Real-time Collaborative Filtering Recommender Systems

Huizhi Liang, Haoran Du, Qing Wang

Presenter: Qing Wang

Research School of Computer Science The Australian National University Australia

Partially funded by the Australian Research Council (ARC), Veda Advantage, and Funnelback Pty. Ltd., under Linkage Project.

Introduction – Recommender Systems

• Applications

- Predict topics that would trend on Twitter
- Predict fluctuations in the prices of Bitcoin

• . . .

Introduction – Recommender Systems

• Applications

- Predict topics that would trend on Twitter
- Predict fluctuations in the prices of Bitcoin

• . . .

• Common techniques

- Collaborative filtering
 - i.e., use the ratings of users and items
- Content-based filtering:
 - i.e., use the features of users and items
- Hybrid techniques
 - i.e., combine the above two to overcome their limitations

• Coined by Goldberg et al. in Tapestry (1992): "people collaborate to help one another perform filtering by ..."

• Coined by Goldberg et al. in Tapestry (1992): "people collaborate to help one another perform filtering by ..."

• Assumption

- If two users act on n items similarly (e.g., watching and buying), they will act on other items similarly.

• Coined by Goldberg et al. in Tapestry (1992): "people collaborate to help one another perform filtering by ..."

• Assumption

- If two users act on n items similarly (e.g., watching and buying), they will act on other items similarly.

• Two main phases

- (1) Offline model-building
- (2) On-demand recommendation

• Coined by Goldberg et al. in Tapestry (1992): "people collaborate to help one another perform filtering by ..."

• Assumption

- If two users act on n items similarly (e.g., watching and buying), they will act on other items similarly.

• Two main phases

- (1) Offline model-building
- (2) On-demand recommendation

• Challenges

- Deal with highly sparse data
- Scale with the increasing numbers of users and items
- Make recommendations in real time

Real-Time Collaborative Filtering

• Top N item recommendation

Given a target user u, to recommend a list of items c_1, \ldots, c_m such that

 $\mathcal{A}(u,c_1) \ge \dots \ge \mathcal{A}(u,c_m)$

where $\mathcal{A}(u, c_i)$ (i = 1, ..., m) are the highest prediction scores of how much u would be interested in c_i .

Real-Time Collaborative Filtering

• Top N item recommendation

Given a target user u, to recommend a list of items c_1, \ldots, c_m such that

 $\mathcal{A}(u,c_1) \ge \dots \ge \mathcal{A}(u,c_m)$

where $\mathcal{A}(u, c_i)$ (i = 1, ..., m) are the highest prediction scores of how much u would be interested in c_i .

Some questions

How to conduct pair-wise comparisons efficiently?
e.g., user-user/item-item

How to capture new updates quickly?e.g. latest updates in social media

Overview of the Proposed Approach

• Key components

- LSH blocking
- Neighbourhood formation
- Recommendation generation

Overview of the Proposed Approach

• Key components

- LSH blocking
- Neighbourhood formation
- Recommendation generation

LSH Blocking

• Construct blocks based on Cosine similarities

- User blocks
- Item blocks

LSH Blocking

• Construct blocks based on Cosine similarities

- User blocks
- Item blocks
- Use two LSH families to approximate Cosine similarities
 - (1) Random hyperplane projection
 - (2) Random bit sampling

LSH Blocking – Random Hyperplane Projection

LSH Blocking – Random Hyperplane Projection

• A *n*-dimensional input vector is mapped to a *d*-bit binary signature using random vectors, usually $d \ll n$.

LSH Blocking – Random Hyperplane Projection

- A *n*-dimensional input vector is mapped to a *d*-bit binary signature using random vectors, usually $d \ll n$.
- The more random vectors we use, the more accurate the Cosine similarity between two input vectors is.

LSH Blocking – Random Bit Sampling

LSH Blocking – Random Bit Sampling

• Use the Hamming distance to measure the similarity of two binary signatures

LSH Blocking – Random Bit Sampling

- Use the Hamming distance to measure the similarity of two binary signatures
- Use random bit sampling to approximate the Hamming distance over $\{0,1\}^d$
 - Select random bits from the binary signatures
 - Amplify the collision probability using AND/OR constructions

Neighborhood Formation

- Use user and item blocks to identify the neighbor users/items
 - Neighbor users: in the same user blocks as a user
 - Neighbor items: in the same item blocks as an item

Neighborhood Formation

• Use user and item blocks to identify the neighbor users/items

- Neighbor users: in the same user blocks as a user
- Neighbor items: in the same item blocks as an item

• But, user/item blocks could still be large ...

Neighborhood Formation

- Use user and item blocks to identify the neighbor users/items
 - Neighbor users: in the same user blocks as a user
 - Neighbor items: in the same item blocks as an item
- But, user/item blocks could still be large ...
- \bullet how to efficiently make the top N recommendations for a target user based on neighbor users/items?

Real-time Recommendation Generation

• Two approaches

- User-based recommendation
- Item-based recommendation

Real-time Recommendation Generation – User-based Recommendation

• Rank/select neighbor users

- Count collision numbers of neighbour users in user blocks with the target user
- Set a threshold on the collision numbers to select neighbor users

Real-time Recommendation Generation – User-based Recommendation

• Rank/select neighbor users

- Count collision numbers of neighbour users in user blocks with the target user
- Set a threshold on the collision numbers to select neighbor users

Calculate prediction scores

- Find candidate items from the items of selected neighbor users
- Calculate the similarities between the target user and neighbor users who have a candidate item:

$$\mathcal{A}_{u}(u_{i}, c_{x}) = \sum_{u_{j} \in \mathbf{N}_{u_{i}} \cap U_{c_{x}}} \frac{1}{\sqrt{|\mathbf{N}_{u_{i}} \cap U_{c_{x}}|}} \cdot cosine(\mathbf{u}_{i}, \mathbf{u}_{j})$$

Real-time Recommendation Generation – User-based Recommendation

• Rank/select neighbor users

- Count collision numbers of neighbour users in user blocks with the target user
- Set a threshold on the collision numbers to select neighbor users

Calculate prediction scores

- Find candidate items from the items of selected neighbor users
- Calculate the similarities between the target user and neighbor users who have a candidate item:

$$\mathcal{A}_{u}(u_{i}, c_{x}) = \sum_{u_{j} \in \mathbf{N}_{u_{i}} \cap U_{c_{x}}} \frac{1}{\sqrt{|\mathbf{N}_{u_{i}} \cap U_{c_{x}}|}} \cdot cosine(\mathbf{u_{i}}, \mathbf{u_{j}})$$

• Generate recommendations

 \bullet The top N items with high prediction scores

Real-time Recommendation Generation – Item-based Recommendation

• Rank/select neighbor items

- Count collision numbers of neighbour items in item blocks with each item of the target user
- Set a threshold on the collision numbers to select neighbor items

Real-time Recommendation Generation – Item-based Recommendation

Rank/select neighbor items

- Count collision numbers of neighbour items in item blocks with each item of the target user
- Set a threshold on the collision numbers to select neighbor items

• Calculate prediction scores

- Find candidate items, i.e., all selected neighbour items
- Calculate the similarities between each item of the target user and a candidate item:

$$\mathcal{A}_{c}(u_{i}, c_{x}) = \sum_{c_{j} \in C_{u_{i}}} \frac{1}{\sqrt{|C_{u_{i}}|}} \cdot cosine(\mathbf{c_{j}}, \mathbf{c_{x}})$$

Real-time Recommendation Generation – Item-based Recommendation

Rank/select neighbor items

- Count collision numbers of neighbour items in item blocks with each item of the target user
- Set a threshold on the collision numbers to select neighbor items

• Calculate prediction scores

- Find candidate items, i.e., all selected neighbour items
- Calculate the similarities between each item of the target user and a candidate item:

$$\mathcal{A}_{c}(u_{i}, c_{x}) = \sum_{c_{j} \in C_{u_{i}}} \frac{1}{\sqrt{|C_{u_{i}}|}} \cdot cosine(\mathbf{c_{j}}, \mathbf{c_{x}})$$

• Generate recommendations

 \bullet The top N items with high prediction scores

Experimental Setup

• Experiment

• Topic recommendation (i.e., recommend topics to users in a social media community)

• Data set

- Crawled from Twitter.com
- Selects the keywords that are at least used by 5 users as topics, and the users who have used at least 5 topics
- Contains 2320 users, 3319 topics, and 1,214,604 tweets
- Split into 90% training (2088 users) and 10% test (232 users)

• Evaluation metrics

- Top N=10 Precision & Recall
- Average Recommendation Time

Experimental Results

- Compared approaches

- CF-U & CF-C: Traditional user & item based CF
- RCF-U & RCF-C: Real-time user & item based CF

Conclusions

- We have studied a real-time recommender system
 - LSH Blocking
 - Neighborhood formation
 - Recommendation generation
- We have used two LSH families to approximate the similarities between items/users
 - Random hyperplane projection
 - Random bit sampling
- We have conducted experiments on a Twitter dataset
- As future work, the temporal aspects of items and users can be future considered