Real-time Collaborative Filtering
Recommender Systems

Huizhi Liang, Haoran Du, Qing Wang

Presenter: Qing Wang

Research School of Computer Science
The Australian National University
Australia

Partially funded by the Australian Research Council (ARC), Veda Advantage, and Funnelback Pty. Ltd., under Linkage Project.
Introduction – Recommender Systems

• **Applications**
 • Predict topics that would trend on Twitter
 • Predict fluctuations in the prices of Bitcoin
 • …
Introduction – Recommender Systems

• Applications
 • Predict topics that would trend on Twitter
 • Predict fluctuations in the prices of Bitcoin
 • ...

• Common techniques
 – Collaborative filtering
 i.e., use the ratings of users and items
 – Content-based filtering:
 i.e., use the features of users and items
 – Hybrid techniques
 i.e., combine the above two to overcome their limitations
Collaborative Filtering

- Coined by Goldberg et al. in Tapestry (1992): “people collaborate to help one another perform filtering by ...”
Collaborative Filtering

• Coined by Goldberg et al. in Tapestry (1992): “people collaborate to help one another perform filtering by ...”

• Assumption
 – If two users act on n items similarly (e.g., watching and buying), they will act on other items similarly.
Collaborative Filtering

• Coined by Goldberg et al. in Tapestry (1992): “people collaborate to help one another perform filtering by ...”

• Assumption
 – If two users act on n items similarly (e.g., watching and buying), they will act on other items similarly.

• Two main phases
 (1) Offline model-building
 (2) On-demand recommendation
Collaborative Filtering

- Coined by Goldberg et al. in Tapestry (1992): “people collaborate to help one another perform filtering by ...”

- **Assumption**
 - If two users act on n items similarly (e.g., watching and buying), they will act on other items similarly.

- **Two main phases**
 1. Offline model-building
 2. On-demand recommendation

- **Challenges**
 - Deal with highly sparse data
 - Scale with the increasing numbers of users and items
 - Make recommendations in real time
Real-Time Collaborative Filtering

- **Top N item recommendation**

 Given a target user u, to recommend a list of items c_1, \ldots, c_m such that

 $$A(u, c_1) \geq \ldots \geq A(u, c_m)$$

 where $A(u, c_i)$ ($i = 1, \ldots, m$) are the highest prediction scores of how much u
 would be interested in c_i.
Real-Time Collaborative Filtering

• **Top N item recommendation**

 Given a target user u, to recommend a list of items c_1, \ldots, c_m such that

 $$A(u, c_1) \geq \cdots \geq A(u, c_m)$$

 where $A(u, c_i) (i = 1, \ldots, m)$ are the highest prediction scores of how much u would be interested in c_i.

• **Some questions**

 – How to conduct pair-wise comparisons efficiently?
 e.g., user-user/item-item

 – How to capture new updates quickly?
 e.g. latest updates in social media
Overview of the Proposed Approach

- **Key components**
 - LSH blocking
 - Neighbourhood formation
 - Recommendation generation
Overview of the Proposed Approach

- **Key components**
 - LSH blocking
 - Neighbourhood formation
 - Recommendation generation

![Diagram showing the proposed approach]

User Profile — A target user

LSH Blocking

User Blocks: Block 1, ..., Block n

Item Blocks: Block 1, ..., Block m

Neighborhood Formation

Recommendation Generation
LSH Blocking

- **Construct blocks** based on Cosine similarities
 - User blocks
 - Item blocks
LSH Blocking

- **Construct blocks** based on Cosine similarities
 - User blocks
 - Item blocks

- **Use two LSH families** to approximate Cosine similarities
 1. Random hyperplane projection
 2. Random bit sampling
LSH Blocking
– Random Hyperplane Projection

\[\text{Input vector} \cdot \text{Random vectors} = \text{Binary signature} \, (d=4) \rightarrow \text{Block signature} \, (k=2, l=2) \]
• A \(n \)-dimensional input vector is mapped to a \(d \)-bit binary signature using random vectors, usually \(d \ll n \).
LSH Blocking
– Random Hyperplane Projection

• A n-dimensional input vector is mapped to a d-bit binary signature using random vectors, usually $d \ll n$.

• The more random vectors we use, the more accurate the Cosine similarity between two input vectors is.
LSH Blocking
– Random Bit Sampling

\[
\text{Input vector} \cdot \text{Random vectors} = \text{(d=4) Binary signature} \rightarrow \text{(k=2,l=2) Block signature}
\]
LSH Blocking
– Random Bit Sampling

- Use the Hamming distance to measure the similarity of two binary signatures
LSH Blocking
– Random Bit Sampling

- Use the Hamming distance to measure the similarity of two binary signatures
- Use random bit sampling to approximate the Hamming distance over $\{0, 1\}^d$
 - Select random bits from the binary signatures
 - Amplify the collision probability using AND/OR constructions
Neighborhood Formation

- Use user and item blocks to identify the neighbor users/items
 - Neighbor users: in the same user blocks as a user
 - Neighbor items: in the same item blocks as an item
Neighborhood Formation

- Use user and item blocks to identify the neighbor users/items
 - Neighbor users: in the same user blocks as a user
 - Neighbor items: in the same item blocks as an item

- But, user/item blocks could still be large ...
Neighborhood Formation

- Use user and item blocks to identify the neighbor users/items
 - Neighbor users: in the same user blocks as a user
 - Neighbor items: in the same item blocks as an item

- But, user/item blocks could still be large ...

- How to efficiently make the top N recommendations for a target user based on neighbor users/items?
Real-time Recommendation Generation

- Two approaches
 - User-based recommendation
 - Item-based recommendation
Real-time Recommendation Generation
– User-based Recommendation

- Rank/select neighbor users
 - Count collision numbers of neighbour users in user blocks with the target user
 - Set a threshold on the collision numbers to select neighbor users
Real-time Recommendation Generation
– User-based Recommendation

• **Rank/select neighbor users**
 - Count collision numbers of neighbour users in user blocks with the target user
 - Set a threshold on the collision numbers to select neighbor users

• **Calculate prediction scores**
 - Find candidate items from the items of selected neighbor users
 - Calculate the similarities between the target user and neighbor users who have a candidate item:

 \[
 A_u(u_i, c_x) = \sum_{u_j \in N_{u_i} \cap U_{c_x}} \frac{1}{\sqrt{|N_{u_i} \cap U_{c_x}|}} \cdot \text{cosine}(u_i, u_j)
 \]
Real-time Recommendation Generation
– User-based Recommendation

- **Rank/select neighbor users**
 - Count collision numbers of neighbour users in user blocks with the target user
 - Set a threshold on the collision numbers to select neighbor users

- **Calculate prediction scores**
 - Find candidate items from the items of selected neighbor users
 - Calculate the similarities between the target user and neighbor users who have a candidate item:
 \[
 A_u(u_i, c_x) = \sum_{u_j \in N_{u_i} \cap U_{c_x}} \frac{1}{\sqrt{|N_{u_i} \cap U_{c_x}|}} \cdot \text{cosine}(u_i, u_j)
 \]

- **Generate recommendations**
 - The top \(N\) items with high prediction scores
Real-time Recommendation Generation
– Item-based Recommendation

- Rank/select neighbor items
 - Count collision numbers of neighbour items in item blocks with each item of the target user
 - Set a threshold on the collision numbers to select neighbor items
Real-time Recommendation Generation
– Item-based Recommendation

• **Rank/select neighbor items**
 - Count collision numbers of neighbour items in item blocks with each item of the target user
 - Set a threshold on the collision numbers to select neighbor items

• **Calculate prediction scores**
 - Find candidate items, i.e., all selected neighbour items
 - Calculate the similarities between each item of the target user and a candidate item:

\[
A_c(u_i, c_x) = \sum_{c_j \in C_{u_i}} \frac{1}{\sqrt{|C_{u_i}|}} \cdot \cosine(c_j, c_x)
\]
Real-time Recommendation Generation
– Item-based Recommendation

• Rank/select neighbor items
 • Count collision numbers of neighbour items in item blocks with each item of the target user
 • Set a threshold on the collision numbers to select neighbor items

• Calculate prediction scores
 • Find candidate items, i.e., all selected neighbour items
 • Calculate the similarities between each item of the target user and a candidate item:

\[
A_c(u_i, c_x) = \sum_{c_j \in C_{u_i}} \frac{1}{\sqrt{|C_{u_i}|}} \cdot \cosine(c_j, c_x)
\]

• Generate recommendations
 • The top \(N \) items with high prediction scores
Experimental Setup

- **Experiment**
 - Topic recommendation (i.e., recommend topics to users in a social media community)

- **Data set**
 - Crawled from Twitter.com
 - Selects the keywords that are at least used by 5 users as topics, and the users who have used at least 5 topics
 - Contains 2320 users, 3319 topics, and 1,214,604 tweets
 - Split into 90% training (2088 users) and 10% test (232 users)

- **Evaluation metrics**
 - Top N=10 Precision & Recall
 - Average Recommendation Time
Experimental Results

- Compared approaches
 - CF-U & CF-C: Traditional user & item based CF
 - RCF-U & RCF-C: Real-time user & item based CF
Conclusions

- We have studied a real-time recommender system
 - LSH Blocking
 - Neighborhood formation
 - Recommendation generation

- We have used two LSH families to approximate the similarities between items/users
 - Random hyperplane projection
 - Random bit sampling

- We have conducted experiments on a Twitter dataset

- As future work, the temporal aspects of items and users can be future considered