5.5, Queries 1 – 3 are relational queries including join operations,
sorting operations, aggregate operations and set operations. Queries 4 – 10 are about

3Provided by ACM Digital Library (http://dl.acm.org/)
4Provided by Stanford Network Analysis Platform (http://snap.stanford.edu/proj/snap-icwsm/)
5Provided by Haewoon Kwak (http://an.kaist.ac.kr/traces/WWW2010.html) and

Stanford Network Analysis Platform (http://snap.stanford.edu/data/twitter7.html)

https://gitlab.com/RG_Framework/Data_Import
http://dl.acm.org/
http://snap.stanford.edu/proj/snap-icwsm/
http://an.kaist.ac.kr/traces/WWW2010.html
http://snap.stanford.edu/data/twitter7.html

§5.3 Performance of the RG Engine 43

Raw Number Number Number of
Data of Vertices of Edges Records in
Size in Neo4j in Neo4j PostgreSQL

14.9
GB

(XML)
1,128,243 2,488,849

PUBLISHER : 50
JOURNAL : 128

PROCEEDING : 6,421
ACM ARTICLE : 337,006

Network AUTHOR : 784,638
WRITES : 932,400

CITES : 1,212,894

30.6
GB

(XML)
21,713,109 31,747,662

QUESTION : 7,990,787
ST ANSWER : 13,684,117

Network TAG : 38,205
LABELLED BY : 13,466,686

29.7
GB

(TXT)
13,250,196 264,368,797

TWEET : 10,762,104
TAG : 210,121

TW TW USER : 2,277,971
Network FOLLOW : 259,602,970

MENTIONED IN : 3,108,776
LABELLED BY : 1,657,051

Table 5.4: Dataset Characteristics

some typical network analytics tasks including pattern matching, triangle counting,
pagerank centrality, finding connected components, path finding and community de-
tection. Queries 11 – 12 are advanced queries that combine two different types of net-
work analytics tasks together, in which Query 11 combines pagerank centrality with
finding connected components and Query 12 combines pagerank centrality with path
finding. In terms of how to write these queries in SQL, RG-SQL and Cypher (Neo4j’s
query language), please refer to the Appendix C.

5.3.3 Experimental Results

We have evaluated all these experiment queries using 3 query engines. However,
as shown in Table 5.6, PostgreSQL cannot process Queries 6 – 12 and Neo4j cannot
process Queries 10 – 12. This is due to the limited expressive power of SQL and
Cypher: we cannot use SQL to express Queries 6 – 12 and Queries 10 – 12 cannot be
expressed using Cypher. One advantage of our work is that all these queries can be
expressed in RG-SQL and processed by the RG engine.

To compare the RG engine with PostgreSQL and Neo4j for Queries 1 – 5 and compare
the RG engine with Neo4j for Queries 6 – 10, we have conducted an experiment to
evaluate their time performance. Note that for Query 6 and Query 7, Neo4j needs
to use an extension called Neo4j Mazerunner that extends Neo4j to run network an-
alytics algorithms at scale with Hadoop HDFS and Apache Spark [12]. For the time

44 Performance Evaluation

Join Operation + Sorting Operation

Query 1
ST

Network
Show the question id, the owner id and the tag label of top
10 questions that have the most view count.

Join Operation + Sorting Operation + Aggregate Operation

Query 2
ST

Network

Show the top 5 answerers and their latest reputation score
in an descending order based on the number of their
answers that accepted by questions.

Join Operation + Sorting Operation + Aggregate Operation + Set Operation

Query 3
ACM

Network

Show the number of articles of each journal and
proceeding along with the journal name and the
proceeding title in a descending order.

Pattern Matching

Query 4
TW

Network

Recommend 10 twitter users for Jack who currently does
not follow these users but Jack follows somebody who are
following them.

Triangle Counting

Query 5
ACM

Network
Count the number of triangles of the co-authorship
network.

PageRank Centrality

Query 6
ACM

Network
Find the top 10 influential authors according to the
pagerank centrality in the co-authorship network.

Connected Component

Query 7
ACM

Network
Count the number of connected components of the
co-authorship network.

Path Finding

Query 8
ACM

Network

Find paths with length less than 2, which connect two
author V1 and V2 in the co-authorship network where
author V1 is affiliated at ANU and author V2 is affiliated at
UNSW.

Shortest Path

Query 9
ACM

Network
Find a shortest paths between two authors Michael
Norrish and Kevin Elphinstone in the co-author network.

Community Detection

Query 10
ST

Network
Find a group of tags that they are often used together to
label a question.

PageRank Centrality + Connected Component

Query 11
ACM

Network

According to the pagerank centrality, find the top 3
authors of the biggest collaborative community in the
co-authorship network.

PageRank Centrality + Path Finding

Query 12
ACM

Network

According to the pagerank centrality, show how the top 2
authors connect with each other in the co-authorship
network.

Table 5.5: Queries Used in Our Experiment

§5.3 Performance of the RG Engine 45

PostgreSQL RG Engine Neo4j
Query 1

√ √ √

Query 2
√ √ √

Query 3
√ √ √

Query 4
√ √ √

Query 5
√ √ √

Query 6 –
√ √

Query 7 –
√ √

Query 8 –
√ √

Query 9 –
√ √

Query 10 –
√

–
Query 11 –

√
–

Query 12 –
√

–

Table 5.6: Queries Processed by three Query Engines

performance evaluation, we have run each query 5 times and taken the average time
for plotting. For Queries 1 – 5 and Queries 8 – 9, once a query is submitted, we started
to record the time until the result of each query was returned. For Query 6 – 7, as
Neo4j is required to send an HTTP GET request to the Mazerunner extension to begin
a network analytics algorithm, the time of Neo4j for these two queries is the sum of
the request processing time and the query processing time. As shown in Figure 5.3, for
Queries 1 – 5, the RG engine has nearly the same time performance with PostgreSQL
since our query engine is developed with the official PostgreSQL library – libpq (refer
to Section 4.2). The RG engine can achieve better performance for most queries except
Queries 4, 8 and 9. This is mostly due to the following reasons.

• For Queries 1 – 3, which are the relational queries, the RG engine achieves better
performance by taking advantage of the query optimisation techniques from
relational databases. For Query 5, triangle counting, it has already been proved
that relation databases can perform the triangle counting task very efficiently
through expressing a three-way self-join [36].

• For Queries 6 – 7, as Neo4j needs to rely on the Mazerunner extension, it re-
quires more time on sending the algorithm requests and waiting for the request
completion.

• Query 4 is about pattern matching. Queries 8 – 9 are about finding path. These
two types of tasks are required to navigate hyper-connectivity on graphs. Neo4j
is completely optimised for these kinds of tasks [13] [47]. We, however, have not
yet implemented the query optimisation strategies (refer to Section 4.3) for the
RG engine.

46 Performance Evaluation

Figure 5.3: Time Performance of three Query Engines

§5.4 Summary 47

In addition to all the queries mentioned above, we have also run queries about close-
ness centrality over the Twitter network using the RG engine and Neo4j. The RG
engine can successfully process the queries. However, Neo4j failed to process these
queries and the system reported the ”OutOfMemory” error. We suspect the reason is
that the number of edges in Twitter network is too large, which exceeds the memory
limitation of Neo4j.

5.4 Summary

In this chapter, we have conducted two experiments. One experiment is to evaluate
three graph analysis tools (as algorithm support for the RG engine) with their time
performance and memory performance. Another experiment is to compare the RG
engine with other two query engines (one is PostgreSQL, another is Neo4j) in terms
of query processing. According to the experiment results, the RG engine is able to
process more types of queries and achieve better performance for most queries. How-
ever, for pattern matching and path finding queries, the RG engine is not efficient as
Neo4j. In the future, We attempt to implement some query optimisation techniques
for RG engine to improve its efficiency.

48 Performance Evaluation

Chapter 6

Conclusion

Network analytics is one of the popular fields in computer science and its effect has
already been augmented since the ”Big Data” era approaches. Nowadays, relational
databases are still widely used by enterprises and organisations to process and man-
age their data. However, because of the rigid data model of relational databases, most
of network analytics tasks do not fit well with relational databases. Therefore, the
main purpose of this thesis is to describe a unified framework for network analytics
via using data stored in relational databases. This unified framework includes a data
model, a query language and a query engine.

Our data model is called RG model, which is a hybrid model of relations and graphs.
Using the RG model, we are able to flexibly manage data in relations or in graphs.
Correspondingly, we present a novel query language, called RG-SQL, which extends
SQL with graph operators and graph construction features. RG-SQL aims to enable
users to flexibly manipulate data from relations and graphs, supporting interactive
data analysis between relational analysis and network analysis.

In terms of query processing, we leverage some components of an open-source re-
lational database (PostgreSQL) to develop a query engine called RG engine. The
main differences between the RG engine and traditional query engines of relational
databases are: (1) the query parser of the RG engine is required to validate the syntax
of graph sub-queries and differentiate between graph sub-queries and relational sub-
queries; (2) the RG engine contains three additional executors for graph operations;
(3) the query optimiser of the RG engine may incorporate some query optimisation
strategies that are specially designed for RG-SQL queries. In addition to these, the ex-
periments for performance evaluation demonstrate that RG engine is able to process
various types of queries and achieve better performance in most cases. However, our
experiments also expose some limitations of the RG engine when coping with pattern
matching and path finding. The real advantage of the RG engine is the capability to
combine different types of network analytics tasks with relational analysis.

49

50 Conclusion

There are a number of directions we may continue to explore as the future work,
including:

• To incorporate query optimisation strategies into our query engine such as query
equivalence and query caching.

• To support more network analytics tasks, such as sub-graph matching, K-core
finding, link prediction and so forth.

• To support more graph types including weighted graphs and hyper graphs.

• To apply this unified framework on a distributed relational database architec-
ture.

In conclusion, this thesis develops a unified framework which extends relational databases
with network analytics capability. This unified framework is still in its fledgeling stage
and we have a pile of ideas to enrich and maturate it. We hope, in the future, this uni-
fied framework would become full of vigour and vitality.

Appendices

51

Appendix A

ER Diagrams and Relation Schemas

Figure A.1: The Entity-Relationship Diagram of ACM Bibliographical Network

53

54 ER Diagrams and Relation Schemas

Figure A.2: The Relation Schema of ACM Bibliographical Network

55

Figure A.3: The Entity-Relationship Diagram of Stack Overflow Network

Figure A.4: The Relation Schema of Stack Overflow Network

56 ER Diagrams and Relation Schemas

Figure A.5: The Entity-Relationship Diagram of Twitter Network

Figure A.6: The Relation Schema of Twitter Network

Appendix B

Experimental Data

Figure B.1: Time Performance Data of Query Engines

57

58 Experimental Data

Figure B.2: Time Performance Data of SNAP – Part 1

59

Figure B.3: Time Performance Data of SNAP – Part 2

60 Experimental Data

Figure B.4: Memory Performance Data of SNAP – Part 1

61

Figure B.5: Memory Performance Data of SNAP – Part 2

62 Experimental Data

Figure B.6: Time Performance Data of NetworkX – Part 1

63

Figure B.7: Time Performance Data of NetworkX – Part 2

64 Experimental Data

Figure B.8: Memory Performance Data of NetworkX – Part 1

65

Figure B.9: Memory Performance Data of NetworkX – Part 2

66 Experimental Data

Figure B.10: Time Performance Data of Graph-tool (1 Core) – Part 1

67

Figure B.11: Time Performance Data of Graph-tool (1 Core) – Part 2

68 Experimental Data

Figure B.12: Memory Performance Data of Graph-tool (1 Core) – Part 1

69

Figure B.13: Memory Performance Data of Graph-tool (1 Core) – Part 2

70 Experimental Data

Figure B.14: Time Performance Data of Graph-tool (4 Cores) – Part 1

71

Figure B.15: Time Performance Data of Graph-tool (4 Cores) – Part 2

72 Experimental Data

Figure B.16: Memory Performance Data of Graph-tool (4 Cores) – Part 1

73

Figure B.17: Memory Performance Data of Graph-tool (4 Cores) – Part 2

74 Experimental Data

Appendix C

Experimental Queries

Query 1 (Join Operation + Sorting Operation): Show the question id, the owner id
and the tag label of top 10 questions that have the most view count.

For PostgreSQL and RG engine:

SELECT topQ.Qid, topQ.Owner id, tag.Tag label
FROM LABELLED BY AS lb, TAG,
(

SELECT Qid, Owner id, View count
FROM QUESTION
ORDER BY View count DESC
LIMIT 10

) AS topQ
WHERE lb.Qid = topQ.Qid AND lb.Tid = tag.Tid;

For Neo4j:

MATCH (t:Tag) −[:LABELS]−> (q:Question)
RETURN q.Qid, q.Owner id, t.Tag label
ORDER BY q.View count DESC
LIMIT 10;

75

76 Experimental Queries

Query 2 (Join Operation + Sorting Operation + Aggregate Operation): Show the top 5
answerers and their latest reputation score in an descending order based on the num-
ber of their answers that accepted by questions.

For PostgreSQL and RG engine:

SELECT Owner id, max(Score) AS score
FROM ANSWER
WHERE Owner id IN
(

SELECT a.Owner id
FROM ANSWER AS a, QUESTION AS q
WHERE q.Accepted aid = a.Aid AND a.Owner id != 0
GROUP BY a.Owner id
ORDER BY count(a.Aid) DESC
LIMIT 5

)
GROUP BY Owner id
ORDER BY score DESC;

For Neo4j:

MATCH (q:Question) −[r:ACCEPTS USER]−>(user:User)
RETURN user.Uid, user.Score, count(r)
ORDER BY COUNT(r) DESC
LIMIT 5;

77

Query 3 (Join Operation + Sorting Operation + Aggregate Operation + Set Opera-
tion): Show the number of articles of each journal and proceeding along with the
journal name and the proceeding title in a descending order.

For PostgreSQL and RG engine:

SELECT jo.Name AS name, jo.Publication date, arcount.count
FROM JOURNAL AS jo,
(

SELECT ar.JOid, count(ar.ARid)
FROM ARTICLE AS ar
GROUP BY ar.JOid

) AS arcount
WHERE jo.JOid = arcount.JOid AND jo.Name != ''
UNION
SELECT pr.Title AS name, pr.Publication date, arcount.count
FROM PROCEEDING AS pr,
(

SELECT ar.PRid, count(ar.ARid)
FROM ARTICLE AS ar
GROUP BY ar.PRid

) AS arcount
WHERE pr.PRid = arcount.PRid AND pr.Title != ''
ORDER BY count DESC;

For Neo4j:

MATCH (ar:Article) −[r:PUBLISHED IN]−> (jo:Journal)
RETURN jo.Name AS name, jo.Publication date AS date, count(r) AS count
ORDER BY count DESC
UNION
MATCH (ar:Article) −[r:PUBLISHED IN]−> (pr:Proceeding)
RETURN pr.Title AS name, pr.Publication date AS date, count(r) AS count
ORDER BY count DESC;

78 Experimental Queries

Query 4 (Pattern Matching): Recommend 10 twitter users for Jack who currently does
not follow these users but Jack follows somebody who are following them.

For PostgreSQL and RG engine:

SELECT Uid, Display name FROM TW USER
WHERE Display name != 'jack' AND Uid IN
(

SELECT f1.Uid
FROM FOLLOW AS f1, FOLLOW AS f2
WHERE f1.Follower id = f2.Uid AND f1.Uid NOT IN
(

SELECT Uid FROM FOLLOW WHERE Follower id IN
(SELECT Uid FROM TW USER WHERE Display name = 'jack')

)
)
LIMIT 10;

For Neo4j:

MATCH (jack:User {Display name: 'jack'}) −[:FOLLOWS]−> (),
()−[:FOLLOWS]−> (other:TW user)

WHERE NOT ((jack) −[:FOLLOWS]−> (other))
RETURN other.Uid, other.Display name
LIMIT 10;

Query 5 (Triangle Counting): Count the number of triangles of the co-authorship net-
work.
For PostgreSQL and RG engine:

SELECT count(*)
FROM coauthorship AS c1
JOIN coauthorship AS c2 ON c1.CoAUid = c2.AUid AND c1.AUid < c2.AUid
JOIN coauthorship AS c3 ON

c2.CoAUid = c3.AUid AND c3.CoAuid = c1.AUid AND c2.AUid < c3.AUid;

For Neo4j:

:GET /service/mazerunner/analysis/triangle count/COAUTHOR

MATCH (au1:Author) −[r1:COAUTHOR]−> (au2:Author),
(au2:Author)−[r2:COAUTHOR]−> (au3:Author),
(au3:Author)−[r3:COAUTHOR]−> (au1:Author)

WHERE au2.AUid <> au1.AUid AND au3.AUid <> au2.AUid
AND au3.AUid <> au1.AUid

RETURN count(*);

79

Query 6 (PageRank Centrality): Find the top 10 influential authors according to the
pagerank centrality in the co-authorship network.

For RG engine:

SELECT Fname, Mname, Lname
FROM author WHERE AUid IN
(

SELECT VertexID
FROM RANK (coauthorship, pagerank)
LIMIT 10

) ;

For Neo4j:

:GET /service/mazerunner/analysis/pagerank/COAUTHOR

MATCH (au:Author) WHERE has(au.pagerank)
RETURN au.Fname, au.Mname, au.Lname, au.pagerank AS pagerank
ORDER BY pagerank DESC
LIMIT 10;

Query 7 (Connected Component): Count the number of connected components of
the co-authorship network.

For RG engine:

SELECT count(ClusterID) FROM CLUSTER (coauthorship, CC)

For Neo4j:

:GET /service/mazerunner/analysis/connected components/COAUTHOR

MATCH (au:Author) WHERE has(au.connected components)
RETURN count(DISTINCT au.connected components)

80 Experimental Queries

Query 8 (Path Finding): Find paths with length less than 2, which connect two au-
thor V1 and V2 in the co-authorship network where author V1 is affiliated at ANU
and author V2 is affiliated at UNSW.

For RG engine:

SELECT *
FROM PATH (coauthorship, V1/./V2)
WHERE V1 AS
(

SELECT AUid FROM AUTHOR WHERE affiliation like '%ANU%'
) AND V2 AS
(

SELECT AUid FROM AUTHOR WHERE affiliation like '%UNSW%'
) ;

For Neo4j:

MATCH p=((n1:Author) −[r:COAUTHOR*1..2]− (n2:Author))
WHERE n1.affiliation =˜ '.* ANU.*' AND n2.affiliation =˜ '.* UNSW.*'
RETURN [n IN nodes(p) | n.AUid]

Query 9 (Shortest Path): Find a shortest paths between two authors Michael Norrish
and Kevin Elphinstone in the co-author network.

For RG engine:

SELECT *
FROM PATH (coauthorship, V1//V2)
WHERE V1 AS
(

SELECT AUid FROM AUTHOR
WHERE Fname = 'Michael' AND Lname = 'Norrish'

) AND V2 AS
(

SELECT AUid FROM AUTHOR
WHERE Fname = 'Kevin' AND Lname = 'Elphinstone'

)
ORDER BY Length ASC;

For Neo4j:

MATCH p=shortestPath((n1:Author) −[r:COAUTHOR*]− (n2:Author))
WHERE n1.Fname='Michael' AND n1.Lname = 'Norrish' AND n2.Fname = 'Kevin'

AND n2.Lname = 'Elphinstone'
RETURN [n IN nodes(p) | n.AUid]

81

Query 10 (Community Detection): Find a group of tags that they are often used to-
gether to label a question.

For RG engine:

CREATE UNGRAPH cotag AS
(

SELECT lb1.Tid as Tid, lb2.Tid AS CoTid
FROM LABELLED BY AS lb1, LABELLED BY AS lb2
WHERE lb1.Qid = lb2.Qid AND lb1.Tid != lb2.Tid

) ;

SELECT Tag label
FROM TAG,
(

SELECT Members
FROM CLUSTER (cotag, CNM)
LIMIT 1

) AS c
WHERE Tid = ANY(c.Members);

Query 11 (PageRank Centrality + Connected Component): According to the pager-
ank centrality, find the top 3 authors of the biggest collaborative community in the
co-authorship network

For RG engine:

SELECT VertexID, Value
FROM RANK (coauthorship, pagerank) AS r,
(

SELECT Members
FROM CLUSTER (coauthorship, CC)
ORDER BY Size DESC
LIMIT 1

) AS c
WHERE r.VertexID = ANY(c.Members)
LIMIT 3;

82 Experimental Queries

Query 12 (PageRank Centrality + Path Finding): According to the pagerank central-
ity, show how the top 2 authors connect with each other in the co-authorship network.

For RG engine:

SELECT PathID, Length, Path
FROM PATH (coauthorship, V//V)
WHERE V AS
(

SELECT VertexID
FROM RANK (coauthorship, pagerank)
LIMIT 2

) ;

Bibliography

[1] A Tour of PostgreSQL Internals. http://www.postgresql.org/files/developer/tour.
pdf.

[2] AllegroGraph RDFStore Web 3.0’s Database. http : / / franz . com / agraph /
allegrograph/.

[3] Apache Jena - Home. https://jena.apache.org.

[4] Centrality measures - graph-tool 2.10 documentation. http://graph-tool.skewed.
de/static/doc/centrality.html.

[5] GenRndGnm - Snap.py 1.2 documentation. http://snap.stanford.edu/snappy/
doc/reference/GenRndGnm.html.

[6] Giraph - Welcome To Apache Giraph! http://giraph.apache.org.

[7] Graph-tool: Efficient network analysis. http://graph-tool.skewed.de.

[8] Import Data Into Neo4j - Neo4j Graph Database. http://neo4j.com/developer/
guide-importing-data-and-etl/.

[9] Importing CSV Data into Neo4j - Neo4j Graph Database. http://neo4j .com/
developer/guide-import-csv/.

[10] Julia Benchmarks. http://julialang.org/benchmarks/.

[11] libpq - C Library. http://www.postgresql.org/docs/current/static/libpq.html.

[12] Neo4j and Apache Spark - Neo4j Graph Database. http://neo4j.com/developer/
apache-spark/#mazerunner.

[13] Neo4j Graph Database. http://neo4j.com/product/.

[14] Neo4j, the World’s Leading Graph Database. http://neo4j.com.

[15] OrientDB - OrientDB Multi-Model NoSQL DatabaseOrientDB Multi-Model NoSQL
Database. http://orientdb.com/orientdb/.

[16] Overview - NetworkX. http://networkx.github.io.

[17] PostgreSQL + Python — Psycopg. http://initd.org/psycopg/.

[18] PostgreSQL 9.4.5 Documentation. http : / / www. postgresql . org / docs / 9 . 4 /
interactive/index.html.

[19] PostgreSQL: The world’s most advanced open source database. http://neo4j.com.

[20] Relational Algebraic Equivalence Transformation Rules. http://www.postgresql.
org/message-id/attachment/32513/EquivalenceRules.pdf.

[21] Stanford Network Analysis Project. http://snap.stanford.edu.

83

http://www.postgresql.org/files/developer/tour.pdf
http://www.postgresql.org/files/developer/tour.pdf
http://franz.com/agraph/allegrograph/
http://franz.com/agraph/allegrograph/
https://jena.apache.org
http://graph-tool.skewed.de/static/doc/centrality.html
http://graph-tool.skewed.de/static/doc/centrality.html
http://snap.stanford.edu/snappy/doc/reference/GenRndGnm.html
http://snap.stanford.edu/snappy/doc/reference/GenRndGnm.html
http://giraph.apache.org
http://graph-tool.skewed.de
http://neo4j.com/developer/guide-importing-data-and-etl/
http://neo4j.com/developer/guide-importing-data-and-etl/
http://neo4j.com/developer/guide-import-csv/
http://neo4j.com/developer/guide-import-csv/
http://julialang.org/benchmarks/
http://www.postgresql.org/docs/current/static/libpq.html
http://neo4j.com/developer/apache-spark/#mazerunner
http://neo4j.com/developer/apache-spark/#mazerunner
http://neo4j.com/product/
http://neo4j.com
http://orientdb.com/orientdb/
http://networkx.github.io
http://initd.org/psycopg/
http://www.postgresql.org/docs/9.4/interactive/index.html
http://www.postgresql.org/docs/9.4/interactive/index.html
http://neo4j.com
http://www.postgresql.org/message-id/attachment/32513/EquivalenceRules.pdf
http://www.postgresql.org/message-id/attachment/32513/EquivalenceRules.pdf
http://snap.stanford.edu

84 Bibliography

[22] Stardog: Enterprise Graph Database. http://stardog.com.

[23] The Computer Language Benchmarks Game. http :/ / benchmarksgame. alioth .
debian.org.

[24] Titan: Distributed Graph Database. http://thinkaurelius.github.io/titan/.

[25] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases, volume 8.
Addison-Wesley Reading, 1995.

[26] Ulrik Brandes and Thomas Erlebach. Network analysis: methodological foundations, vol-
ume 3418. Springer Science & Business Media, 2005.

[27] Chungmin Melvin Chen and Nicholas Roussopoulos. The implementation and perfor-
mance evaluation of the ADMS query optimizer: Integrating query result caching and
matching. Springer, 1994.

[28] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu,
Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph: taking the
pulse of a fast-changing and connected world. In Proceedings of the 7th ACM euro-
pean conference on Computer Systems, pages 85–98. ACM, 2012.

[29] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community struc-
ture in very large networks. Physical review E, 70(6):066111, 2004.

[30] Emil Eifrem. The New Way to Access Super Fast Social Data. http://mashable.com/
2012/09/26/graph-databases/.

[31] Paul Erdős and Alfréd Rényi. On the strength of connectedness of a random graph.
Acta Mathematica Hungarica, 12(1-2):261–267, 1961.

[32] Jing Fan, Adalbert Gerald, Soosai Raj, and Jignesh M Patel. The case against special-
ized graph analytics engines. 2015.

[33] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174,
2010.

[34] Michelle Girvan and Mark EJ Newman. Community structure in social and biologi-
cal networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

[35] Jiewen Huang, Kartik Venkatraman, and Daniel J Abadi. Query optimization of dis-
tributed pattern matching. In Data Engineering (ICDE), 2014 IEEE 30th Interna-
tional Conference on, pages 64–75. IEEE, 2014.

[36] Abhishek Jindal and Steve Madden. GRAPHiQL: A graph intuitive query language
for relational databases. In Big Data (Big Data), 2014 IEEE International Conference
on, pages 441–450. IEEE, 2014.

[37] Alekh Jindal, Samuel Madden, Malu Castellanos, and Meichun Hsu. Graph Analyt-
ics using the Vertica Relational Database. arXiv preprint arXiv:1412.5263, 2014.

[38] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. Graphlab: A new framework for parallel machine learn-
ing. arXiv preprint arXiv:1408.2041, 2014.

http://stardog.com
http://benchmarksgame.alioth.debian.org
http://benchmarksgame.alioth.debian.org
http://thinkaurelius.github.io/titan/
http://mashable.com/2012/09/26/graph-databases/
http://mashable.com/2012/09/26/graph-databases/

Bibliography 85

[39] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pages 135–146. ACM, 2010.

[40] Yuhanna Noel, Owens Leslie, and Elizabeth Cullen. Market Overview: Graph
Databases. https://www.forrester.com/Market+Overview+Graph+Databases/
fulltext/-/E-res121473.

[41] Lassila Ora and Swick Ralph. Resource Description Framework (RDF)
Model and Syntax Specification. http : / / www . w3 . org / TR / 1999 /
REC-rdf-syntax-19990222/.

[42] Tiago P Peixoto. Efficient Monte Carlo and greedy heuristic for the inference of
stochastic block models. Physical Review E, 89(1):012804, 2014.

[43] Luis L Perez and Christopher M Jermaine. History-aware query optimization with
materialized intermediate views. In Data Engineering (ICDE), 2014 IEEE 30th In-
ternational Conference on, pages 520–531. IEEE, 2014.

[44] Abdul Quamar, Amol Deshpande, and Jimmy Lin. NScale: neighborhood-centric
analytics on large graphs. Proceedings of the VLDB Endowment, 7(13):1673–1676,
2014.

[45] Ramakrishnan Raghu and Gehrke Johannes. Database Management Systems, 3rd Edi-
tion. McGraw-Hill Education, 2003.

[46] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases. ” O’Reilly Media, Inc.”,
2013.

[47] Sherif Sakr, Sameh Elnikety, and Yuxiong He. G-SPARQL: a hybrid engine for query-
ing large attributed graphs. In Proceedings of the 21st ACM international conference
on Information and knowledge management, pages 335–344. ACM, 2012.

[48] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine on a
memory cloud. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, pages 505–516. ACM, 2013.

[49] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. From think like a vertex to think like a graph. Proceedings of the
VLDB Endowment, 7(3):193–204, 2013.

[50] Guozhang Wang, Wenlei Xie, Alan J Demers, and Johannes Gehrke. Asynchronous
Large-Scale Graph Processing Made Easy. In CIDR, 2013.

[51] Adam Welc, Raghavan Raman, Zhe Wu, Sungpack Hong, Hassan Chafi, and Jay
Banerjee. Graph analysis: do we have to reinvent the wheel? In First International
Workshop on Graph Data Management Experiences and Systems, page 7. ACM, 2013.

https://www.forrester.com/Market+Overview+Graph+Databases/fulltext/-/E-res121473
https://www.forrester.com/Market+Overview+Graph+Databases/fulltext/-/E-res121473
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

	Acknowledgements
	Abstract
	Introduction
	Objectives
	Contributions
	Outline

	Background and Related Work
	Vertex-centric and Neighbourhood-centric Systems
	Graph Databases
	SQL-based Systems
	Summary

	Data Model and Query Language
	Data Model
	Relational Core
	Graphical Views
	Relation-Graph Mappers

	Query Language
	Create Graphical Views
	Use Graph Operators

	Summary

	Query Engine
	Query Processing
	Architecture
	Query Optimisation
	Summary

	Performance Evaluation
	Experimental Environment
	Performance of Graph Analysis Tools
	Performance of the RG Engine
	Datasets
	Queries
	Experimental Results

	Summary

	Conclusion
	Appendices
	ER Diagrams and Relation Schemas
	Experimental Data
	Experimental Queries
	Bibliography

