
Real-time Collaborative Filtering Recommender Systems

Huizhi Liang1,2 Haoran Du2 Qing Wang2

1 Department of Computing and Information Systems,
The University of Melbourne,

Victoria 3010, Australia
Email: huizhi.liang@unimelb.edu.au

2 Research School of Computer Science,
The Australian National University,

Canberra ACT 0200, Australia
Email: duhaoranshux@hotmail.com, Qing.wang@anu.edu.au

Abstract

Recommender systems can help users deal with the
information overload issue. Many real-world com-
munities such as social media websites require real-
time recommendation making to capture the recent
updates of the communities. This brings challenges
to existing approaches which mainly build recom-
mendation models at offline. In this paper, we dis-
cuss real-time collaborative filtering recommendation
approaches. The proposed approaches use locality
sensitive hashing (LSH) to construct user or item
blocks, which facilitate real-time neighborhood for-
mation and recommendation making. The experi-
ments conducted on a Twitter dataset demonstrate
the effectiveness of the proposed approaches.

Keywords: Real-time, Locality Sensitive Hashing,
Collaborative Filtering, Recommender System

1 Introduction

Recommender systems is one of the popular personal-
ization applications, which help to solve the informa-
tion overload issue of users in online communities, i.e.,
making suggestions regarding which information is
most relevant to an individual user. Collaborative fil-
tering approaches such as user-based and item-based
K-nearest neighbor methods are widely used to make
recommendations in various areas (Adomavicius &
Tuzhilin 2005). Collaborative filtering recommender
systems usually consist of two phases: (1)An offline
model-building phase to build a model storing corre-
lations between users and items. (2) An on-demand
recommendation phase that uses the model to make
recommendations (Chandramouli et al. 2011).

However, the traditional offline collaborative fil-
tering recommender systems fail to capture the rapid
changes of online communities to make real-time rec-
ommendations. For example, with the rapid growth
of users in social media communities, there are a

This research was partially funded by the Australian Research
Council (ARC), Veda Advantage, and Funnelback Pty. Ltd.,
under Linkage Project LP100200079. Note the first two authors
contributed equally.

Copyright c⃝2006, Australian Computer Society, Inc. This pa-
per appeared at the Twenty-Ninth Australasian Computer Sci-
ence Conference (ACSC2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 48, Vladimir Estivill-Castro and Gillian Dobbie, Ed. Re-
production for academic, not-for-profit purposes permitted pro-
vided this text is included.

large number of micro-blog topics emerging every day.
They include not only a small number of hot or stream
topics but also a large number of less popular topics.
Thus, it is important to recommend personally inter-
esting topics to users (Liang et al. 2012). However,
since the topics of micro-blogs are constantly chang-
ing, it brings difficulty for an offline-built model to
capture the latest updates in social media commu-
niteis (Liang et al. 2012).

Neighborhood formation is the key component of
collaborative filtering recommender systems. Typi-
cally, pair-wise comparisons such as Cosine similarity
calculation are commonly used to build the correla-
tions (i.e. find the the nearest neighbors of each user
or item). To meet the requirement of real-time re-
sponse, we need to decrease the number of pair-wise
comparisons and find the nearest neighbor users and
candidate items quickly. Blocking or indexing tech-
niques can help to significantly decrease the number
of comparisons (Christen 2012). The objects in a
database can be inserted into one or more blocks ac-
cording to some blocking criteria, such that only ob-
jects within a block are compared with each other.
The current blocking techniques are mainly focus-
ing on content features, such as inverted indexing
of keywords, and phonetic encoding functions (e.g.,
Soundex, Double Metaphone) (Christen 2012). Lo-
cality sensitive hashing (LSH) (Gionis et al. 1999) is
an approximate blocking approach that uses a set of
hash functions to map data objects such as users or
items within a certain distance range into the same
block with a given probability. It can filter out those
data objects with low similarities for a given data ob-
ject, thus decreasing the number of comparisons (Gan
et al. 2012). LSH can generate blocks quickly and
has advantages such as dimension reduction, noise-
tolerant, and similarity-preserving. It has been widely
used in industries, such as personalized news recom-
mendation in Google (Li et al. 2011).

We discuss real-time collaborative filtering recom-
mendation approaches. The proposed approaches em-
ploy the LSH techniques to construct user and item
blocks. Then, we propose approaches to form neigh-
borhood and make recommendations in real-time,
based on the generated user and item blocks.

2 Related Work

Recommender systems have been an active research
area for more than a decade. The recommendation
approaches based on explicit ratings are the major fo-
cus. The tasks of recommender systems include rating
prediction and top N recommendation. The former

task that is to predict the rating value a user will give
to a rated item while the latter one is to recommend
a set of unrated or new items to the target user (Ado-
mavicius & Tuzhilin 2005). The Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) are
widely used to measure the accuracy of the rating
prediction while precision and recall are commonly
used for the top N recommendation. For explicit
ratings, both tasks are applicable while for implicit
ratings, the top N recommendation is more applica-
ble (Adomavicius & Tuzhilin 2005). Recommender
systems can be broadly classified into three categories:
content-based, collaborative filtering (CF), and hy-
brid approaches (Adomavicius & Tuzhilin 2005). The
user-based and item-based K-nearest neighborhood
collaborative filtering are widely used in various ap-
plication areas.

Approximate blocking techniques such as LSH and
tree-based indexing (Bawa et al. 2005) are widely used
in nearest neighbor and similarity search in applica-
tions such as image search (Dong et al. n.d.), rec-
ommender systems (Li et al. 2011), and entity resolu-
tion (Kim & Lee n.d., Liang et al. 2014, Li et al. 2013).
Recently, some work has been proposed to make real-
time recommendations (Chandramouli et al. 2011).
For example, Abbar et al. (Abbar et al. 2013) pro-
posed a real-time recommender system for diverse
related articles. Li et al. (Li et al. 2012) proposed
interest-based real-time content recommendation in
online social communities. Diaz-Aviles et al. (Diaz-
Aviles et al. 2012) proposed real-time top N ma-
trix factorization recommendation in social streams.
Moreover, approximate blocking techniques such as
LSH and tree based indexing (Bawa et al. 2005)
are used to make efficient news recommendations (Li
et al. 2011). However, how to make real-time col-
laborative filtering recommendations still needs to be
explored.

3 Problem Definition

We define some key concepts used in this paper.

• Users: U = {u1, u2, ..., u|U |} contains all users in
an online community who have rated or pub-
lished items.

• Items (i.e., Products, Topics): C =
{c1, c2, ..., c|C|} contains all items rated or pub-
lished by users in U . Items could be any type
of online information resources or products in
an online community such as web pages, video
clips, music tracks, photos, movies, books, topics
of micro-blogs (Liang et al. 2012) etc.

• User profile: A user profile is a collection of infor-
mation about a user, such as demographic infor-
mation, interests or preferences, opinions, friends
or other network information. Users’ interests
or preferences are typical information to profile
users. We use binary or numeric weight values
for items to represent a user’s interests or pref-
erences for items.

Let ui ∈ U be a target user, Cui be the item set
that user ui already has, Cui be the candidate item
set that are unknown to user ui, i.e., Cui = C −Cui .
Let cx ∈ Cui be a candidate item, A(ui, cx) be the
predicted score of how much the user ui would be
interested in item cx. The problem of top N item
recommendation is defined as generating a set of
ordered items cl, ..., cm ∈ Cui to the use ui, where
A(ui, cl) ≥ ... ≥ A(ui, cm).

Recommendation

 Generation

Neighborhood Formation

LSH Blocking

User Blocks

Item Blocks

User Profile

A target user

Block 1 Block n

Block 1 Block m

...

...

Figure 1: The Framework of Real-time Collaborative
Filtering Recommender Systems

4 The Proposed Approach

In this section, we discuss how to conduct real-time
collaborative filtering recommendations. The system
framework is shown in Figure 1. It describes the key
components of real-time collaborative filtering recom-
mender systems, including LSH blocking, neighbor-
hood formation, and recommendation generation.

For real-time user-based collaborative filtering ap-
proach, we construct user blocks based on LSH block-
ing scheme. For a given target user ui ∈ U , we firstly
get the hash signatures of this user based on a LSH
family. Then, ui ∈ U is allocated to a set of blocks
that use the hash signatures as block identifiers. The
users that are in the same blocks with ui ∈ U are
selected as being the neighbor users of ui. Then, we
select the candidate items from the neighbor users
and generate a list of recommended items to ui.

For real-time item-based collaborative filtering ap-
proach, we construct item blocks based on a LSH
blocking scheme. For a given target user ui ∈ U , we
get the hash signature of each item cj ∈ Cui based
on a LSH family. Then, each item cj ∈ Cui

is allo-
cated to a set of blocks. The items that are in the
same blocks with cj ∈ Cui are selected as being the
neighbor items of item cj . Then, the neighbor items
are selected as the candidate items for user ui ∈ U .
The top N ranked candidate items are selected as
recommended items for ui ∈ U .

In the following, we first discuss the LSH blocking
scheme that is used to construct user or item blocks
based on their Cosine similarities. Then we discuss
how to select nearest neighbor users or items based
on the generated user or item blocks. After that, we
discuss how to make real-time user-based and item-
based recommendations.

4.1 LSH Blocking Scheme

Let h denote a hash function for a given distance
measure D, Pr(i) denote the probability of an event
i, p1 and p2 are two probability values, p1 > p2,
0 ≤ p1, p2 ≤ 1. h is called (d1, d2, p1, p2)-sensitive
for D, for any data objects x and y, the following
conditions hold:

1. if D(x, y) ≤ d1 then Pr(h(x) = h(y)) ≥ p1

2. if D(x, y) > d2 then Pr(h(x) = h(y)) ≤ p2

Popularly used LSH families include the minHash
family for Jaccard distance (Anand & Ullman 2011),
the random hyperplane projection family for Cosine
distance (Anand & Ullman 2011), and the p-stable
distribution family for Euclidean Distance (Anand &
Ullman 2011). As Cosine distance/similarity is pop-
ularly used to measure the similarity of two users or
items that are represented as vectors. We discuss how
to generate user and item blocks based on a random
hyperplane projection family that approximates the
Cosine distance/similarity of two vectors.

4.1.1 Random Hyperplane Projection

The random projection method of LSH (Anand &
Ullman 2011) is designed to approximate Cosine dis-
tance/similarity of any two vectors. The basic idea
of this technique is to choose a d-dimensional random
hyperplane and use the hyperplane to hash input vec-
tors.

Given an input vector with n−dimensions x⃗, a
family Hr of hash functions such that, for a randomly
chosen vector −→v ∈ V in a n-dimensional space, a
hashing function h ∈ Hr is defined as:

h(x⃗) =

{
1 if v⃗ · x⃗ > 0;
0 if v⃗ · x⃗ < 0

Each possible choice of −→v defines a single hash
function. This hash function produces a single bit
signature for the input vector x⃗. Hr contains a set of
such functions (i.e., d-dimension) and produces a set
of bit signatures. Accordingly, the probability that
such hash function family separates two vectors x⃗ and
y⃗ is directly proportional to the angle between the two
vectors (Anand & Ullman 2011):

Pr[h(x⃗) = h(y⃗)] = 1− θ(x⃗, y⃗)

π
(1)

Following Equation 1, we have,

cos(θ(x⃗, y⃗)) = cos((1− Pr[h(x⃗) = h(y⃗)])π) (2)

Thus, Equation 2 provides us a way of approx-
imately calculating Cosine distance/similarity be-
tween two vectors. A vector with dimension n is
mapped to a binary signature vector with dimension d
based on the hash family Hr, usually d ≪ n. From a
probabilistic viewpoint, the more random vectors we
use, the more accurate the Cosine distance/similarity
between two vectors is. After we get the binary signa-
ture of two input vectors x⃗ and y⃗, we can use the Ham-
ming distance of their signatures to measure their
similarity or distance.

4.1.2 Random Bit Sampling for Hamming
Distance

Usually computing the Hamming distance of data
objects requires pair-wise similarity/distance calcu-
lation. For example, a target user needs to com-
pare with all the other users. To reduce the num-
ber of pair-wise comparisons, we can generate blocks
for data objects based on their Hamming distance of
signatures. We use random bit sampling (Anand &
Ullman 2011) to approximate the Hamming distance
over d-dimensional signature vectors {0, 1}d.

A LSH family F for Hamming distance is simply
the family of all the projections of data objects on
one of the d coordinates, i.e., F = {h : {0, 1}d →
{0, 1} | h(x) = xi, i = 1, ..., d}, where xi is the ith
coordinate of x. A random function h from F simply
selects a random bit from the input vector. The basic
signature is called a length-1 signature and the hash
function is called a length-1 hash function.

To amplify the collision probability, given a
(d1, d2, p1, p2)-sensitive family F , we can construct
new families Hs by the combination of AND-
construction or OR-construction of F (Anand & Ull-
man 2011). Let Hs = {H1,H2, ..., Hl} denote a
LSH family that has l number of length-k hash func-
tions. Each length-k hash function is formed by AND-
construction of k length-1 hash functions. The l num-
ber of hash functions of Hs has an ”OR” relationship

Input Vector Binary Signature

(d=5)

d-dimensional

Random Vector

. =

Block Signature

(k=2, l=2)

Random Hyperplane Projection
Hr

Random Bit Sampling
Hs

Figure 2: The LSH Blocking Scheme

between each other. The collision probability of Hs

can be estimated with pk,l = 1 − (1 − pk)l where p
denotes the collision probability of a length-1 hash
function.

The LSH blocking scheme H that are used in this
paper consists of two hash families, H = {Hr,Hs}.
Firstly, we use a random hyperplane projection
hash family Hr with d hash functions to get a d-
dimensional binary hash signature for each input vec-
tor. Then, for each generated hash signature vector,
we use a random sampling hash family Hs to get l
length-k hash signatures. H has three parameters: d,
k, and l. Figure 2 illustrate the process of getting the
block signature for one input vector.

4.2 Neighborhood Formation

Neighborhood formation is to generate a set of like-
minded peers (i.e., similar users) for a target user
ui ∈ U or a set of similar items for an item ci ∈ C.
This paper adopts the ”K-Nearest-Neighbors” tech-
nique to find the neighborhood for a user or an item.
Typically, the user based K-Nearest-Neighborhood
formation approach selects the top K neighbor users
with shortest distances to a user ui through comput-
ing the distances between user ui and all other users
of U . While the item-based K-Nearest-Neighborhood
formation approach selects the top K neighbor items
with the shortest distances to an item ci through cal-
culating the distances between item ci and all other
items. The distance or similarity measure can be cal-
culated through various kinds of proximity comput-
ing approaches such as Cosine similarity and Pearson
correlation (Adomavicius & Tuzhilin 2005).

To find the neighborhood of each target user ui ∈
U quickly, we construct user blocks and item blocks
for users and items respectively. A |C|-sized item vec-
tor with weight values (denoted as u⃗i) which repre-
sents user ui’s item preferences is used to profile user
ui. With the LSH blocking scheme H, we can get l
hash signatures (denoted as Si) for user ui ∈ U . The
users that have the same signature will be allocated
into the same block. Parameter k decides the sim-
ilarity threshold (i.e., Hamming distance threshold)
of a block. The users in the same blocks with user
ui are the neighbor users of ui. Thus, we can form
neighbourhood quickly via hashing. This approach
can filter out users that have low similarities with the
target user ui, thus decreasing the number of pair-
wise comparisons. With hashing, we also can update
the neighborhood of users quickly after users update
their item preferences.

Similarly, we can construct item blocks for each
item. For each item cj , a |U |-sized user vector with
weight values (denoted as c⃗j) is used to represent item
cj . With the LSH blocking scheme H, we can get
l hash signatures (denoted as Sj) for item cj ∈ C.
The setting of parameters of H can be different from
the setting to construct user blocks for the purpose
of preserving items with different similarity ranges in
blocks. The items in the same blocks with item cj are
the neighbor items of cj .

4.3 Real-time Recommendation Generation

For a given target user ui ∈ U , with the LSH blocking
scheme H, we can generate signatures and construct
blocks for each user and each item to form neighbor-
hood. We discuss user-based and item-based real-
time recommendation approach.

4.3.1 User-based Recommendation

With users blocks, we can find neighbor users quickly.
For a given target user ui ∈ U , the users in the same
user blocks with ui ∈ U are the neighbor users of user
ui ∈ U , denoted as Nui . Typically, we can calculate
the pair-wise Cosine similarity of the neighbor user
and ui ∈ U to select K-nearest neighbor users. How-
ever, for large-scale datasets, the number of neighbor
users can be large and it is time-consuming to con-
duct pair-wise comparisons for all neighbor users in
the same block with ui ∈ U . To further decrease the
number of candidate neighbors and select a smaller
set of nearest neighbors, we count the collision num-
ber of each user in all l blocks with user ui ∈ U to
rank the neighbor users of ui ∈ U . This is because the
number of co-occurrences of a user ux that appears
together with ui in the blocks reflects the similarity
of the two users (Gan et al. 2012). The higher the
number of co-occurrences is, the more similar the two
users are. We set a threshold φ to select those users
that appear at least φ times with the target user ui
together in blocks. Let gix denote the co-occurrence
of user ux and target user ui. Let Nui denote the se-
lected nearest neighbor record set of ui. For each user
ux ∈ Nui , we add ux to Nui if gix > φ, 0 ≤ φ ≤ l.

Thus, for each target user ui, we can select top
|Nui | nearest neighbor users and use a more sophis-
ticated similarity measure approach (i.e., Cosine) to
conduct pair-wise similarity calculation. As the time
complexity of counting collision number is less than
that of other similarity measure approach, the query
time can be improved when we employ dynamic col-
lision counting to rank candidate users.

For each target user ui, a set of candidate items
can be generated from the items of user ui’s neighbour
users. Let Cui denote the the candidate items of user
ui. Cui = {ck|ck ∈ Cuj , ck ̸∈ Cui , uj ∈ Nui}, where
Cuj is the items of uj . Let Ucx denote the user set of
item cx, for each candidate item cx ∈ Cui ,Nui

∩
Ucx

is the subset of users in Nui who have used item cx,
the prediction score of how much ui will be interested
in cx ∈ Cui is calculated by considering the simi-
larities between user ui and those users who are the
neighbors of user ui and have item cx:

Au(ui, cx) =
∑

uj∈Nui

∩
Ucx

1√
|Nui

∩
Ucx |

·cosine(u⃗i, u⃗j)

(3)
The top N items with high prediction scores will be
recommended to the target user ui.

4.3.2 Item-based Recommendation

Similarly, we can generate the top K nearest neighbor
items of each item cj with item blocks. For a given
target user ui ∈ U , let Cui denote the item set of ui,
the similar items of each item cj ∈ Cui can be used as
candidate items for user ui ∈ U . The candidate item
set of item cj ∈ Cui is denoted as Ncj . To further
decrease the number of candidate items and select a
smaller set of nearest neighbors for each item cj ∈
Cui , we count the collision number of each item cx in

all l blocks with item cj ∈ Cui to rank the neighbor
items of cj . Let gjx denote the co-occurrence of item
cx and the item cj ∈ Cui of user ui. Let Ncj denote
the selected nearest neighbor item set of cj . For each
item cx ∈ Ncj , we add cx to Ncj if gjx > κ, 0 ≤ κ ≤ l.
Let Cui denote the selected candidate item set of user
ui, Cui = {cx|cx ∈ Ncj , cx ̸∈ Cui , cj ∈ Cui}

The prediction score of how much ui will be in-
terested in item cx ∈ Cui is calculated by considering
the similarities between item cx and each item cj of
user ui:

Ac(ui, cx) =
∑

cj∈Cui

1√
|Cui |

· cosine(c⃗j , c⃗x) (4)

The top N items with high prediction scores will
be recommended to the target user ui.

5 Experimental Design

In the experiments, we recommend topics to users
in a social media community. The experiments were
conducted on a real-world dataset crawled from Twit-
ter.com (Liang et al. 2012). After removing the stop
words, we select the keywords that are at least used
by 5 users as topics. To avoid sparseness, we only
selected those users who have used at least 5 topics.
The dataset has 2320 users and 3319 topics extracted
from 1,214,604 tweets. The user set was split into
training and test user sets. We randomly select 10%
of users as test user set while the rest 90% users are
used as training users. The training user set has 2088
users, the test user set has 232 users. We randomly
select 50 items of each test user as the test/answer
topic set of this user.

For each test user, the recommender system will
generate a list of ordered topics that the test user has
not used in his/her training set. The top N topics
with high prediction scores will be recommended to
the test user. If a topic in the recommendation list
was in the test user’s test/answer topic set, then this
recommended topic was counted as a hit. We adopt
Precision and Recall metrics to evaluate the accu-
racy of recommendations of the proposed approaches.
Moreover, to evaluate the efficiency, the average on-
line recommendation time over all test users is used.

6 Experimental Results

To evaluate the effectiveness of the proposed ap-
proaches, we have conducted comparison experiments
of the following methods.

• CF-U : The traditional user-based K-Nearest
Neighborhood collaborative filtering approach.

• RCF-U : The proposed real-time user-based col-
laborative filtering approach.

• CF-C : The traditional item-based K-Nearest
Neighborhood collaborative filtering approach.

• RCF-C : The proposed real-time item-based col-
laborative filtering approach.

We set K = 100 and N = 10. For the proposed
RCF-U and RCF-C, we set d = 10, k = 4, and l = 8
for hash family H. φ = 2, κ = 2. The performance of
the compared approaches are shown in Figure 3. The
Precision and Recall values of all the approaches are

CF-U CF-C RCF-URCF-C
0.00

0.05

0.10

0.15

0.20

0.25

P
e
rc
e
n
ta
g
e

Precision

(a) Precision

CF-U CF-C RCF-URCF-C
0.00

0.01

0.02

0.03

0.04

0.05

P
e
rc
e
n
ta
g
e

Recall

(b) Recall

CF-U CF-C RCF-U RCF-C
0.0

0.1

0.2

0.3

0.4

0.5

S
e
c
o
n
d
s

Average Recommendation Time

(c) Average Recommendation Time

Figure 3: The comparison results

low. This is because the dataset is sparse. The pro-
posed real-time user-based and item-based collabora-
tive filtering approach RCF-U and RCF-C achieved
very close precision and recall results with the tra-
ditional collaborative filtering approaches CF-U and
CF-C. RCF-U and RCF-C conducted much quicker
recommendations. This can be explained that the
proposed approaches largely decreased the number of
pair-wise comparisons. They can incrementally and
efficiently identify nearest neighbors when new up-
dates occur in the community. Thus, they can be
used for real-time recommendation making in online
communities which requires quick responses for users’
updates such as social media communities.

7 Conclusions

We discussed a real-time user-based and item-based
collaborative filtering recommendation approach. To
facilitate real-time recommendation, we adopt a LSH
family that approximates Cosine distance/similarity
and a LSH family that approximates Hamming dis-
tance to construct user and item blocks. Then, we
discussed how to identify a set of nearest neighbors
efficiently and how to rank candidate items quickly.
As LSH techniques can be used for various types of
item contents (e.g., text, image, numeric or binary
weight values), this approach is applicable for various
kinds of communities, especially those communities
that have items with high dimensional content infor-
mation and require quick recommendation responses
to users updates. The experiments were conducted
on a Twitter dataset and make real-time topic rec-
ommendations. The future work will consider the
temporal effect of items and users.

References

Abbar, S., Amer-Yahia, S., Indyk, P. & Mahabadi,
S. (2013), Real-time recommendation of diverse re-
lated articles, in ‘WWW’, pp. 1–12.

Adomavicius, G. & Tuzhilin, A. (2005), ‘Toward the
next generation of recommender systems: A sur-
vey of the state-of-the-art and possible extensions’,
TKDE 17(6), 734–749.

Anand, R. & Ullman, J. D. (2011), Mining of massive
datasets, Cambridge University Press.

Bawa, M., Condie, T. & Ganesan, P. (2005), LSH
forest: self-tuning indexes for similarity search, in
‘WWW’, pp. 651–660.

Chandramouli, B., Levandoski, J. J., Eldawy, A. &
Mokbel, M. F. (2011), Streamrec: A real-time rec-
ommender system, in ‘SIGMOD’, pp. 1243–1246.

Christen, P. (2012), Data Matching, Data-Centric
Systems and Appl., Springer.

Diaz-Aviles, E., Drumond, L., Schmidt-Thieme, L. &
Nejdl, W. (2012), Real-time top-n recommendation
in social streams, in ‘RecSys’, pp. 59–66.

Dong, W., Wang, Z., Josephson, W., Charikar, M. &
Li, K. (n.d.), Modeling lsh for performance tuning,
in ‘CIKM’08’, ACM, pp. 669–678.

Gan, J., Feng, J., Fang, Q. & Ng, W. (2012), Locality-
sensitive hashing scheme based on dynamic colli-
sion counting, in ‘SIGMOD’, pp. 541–552.

Gionis, A., Indyk, P., Motwani, R. et al. (1999), Sim-
ilarity search in high dimensions via hashing, in
‘VLDB’, pp. 518–529.

Kim, H.-S. & Lee, D. (n.d.), HARRA: fast iterative
hashed record linkage for large-scale data collec-
tions, in ‘EDBT’10’, ACM, pp. 525–536.

Li, D., Lv, Q., Xie, X., Shang, L., Xia, H., Lu,
T. & Gu, N. (2012), ‘Interest-based real-time con-
tent recommendation in online social communities’,
Knowledge-Based System 28, 1–12.

Li, L., Wang, D., Li, T., Knox, D. & Padmanab-
han, B. (2011), Scene: a scalable two-stage person-
alized news recommendation system., in ‘SIGIR’,
pp. 125–134.

Li, S., Liang, H. & Ramadan, B. (2013), Two stage
similarity-aware indexing for large-scale real-time
entity resolution, in ‘AusDM 2013’, CRPIT, Vol.
146.

Liang, H., Wang, Y., Christen, P. & Gayler, R. W.
(2014), Noise-tolerant approximate blocking for dy-
namic real-time entity resolution, in ‘PAKDD’,
pp. 449–460.

Liang, H., Xu, Y., Tjondronegoro, D. & Christen,
P. (2012), Time-aware topic recommendation based
on micro-blogs, in ‘CIKM’, pp. 1657–1661.

