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Introduction – Recommender Systems

• Applications

• Predict topics that would trend on Twitter

• Predict fluctuations in the prices of Bitcoin

• . . .
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Introduction – Recommender Systems

• Applications

• Predict topics that would trend on Twitter

• Predict fluctuations in the prices of Bitcoin

• . . .

• Common techniques

– Collaborative filtering

i.e., use the ratings of users and items

– Content-based filtering:

i.e., use the features of users and items

– Hybrid techniques

i.e., combine the above two to overcome their limitations
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Collaborative Filtering

• Coined by Goldberg et al. in Tapestry (1992): “people collaborate to help one
another perform filtering by ...”
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Collaborative Filtering

• Coined by Goldberg et al. in Tapestry (1992): “people collaborate to help one
another perform filtering by ...”

• Assumption

– If two users act on n items similarly (e.g., watching and buying), they will act
on other items similarly.

• Two main phases

(1) Offline model-building

(2) On-demand recommendation

• Challenges

• Deal with highly sparse data

• Scale with the increasing numbers of users and items

• Make recommendations in real time
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Real-Time Collaborative Filtering

• Top N item recommendation

Given a target user u, to recommend a list of items c1, . . . , cm such that

A(u, c1) ≥ ... ≥ A(u, cm)

where A(u, ci) (i = 1, . . . ,m) are the highest prediction scores of how much u
would be interested in ci.
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Real-Time Collaborative Filtering

• Top N item recommendation

Given a target user u, to recommend a list of items c1, . . . , cm such that

A(u, c1) ≥ ... ≥ A(u, cm)

where A(u, ci) (i = 1, . . . ,m) are the highest prediction scores of how much u
would be interested in ci.

• Some questions

– How to conduct pair-wise comparisons efficiently?
e.g., user-user/item-item

– How to capture new updates quickly?
e.g. latest updates in social media
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Overview of the Proposed Approach

• Key components

• LSH blocking

• Neighbourhood formation

• Recommendation generation
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Overview of the Proposed Approach

• Key components

• LSH blocking

• Neighbourhood formation

• Recommendation generation

Recommendation

 Generation

Neighborhood Formation

LSH Blocking

User Blocks

Item Blocks

User Profile 

A target user 

Block 1 Block n

Block 1 Block m

...

...
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LSH Blocking

• Construct blocks based on Cosine similarities

• User blocks

• Item blocks
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LSH Blocking

• Construct blocks based on Cosine similarities

• User blocks

• Item blocks

• Use two LSH families to approximate Cosine similarities

(1) Random hyperplane projection

(2) Random bit sampling
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LSH Blocking
– Random Hyperplane Projection
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• A n-dimensional input vector is mapped to a d-bit binary signature using random
vectors, usually d ≪ n.

• The more random vectors we use, the more accurate the Cosine similarity be-
tween two input vectors is.
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LSH Blocking
– Random Bit Sampling
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LSH Blocking
– Random Bit Sampling
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• Use the Hamming distance to measure the similarity of two binary signatures
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LSH Blocking
– Random Bit Sampling
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• Use the Hamming distance to measure the similarity of two binary signatures

• Use random bit sampling to approximate the Hamming distance over {0, 1}d

- Select random bits from the binary signatures

- Amplify the collision probability using AND/OR constructions

19



Neighborhood Formation

• Use user and item blocks to identify the neighbor users/items

• Neighbor users: in the same user blocks as a user

• Neighbor items: in the same item blocks as an item
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Neighborhood Formation

• Use user and item blocks to identify the neighbor users/items

• Neighbor users: in the same user blocks as a user

• Neighbor items: in the same item blocks as an item

• But, user/item blocks could still be large ...

• how to efficiently make the top N recommendations for a target user based on
neighbor users/items?
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Real-time Recommendation Generation

• Two approaches

• User-based recommendation

• Item-based recommendation
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Real-time Recommendation Generation
– User-based Recommendation

• Rank/select neighbor users

• Count collision numbers of neighbour users in user blocks with the target user

• Set a threshold on the collision numbers to select neighbor users
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Real-time Recommendation Generation
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• Rank/select neighbor users
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• Set a threshold on the collision numbers to select neighbor users

• Calculate prediction scores

• Find candidate items from the items of selected neighbor users

• Calculate the similarities between the target user and neighbor users who have
a candidate item:

Au(ui, cx) =
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∩
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• Generate recommendations

• The top N items with high prediction scores
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Real-time Recommendation Generation
– Item-based Recommendation

• Rank/select neighbor items

• Count collision numbers of neighbour items in item blocks with each item of
the target user

• Set a threshold on the collision numbers to select neighbor items
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Real-time Recommendation Generation
– Item-based Recommendation

• Rank/select neighbor items
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Experimental Setup

• Experiment

• Topic recommendation (i.e., recommend topics to users in a social media com-
munity)

• Data set

• Crawled from Twitter.com

• Selects the keywords that are at least used by 5 users as topics, and the users
who have used at least 5 topics

• Contains 2320 users, 3319 topics, and 1,214,604 tweets

• Split into 90% training (2088 users) and 10% test (232 users)

• Evaluation metrics

• Top N=10 Precision & Recall

• Average Recommendation Time
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Experimental Results

– Compared approaches

• CF-U & CF-C: Traditional user & item based CF

• RCF-U & RCF-C: Real-time user & item based CF
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Conclusions

• We have studied a real-time recommender system

• LSH Blocking

• Neighborhood formation

• Recommendation generation

• We have used two LSH families to approximate the similarities between items/users

• Random hyperplane projection

• Random bit sampling

• We have conducted experiments on a Twitter dataset

• As future work, the temporal aspects of items and users can be future considered
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