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Semantic-Aware Blocking for Entity Resolution

Qing Wang, Mingyuan Cui, and Huizhi Liang

Abstract—In this paper, we propose a semantic-aware blocking framework for entity resolution (ER). The proposed framework is built
using locality-sensitive hashing (LSH) techniques, which efficiently unifies both textual and semantic features into an ER blocking
process. In order to understand how similarity metrics may affect the effectiveness of ER blocking, we study the robustness of similarity
metrics and their properties in terms of LSH families. Then, we present how the semantic similarity of records can be captured,
measured, and integrated with LSH techniques over multiple similarity spaces. In doing so, the proposed framework can support
efficient similarity searches on records in both textual and semantic similarity spaces, yielding ER blocking with improved quality. We
have evaluated the proposed framework over two real-world data sets, and compared it with the state-of-the-art blocking techniques.
Our experimental study shows that the combination of semantic similarity and textual similarity can considerably improve the quality of
blocking. Furthermore, due to the probabilistic nature of LSH, this semantic-aware blocking framework enables us to build fast and
reliable blocking for performing entity resolution tasks in a large-scale data environment.

Index Terms—Data matching, entity resolution, record linkage, deduplication, blocking, indexing, locality-sensitive hashing, semantic

features, semantic similarity, semantic hashing, taxonomy tree

1 INTRODUCTION

MAGINE that, given a very large collection of publication

records from one or more data sets, such as Scopus1 and
PubMed,” how can we find records that actually refer to the
same publication? To answer questions like this, we need to
use entity resolution (ER) techniques. Entity resolution is the
process of identifying records that represent the same real-
world entity in one or more data sets. It is a well-known
problem that has been extensively investigated in the past
decades [11], [18], [22], [32].

Nevertheless, performing ER tasks over large data sets
is still computationally challenging. This is largely due to
the quadratic complexity O(n?) of pairwise comparisons,
i.e., each record needs to be compared with all others, for
the total number n of records. A common solution for
this problem is to use blocking [11], which groups records
into a set of possibly overlapping but small blocks, and
only records that potentially represent the same entity
are placed into the same block. Blocking leads to a time
complexity O(m? x |B]|) for the maximal size m of blocks
and the number |B| of blocks in the worst case. In doing
so, a relatively small subset of record pairs within
the same block can be efficiently identified for compari-
son, and the performance of ER tasks can be drastically

1. http:/ /www.scopus.com/home.url
2. http:/ /www.ncbinlm.nih.gov/pubmed/
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improved, e.g., at least four orders of magnitude faster in
the case where n = 10°, m = 10? and |B| = 10*. However,
on the other side of the coin, blocking may deteriorate
the quality of ER tasks if a significant number of records
in different blocks indeed represent the same entity. In a
nutshell, the desired criteria for blocking techniques are
two-fold:

1) How to generate blocks efficiently? This requires us
to consider both time and space efficiency when con-
structing blocks, and trade-offs between these two.

2) How to generate blocks of good quality? This

requires us to consider how blocks support ER tasks
to be performed efficiently and accurately, and
trade-offs between these two.

A number of blocking techniques have previously been
studied [12], [14], [22], [32], [35], [36], [39]. In general the
goal is to develop techniques that generate blocks such that
(i) all comparisons between records within a block will have
a certain minimum similarity with each other, and (ii) the
similarity between records in different blocks is below this
minimum similarity [12]. Nonetheless, many of these tech-
niques have the following limitations: (a) They are only
applicable to specific data sets, e.g., the standard blocking
method [18] uses blocking keys to group records, which
cannot handle records that are highly similar but have dif-
ferent keys, such as “Qing Wang” and “Wang Qing”; (b)
They often still need to compute pairwise comparisons for
generating blocks, which is computational expensive, e.g.,
canopy clustering [32] has a time complexity O(n?) and is
inefficient for large data sets; (c) They are merely based on
textual similarity (TS) of records, while semantic informa-
tion is ignored. When a data set is dirty, i.e., containing a
significant amount of missing and erroneous data, blocking
based on textual similarity often yields poor results [11],
e.g., two publication records may have the exactly same title
but are semantically different because one is a conference
article and the other is a technical report.

1041-4347 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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| REC | TITLE | AUTHORS | PUBLISHER \
1 The cascade-correlation learning architecture E. Fahlman and C. Lebiere | NISPS Proceedings
) Cascade correlation learning architecture E. Fahlman & C. Lebiere Neural Information Systems
r3 A genetic cascade correlation learning algorithm Proceedings on Neural Ntw.
T4 The cascade corelation learning architecture Fahlman, S., & Lebiere, C. TR
5 Controlled growth of cascade correlation nets Technical Report (TR)
6 The cascade-correlation learn architecture Lebiere, C. and Fahlman, S.

[ ‘ T1,72 ‘ T1,73 ‘ T1,T4 ‘ T1,T5 ‘ T1,7T6 ‘ 2,73 ‘ T2,7T4 ‘ 72,75 ‘ 72,76 ‘ 73,74 ‘ 73,75 ‘ 73,76 ‘ T4,7T5 ‘ T4,T6 ‘ 75,76
TS | 0.88 0.70 0.90 0.40 0.85 0.60 0.80 0.40 0.85 0.70 0.40 0.60 0.40 0.85 0.40
SS | 0.50 1.00 0.00 0.00 0.17 0.50 0.00 0.00 0.17 0.00 0.00 0.17 0.17 0.17 0.17

By: [ ri,ra,rars [ 73| 75 | By: [ ri,ra,13,76 | Ta,75,76 | Bs: [ ri,re,16 | rasre [ 13 [ 75 |

Fig. 1. Blocking with textual similarity and semantic similarity (SS): B; based on textual similarity; B, based on semantic similarity; and B; based on

both textual similarity and semantic similarity.

In this paper, we propose a semantic-aware LSH block-
ing framework that can circumvent the above limitations.
Locality-sensitive hashing (LSH) is a popular technique used
for approximately finding nearest neighbors in a high
dimensional space [20], [23]. The central idea is to ensure
that the more similar two points are, the higher the proba-
bility is that they are hashed into the same bucket. The rea-
sons why we use LSH for blocking are based on two
observations. First, blocking is intimately related to the
nearest neighbor search problem in similarity spaces [3].
Existing ER techniques [11] are largely grounded on the
assumption that the more similar records are, the more
likely they represent the same entity. Although this obser-
vation is not universally valid, it generally holds in prac-
tice [4]. Therefore, LSH is well suited for searching
similar records that may represent the same entity with
certain probability. Second, LSH readily lends itself to
fast blocking techniques over very large data sets due to
its probabilistic nature. The time complexity of generating
blocks can be decreased to O(n), which provides attrac-
tive scalability potential. In addition to time efficiency,
we also observe that leveraging LSH techniques over
multiple similarity spaces (e.g., textual similarity and
semantic similarity) may considerably improve the qual-
ity of blocking, i.e., reducing redundant or unnecessary
pairs in blocks without loss of accuracy.

Example 1.1. Suppose that 1,73 and r3 in Fig. 1 are confer-
ence articles, 7y and r5 are technical reports, and 7¢ is
semantically ambiguous (e.g., could be a conference
article, a technical report or others). Based on the tex-
tual similarity of titles and authors, {ry,rs, 74,76} can
be placed into the same block, which leads to the set
B of blocks. Based on their semantic similarity, we
may have the set B, of blocks. In either case, the
quality of blocks is not satisfactory because neither r4
nor r3 should be in the same block with r; and 7s.
However, if we consider both textual and semantic
similarities, we would have the set B; of blocks with
improved quality. From Fig. 1, we can see that B3 only
has four pairs of records to be compared for resolving
these records, whereas B; and B, require to compare
six and nine pairs of records, respectively.

Contributions. We develop a semantic-aware blocking
framework for ER using LSH techniques, and show that

the robustness of similarity metrics plays a critical role
in handling the blocking problem for ER. In particular,
the robustness of similarity metrics serves as a bridge
between the blocking problem and the nearest neighbor
search problem. In principle, the blocking problem and
the nearest neighbor search problem have different con-
cerns. The former is concerned with approximately
grouping records in accordance with how they refer to
real-world entities, whereas the latter is concerned with
approximately finding similar records. Since records that
are close to each other in one similarity space do not
necessarily refer to the same real-world entity, the effec-
tiveness of searching nearest neighbors for blocking
relies on the robustness of the chosen similarity metrics.

We then explore semantic similarity for improving the
quality of blocking. There were several challenges in our
work: (1) how to find useful semantic information from
missing, inconsistent and noisy data; (2) how to develop
a metric for quantifying the semantic similarity among
records for the purpose of blocking; (3) how to incorpo-
rate semantic similarity with textual similarity. We
address these challenges by detecting missing and incon-
sistent data patterns, exploiting relationships between
records and semantic concepts in terms of taxonomy trees
from domain knowledge, and building semantic hashing
families. In doing so, we integrate both textual and
semantic similarity features into a unified LSH blocking
method for ER.

We have evaluated our framework over two real-world
data sets. The experimental results show that integrating
semantic features and textual features into the blocking pro-
cess can significantly improve the quality of blocks, particu-
larly when data sets are imperfect (i.e., contain inaccurate,
incomplete or erroneous data). In such cases, the sizes of
blocks generally become smaller because semantic features
can effectively eliminate record pairs that are textually
similar but semantically dissimilar, which often represent
different entities in real-world applications. We have also
compared our framework with 12 state-of-the-art blocking
techniques, and it turns out that the semantic-aware frame-
work has the best blocking quality (i.e., the highest FM val-
ues) over both data sets.

In this paper we are only concerned with blocking techni-
ques. Nonetheless, our blocking results can be used as input
to any ER algorithms for classifying records [11].
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2 RELATED WORK

Studies on ER have been heavily carried out over the last 50
years [11], [18]. In practice, ER tasks are commonly per-
formed in two stages: (1) blocking—group records that
might represent the same entity into the same block; (2)
clustering—classify records into clusters such that each
cluster represents a distinct entity. In contrast to clustering,
which is in search for exact solutions and often computa-
tionally costly (i.e., trading-off efficiency for certainty and
precision), blocking aims to be approximate and computa-
tionally cheap (i.e., trading-off certainty and precision for
efficiency). Previously, blocking has been studied by many
works [7], [12], [14], [22], [26], [27], [32], [39]. These existing
blocking techniques nonetheless have some limitations as
we have discussed before, including: generating blocks inef-
ficiently over large data sets [14], [32], or filtering out true
matches that are textually dissimilar but semantically simi-
lar during the blocking process [7], [12], [22], [26], [27], [39].

LSH was originally introduced for solving approximate
nearest neighbor search problem [20], [23]. Some variants of
LSH [5], [29], [34] have been proposed to improve the qual-
ity of the original LSH, which offer different trade-offs
between time and space complexity. The entropy-based
LSH [34] and multi-probe LSH [29] both aimed to reduce
the number of hash tables required by the original LSH
while achieving the same accuracy. The LSH forest [5] rep-
resents each hash table by a prefix tree and the number of
hash functions per hash table can be tuned in terms of dif-
ferent distance metrics. In the context of ER, LSH has been
used in several works [24], [31], [39], e.g., HARRA [28] was
proposed as an iterative LSH-based ER method. All these
works are based on textual similarity, but our work consid-
ers blocking in terms of not only textual similarity but also
semantic similarity. To detect near duplicate RDF resources,
a LSH-based approach was introduced in [24], which meas-
ures semantic similarity based on the textual representation
of RDF metadata. Our work is different as we measure
semantic similarity in terms of the structural relatedness of
concepts in taxonomy trees and their is no need to compare
the textual similarity of these concepts.

Semantic technologies have important influences in a vari-
ety of areas, such as improving search on the web and seman-
tic indexing in information retrieval [19], [33]. Taxonomical
knowledge can be modelled using ontologies, which have
been extensively studied in the past, and used in a wide range
of applications [30], [38]. Previous studies focused primarily
on measuring semantic relatedness using path-length and
information content approaches [38]. Unlike them, we are
only interested in measuring semantic similarity of records in
terms of their likeliness of representing the same entity.
Therefore, we define semantic similarity of records with
respect to their semantic concepts satisfying certain properties
in a given taxonomy tree. This allows us to generate binary
signatures for LSH blocking and preserve semantic similarity
among records. To our best of knowledge, little work has
been done on leveraging semantic similarity for blocking.

3 PROBLEM DEFINITION

Let R be a finite, non-empty set of records, each having a
finite number of attributes. In viewing that records are a set
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of data points, a distance space (R,8) can be defined for
records in R together with a distance metric § : R x R — [0,1]
that satisfies the non-negativity, identity, symmetry and tri-
angle inequality properties as defined in [42].

Each distance metric § corresponds to a similarity metric
sim such that §(x,y) = 1 — sim(z,y), and (R, sim) is a simi-
larity space. A similarity metric sim is y-robust over R where
y € [0,1] if, for any two record pairs whose similarity differ-
ence is greater than 1 — y, the record pair with a higher simi-
larity value is more likely to represent the same entity than
the other pair. Let E be a set of entities, e : R — E be a func-
tion that maps each record r € R to an entity e(r) € E which
it represents, and Prle(r;) = e(r})] be the probability of
e(r1) = e(r}). Formally, the notion of y-robust similarity met-
ric sim is defined as:

Prie(r1) = e(r})] > Prle(ry) = e(r})] if )
sim(ry, 7)) — sim(re, 1) > 1 —y.

Thus, the probability that two records represent the same
entity positively correlates with the similarity of the records
if the similarity increases or decreases more than 1 — y. The
greater y is, the more robust a similarity metric sim can be
used for the ER blocking purpose.

Given a record r € R, the other records ' € R whose dis-
tances with r are at most %, i.e., §(r,7’") < k, are called the
k-distance neighbors of r in the distance space (R, 8). In accor-
dance with Equation (1), for each record r € R, the distance
space (R,$) is divided into three regions by two distance
values d; and d;, with d; —dj, > y: (1) high region: records
whose distances with r are not greater than d;, have a high
probability of representing the same entity as r; (2) low
region: records whose distances with r are greater than d;
have a low probability of representing the same entity as 7;
(3) uncertain region: records whose distances with r are
between dj, and d; are ambiguous in the sense that the prob-
ability of representing the same entity as r is uncertain.

The notion of k-distance neighbors can be further gener-
alized to multiple similarity spaces. Let R be a set of records,
and [(R,é1),...,(R,é,)], abbreviated as (R, 5) for § = [81,. ..,
8,], be a number of distance spaces that R associates with.
Then given a record r € R and a parameter vector k =
[k1,...,k,) where k; €[0,1] (i =1,...,n), all the records
7 € R whose distances with r are at most k (e, 8(r,r") <k
in (R, 8;) for every i) are called the k-distance neighbors of r in

multiple distance spaces (R, 3).

Example 3.1. Figs. 2 a and 2b depicts the textual and seman-
tic spaces for the records in Fig. 1, respectively. Both r,
and 4 have a high probability of being textually similar
to r; in Fig. 2a. However, in terms of semantic similarity
with 7 in Fig. 2b, ry retains a high probability while r,
has a low probability. When considering both similarity
spaces, as shown in Fig. 2c, we know that r likely repre-
sents the same entity as r; but it is unlikely for 4 and 75
despite that 74 and r; are textually similar with r;.

-,

Let (R, $) be multiple similarity spaces. Then the blocking
problem over (R,§) is to determine a parameter vector dy
such that a set B of blocks is generated, in which only
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Fig. 2. (a) Textual similarity space. (b) Semantic similarity space. (c) Combining similarity spaces (high, low, and uncertain regions are highlighted by

dark, white, and light colors, respectively).

dj-distance neighbors of a record r in R are placed into the
blocks that contain r. Intuitively, CZ} refers to the distance val-
ues between low and uncertain regions in (R, 3). The optimi-
zation version of the blocking problem can be stated in terms
of the set P of all true matches (i.e., record pairs that repre-
sent the same entity) and the set N of all true non-matches
(i.e., record pairs that represent two different entities) with
the objective as:

Z(Tl r2)EN O (rl ) TQ)

ri#ry,r1€ERr9ER GB(Th TQ)

(2)

argming,, 5

such that

Z(TLTZ)EP GB(TI’ 7“2)

1- <
1P|

€,

where |P| + [N| = |R[*, 6p is a blocking function that takes
two records as input, and returns 1 if there is at least one
block of B containing both records and 0 otherwise, and ¢ is
an error ratio indicating the percentage of true matches that
are lost in blocks B.

4 SEMANTIC SIMILARITY

In this section we discuss semantic similarity between
records, i.e., how much two records are alike semantically.

4.1 Taxonomy Trees

In real-world applications, domain knowledge commonly
exists. It may be acquired from domain experts or from
existing ontologies, corpus, or thesaurus resources in a
knowledge base, such as Wikipedia [19] and WordNet [33].
Records in the ER process are often related to semantic con-
cepts in such knowledge bases. Thus, a collection of taxon-
omy trees, which describe how the semantic concepts of
records are related, can be constructed either manually, or
derived from knowledge bases. We first define the notions
of concept and taxonomy tree [16], [40].

Definition 4.1. A (semantic) concept is an abstract set of
things. A taxonomy tree ¢ consists of a set C; of nodes, each
representing a concept, and a set of edges that represent a sub-
sumption relation between concepts in Cy.

Conceptually, a partial order =< exists between concepts
in a taxonomy tree, i.e., ¢; < ¢ means that the concept ¢; is
subsumed by the concept c,. For each taxonomy tree, from
the root to a leaf, the concepts vary from being most general
to being more specific. We use child(c) to denote the set of

concepts represented by the child nodes of ¢, and any two
concepts in child(c) are not subsumed one by the other.

Example 4.1. Fig. 3 shows a taxonomy tree t;;, from the bib-
liographic domain, which has concepts in a hierarchical
structure in terms of the subsumption relation. Each
node represents a semantic concept in the bibliographic
domain such as journal, book and technical report,
and each edge represents a subsumption relationship
between two semantic concepts, e.g., c3 = ¢, ¢4 = ¢; and
¢s X ¢ because journals, conference proceedings and
books are considered as different types of publications.

4.2 Semantic Analysis

Due to various reasons, such as incomplete data or errors,
the semantics of a record may be ambiguous. In such cases,
the semantic interpretation of a record is a number of possi-
ble concepts. Formally, we define the semantic interpreta-
tion of records w.r.t. one or more taxonomy trees by a
semantic function.

Definition 4.2. Let R be a set of records, T' be a set of taxonomy
trees with the set Cp = |J ,o1C; of nodes, and P(Cr) be the
powerset of Cp. A semantic function ¢ : R — P(Cy) assigns
each r € R with a subset of concepts in P(Cr) as its semantic
interpretation s.t. the following properties are satisfied:

a)  Specificity: ¢(r) contains a set of concepts that are as
specific as possible, i.e.,Ye,c € ¢(r).c 2 = c=(/;

b)  Isolation: ¢(r) generates a set of concepts that are
related to r without accessing any records in R — {r}.

Intuitively, the interpretation £(r) of each record r is a set
of concepts in taxonomy trees. In accordance with the sub-
sumption relationship represented by edges, if a concept c
is in ¢(r), then any other concept that subsumes ¢ cannot
coexist in ¢(r). Thus, by the specificity property, only
the most specific concept remains in the interpretation. The

Research
Output (C,)

Peer
Reviewed (C,)

— —

Fig. 3. A bibliographic taxonomy tree ;.
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purpose of the isolation property is to ensure the efficiency
of a semantic function.

There are a variety of ways to define the semantic func-
tion for records in terms of taxonomy trees, such as mining
patterns, using meta-data, and leveraging relationships.
The following example illustrates that a semantic function
can be simply defined by analyzing values of an attribute.

Example 4.2. For the records 71-74 shown in Fig. 1, we may
analyze the values in the attribute PUBLISHER in terms of
the taxonomy tree depicted in Fig. 3, and obtain the fol-
lowing semantic interpretation: ¢(r1) = {c4}, £(r2) = {c2},

¢(r3) = {ea}, ¢(ra) = {er}, ¢(r5) = {er} and ¢(r6) = {eo}-

4.3 Similarity Metric
As previously studied [38], many approaches have been
proposed to measure the semantic relatedness of records.
For simplicity, we use a simple approach to derive the
semantic similarity of two records based on the semantic
similarity of their related concepts in taxonomy trees. Nev-
ertheless, other more sophisticated approaches may also be
used to measure semantic similarity within this framework.
Similarity between concepts. Given a set T' of taxonomy
trees, each concept c in 1" corresponds to a subtree rooted at
¢, which is denoted as ¢(c). Let lea f(c) be the set of concepts
represented by all leaves in ¢(c), and simg(c1, c2) denote the
semantic similarity of two concepts ¢; and cy. One of the
important properties which we want to ensure for semantic
similarity between two concepts is as follows:

Vey, e € child(e) ¢y # ¢y = simg(eq, c2) = 0. 3)

Example 4.3. Consider the taxonomy tree depicted in Fig. 3.
stmg(cs, c5) should be zero since c3 represents journal
articles and c¢; represents books.

Thus, in viewing that each concept can be alternatively
represented by a set of concepts in its leaves, we measure
the semantic similarity of two concepts ¢; and ¢, in accor-
dance with their leaves in #(¢;) and ¢(cg), which is similar to
Jaccard similarity coefficient [11], i.e.,

_ [leaf(c1) Nleaf(cy)l
[leaf(c1) Uleaf(ca)|

This metric takes into account the subsumption relationship
among concepts. For three concepts ¢;, ¢; and ¢ satisfying
c3 = ¢ = c1, we always have simg(ci, c3) < simg(cz, c3) and
simg(c1, c3) < simg(cq, ).

4)

simg(c1, c2)

Example 4.4. Consider the taxonomy tree depicted in Fig. 3
again. We have simg(cy,c1) = 5/6 because the intersec-
tion and union of leaf(cy) and leaf(c;) are 5 and 6,
respectively. Similarly, we can obtain simg(ci, c2) = 3/5,
sitmg(co, ca) = 1/6 and simg(ca, cg) = 0.

Similarity between records. Semantic similarity between
records is measured on the basis of their related concepts.
More specifically, given two records 7 and 3, the semantic
similarity of | and r; is defined as

>

(c1,e2)€P(r1,r2)

le(er,e2)l sims(ci, ¢z),  (5)

|B(71,72)]

simg(ri,re) =

JANUARY 2016

where P(ry,72) = {(c1,)|e1 € £(r1), ¢ € £(r2), and ¢q <
¢ V ¢ < ¢rholds} is a set of related concept pairs between
r1 and 1y, a(c, ) =leaf(er) U leaf(er) and B(ry,re) =

U cycctr)epcctry)@(c1, 2). Intuitively, ;ggfig;l‘ is the weight of

(c1,¢2), which indicates the influence of the semantic simi-
larity from each pair (ci,c2) of related concepts on the
semantic similarity of (r1,72). When two records r; and r;
are both interpreted to exactly the same concept in a taxon-
omy tree, ie., ¢(r1) ={c} and ¢(r2) = {c2}, the semantic
similarity between the records coincides with the semantic
similarity between their related concepts, i.e., sim(ry,rs) =
sim(c1, c2) holds.

We thus have the following two propositions.
Proposition 4.1 states that if a record r is interpreted to
all concepts represented by the child nodes of a concept
¢, then it is equal to being interpreted as ¢ directly. Propo-
sition 4.2 states that the semantic similarity of two records
is 0 iff their concepts are not related, i.e., there is no path
between their concepts.

Proposition 4.1. If ¢(r1) = {c} and ¢(ry) = child(c), then
simg(ry,m2) = 1.

Proposition 4.2. simg(r1,m2) = 0 iff P(r1,72) = 0.

Example 4.5. Based on the semantic interpretation of the
records ri-r¢ in Section 4.2, and the taxonomy tree
depicted in Fig. 3, we have simg(ri,r2) = 1/2 because
¢(r1) = {ea}, Llr2) = {es,ca}, Plri,ma) = {(ea; 3), (ea, c5)},
simg(cy,c3) =0, simg(cy,cq) = 1 and thus simg(ry,re) =
(3-0) 4 (5-1) = 1/2. Similarly, we can obtain simg(rs,
ry) = 1/2, simg(r1,73) = 1, simg(r1,75) = 0, simg(re,76) = 1/3
and simg(ry, ) = simg(rs,r¢) = 1/6.

4.4 Semantic Hashing

In order to efficiently analyze the semantic similarity of
records, we need to convert the semantic interpretation of
each record (i.e., a set of semantic concepts in taxonomy
trees) into a binary vector, called semhash signature, and
such semhash signatures should approximately preserve
the semantic similarity between records. For this, we
develop semhash functions in the following.

Given a set R of records that are interpreted in terms of
taxonomy trees T and Cr =), ,¢(r), a family of sem-
hash functions is defined in one-to-one correspondence
with a subset C' C Cr of concepts (i.e., semantic features
of interest) in 71" such that the following conditions are
satisfied:

1)  Disjointness: Yei,¢o € C (¢1 A c2 A ¢ A ¢1) (concepts

in C are pairwise disjoint);

2)  Completeness: Vey € Cr (leaf(c;) C C) (all concepts

that are related to records in R are in C);
3)  Nomn-emptiness: Yc, € Cdey € Cr (1 < ¢z) (each con-
cept in C'is related to at least one record in R).

Each concept ¢; € C corresponds to a semhash func-
tion g; that takes a record r as input and produces 0 or 1
as output, where 1 (resp. 0) indicates that r is related
(resp. not related) to ¢;. In doing so, we obtain the se-
mantic signature G(r) = [g1(r), g2(7), ..., ga(r)] for each
record r € R after applying the semhash functions G =
{g1,...,9,}, and a semantic signature matrix for all
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records. Algorithm 1 describes the details of generating
semhash signatures, which takes time O(|R|+ |Cr|) in
the worse case.

Algorithm 1. Generating semhash signatures

Input: a set R of records and a set T" of taxonomy trees

Output: a semantic signature matrix M for R

1) Select a subset C' of concepts in T for semhash functions
G={g1,--- 90}
(1.1) Foreach c € 3, ¢(r), add leaf(c) into C;

2) For each r e R, check the concepts in ¢(r) wrt ¢
(t=1,...,|C]|) and do the following;:

() = 1 if dc € ¢(r).¢; = cholds;
I =0 otherwise.

In accordance with the definition of semhash function,
we have the following proposition.

Proposition 4.3. Let G ={g1,...,9,} be the set of semhash
functions chosen for R, and sim (v, ve) be the Jaccard simi-
larity coefficient between two vectors vy and vy of the same
length. Then for any rq,7,r9,7% € R, we have sim;(G(r1),
G(r))) > sim;(G(re), G(rYy)) iff simg(r1, 7)) > simg(ra,1}).

Note that, it is possible to combine semhash and minhash
functions [8] for generating semantic signatures. This
depends on how many semantic features are considered. In
practice, the number of semantic features is often relatively
small. Hence, we can use semhash functions to generate
semantic signatures directly.

5 SEMANTIC-AWARE LSH BLOCKING

In this section we propose a semantic-aware LSH blocking
framework, which incorporates semantic features into
the existing LSH techniques for ER blocking. Let d; < d»
be two distance values of a distance metric §, and p; and ps
be two probabilities. Then a family H of functions is
(d1,ds, p1, p2)-sensitive over (R,8) if, for any ry,7 € R and
any h € H, the following conditions are satisfied: (1) if
8(r1,m2) < dy, then Pr{h(r) = h(r2)] = p1; 2) if 8(r1,7m2) > da,
then Pr[h(ri) = h(ry)] < ps, where Pr[h(ri) = h(rs)] is the
probability of i(ry) = h(ry) [23]. Although a LSH family can
be established for any distance space (R,§) [9], two prob-
lems still remain:

1)  How does the robustness of a similarity metric affect

the effectiveness of LSH for blocking?

2) How can LSH families for textual and semantic dis-

tance spaces be integrated in an efficient way?

By Equation (1) and the notion of LSH family, we have
the following proposition that answers the first question.
Intuitively, it states that, for a distance metric that is
y-robust, and two pairs of records from R whose differ-
ence between the similarity values is at least y, the proba-
bility of hashing each pair into the same value correlates
positively to the likelihood of representing the same
entity by the pair.

Proposition 5.1. Let H be a (dy, da, p1, p2)-sensitive family over
(R,8) and § is y-robust. Then for any ry,re, 7,7y € R and
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each h € H, whenever §(ri,rm) < di, 8(ro,74) > dy and
dy — dy > 1 — y hold, we have

Prie(r) = e(r)] > Prie(rs) = e(r})]if (6)

Pr(h(r1) = h(r})] = Prlh(rz) = h(r})].
For the second question, we will discuss it in Section 5.2.

5.1 LSH with Minhash Signatures

To measure the textual similarity of two records, a com-
monly used LSH technique is minhash functions [8]. Given a
set R of records, there are three main steps.

1) Shingling: convert each record into a binary vector in
accordance with some selected attributes A of R.
Thus, a set {ay,...a,} of g-grams [11] from the val-
ues of A in all records is first collected, then each
record r is represented as a binary vector [vy, ..., vp]
such that if a q-gram a; (i € [1,m]) occurs in r, then
the value of v; is set to 1; otherwise it is 0.

2) Minhashing: generate a signature vector (i.e., so-
called minhash signature) for each record using
minhash functions. For this, a number of minhash
functions hq, hs, ..., h, are used, where n is much
smaller than m, yielding a signature vector [h(r),
ha(r), ..., ho(r)] for each record r. In doing so,
records have small signatures that approximately
preserve textual similarity between them.

3)  Amplifying: control the locality sensitivity by divid-
ing the minhash functions hy, hy, ..., h, into a num-
ber [ of hash tables of equal size k& where |-k = n.
Since records whose minhash signatures agree in
one of such hash tables are placed into the same
block, this turns a (dy, d, p1, p2)-sensitive family into
a(dy,dy, 1 —(1—ph)' 1= (1= ph))-sensitive family.

The following proposition states that such a LSH family

with minhash functions can ensure that two textually iden-
tical records can always be hashed into the same block.
Meanwhile, two records that are textually dissimilar may
still be hashed into the same block although the probability
could be low, e.g., “deduplication” and ‘“‘entity resolution”
are textually dissimilar but refer to the same problem.

Proposition 5.2. Let H, be a LSH family with minhash func-
tions. Then, for any 1,72 € Rand h € Hy, we have:

1) if simy(r1,7m2) =1, then Prih(ri) = h(rs)]
2)  ifsimy(ry,re) =0, then Pr{h(ry) = h(ry)]

1, and
0.

IVl

5.2 Integrating Semhash Signatures

How should we develop a LSH blocking method that com-
bines textual and semantic similarity spaces for improving
the quality of blocks? Before exploring possible solutions, it
is important to note that textual and semantic features are
different in at least two aspects.

1)  Textual and semantic features are not equally sensi-
tive for identifying entities: (i) two records of the
same entity may have dissimilar textual represen-
tation but they are often semantically related
with each other, and (ii) two records whose textual
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Fig. 4. An illustration of the semantic-aware LSH framework with minhash and semhash signatures.

representations are highly similar (e.g., records that
have the same title) are more likely to refer to the
same entity than two records whose semantic inter-
pretations are highly similar (e.g., records that are
both journals).

2)  The dimensionality of semantic features is often rela-
tively small (i.e., range from several to hundreds),
while the dimensionality of their textual features can
be very large, e.g., 17,576 for 3-grams and 456,976
for 4-grams if only 26 characters are used.

We need to cater for these differences when incorporat-
ing textual and semantic similarities into the LSH blocking.
Therefore, we propose the semantic-aware LSH blocking by
augmenting a LSH family for textual similarity with a w-
way semantic hash function. The key ideas are as follows.
Assume that, for a semhash function g € G, the probability
of having the value 1 for a randomly chosen record is p,,
i.e., p, = Pr[g(r) = 1], and the probability that two randomly
chosen records r; and 7, have the same value in g is p,, i.e.,
pe = Prlg(r1) = g(r2)]. We may assume Prlg(r1) = g(re)] =
> gec Prlgi(m) = gi(r2)]/|G| if |G| is sufficiently large. A
LSH family H, for semantic similarity is a set of hash func-
tions, each h, € H, being determined by a semhash function
g uniformly chosen at random from G such that, h, yields
true for two records r, and ry if both records have the value
1 for g, and yields false otherwise. The probability that two
records have the true value for a hash function h, € F' is
thus p, - p.. Based on H,, two types of w-way semantic hash
functions can be constructed:

1) A w-way AND function hy,, is built upon w ran-
domly chosen functions {hg, ..., g} from Hy such
that hy, ) (71, 72) = true iff hy (ri, r2)A .o A hge(r1,72)
= true;

2) A w-way OR function hy, ) is built upon w randomly
chosen functions {hg,...,hg} from H, such that
h[w,v] (7’1, 7‘2) = true iff hgl (7“1, 7”2) V...V hgw(rla 7”2) =
true.

Let s’ = p, - p., | be the number of hash tables, and k be
the number of hash functions in each hash table. Then the
probability that two records with the textual similarity s
and the semantic similarity ' are placed into the same block
is 1 — (1 — s"- p)', where p indicates the probability that the
augmented w-way semantic hash function for the two
records returns true, and is defined as:

@) i =
p‘{l—(l—s’)“‘ if = V.

The following proposition states that, for any two records
that are semantically dissimilar, regardless of their textual
similarity, the collision probability of these two records in a
semantic-aware LSH family is always 0.

Proposition 5.3. Let H;, be a semantic-aware LSH family. Then,
for any ri,ry € Rand h € H,,, we have:

1) if simg(r1,7m2) =0, then Prih(ri) = h(r2)] = 0, and
2)  ifsimy(ry,re) = 1, then Prih(r) = h(r)] < 1.

Fig. 4a provides a high-level illustration of the proposed
semantic-aware LSH blocking framework. Given a set of
records and several taxonomy trees as input, minhash and
semhash functions first generate minhash and semhash sig-
natures in terms of the textual and semantic similarities
among these records, respectively. Then, a number of blocks
are generated by combining the minhash and semhash sig-
natures. The quality of blocks can thus be improved by
leveraging both textual and semantic features.

Example 5.1. Consider our running example with the
records 7i-r¢ in Fig. 1 and the taxonomy trees t; in
Fig. 3. Suppose that the minhash and semhash signatures
of the records w.r.t. t; are presented in Fig. 4b, where
one hash table of the LSH family is constituted by Ay, h2
and hi3, and a one-way OR semantic function is built
upon hgy. According to the hash table [hi1, hi2, hi3), the
records 7,72, 74 and g are textually similar, and would
be hashed into the same block if only considering textual
similarity. However, when taking into account the 1-way
OR semantic function, we would have that r; is not
semantically similar to r;, 7, and 74, and cannot be placed
into the same blocks with these records. Nevertheless,
r1,79 and r¢ will be hashed into the same block because
they are both textually and semantically similar (.e.,
their values are the same in [h11, hi2, h13] and their values
equal to 1in hgy).

5.3 Parameter Tuning

The parameter tuning of our semantic-aware blocking
method is primarily based on the similarity of records. For
this, we first need to select a list {A4;,..., A4, } of attributes
used for ER blocking and similarity functions f; such that
fi(Tl.Ai,T‘Q.AL’) € [0, 1} where 1 <i <mn, and r.4; and ry.4;
refer to the values of A; in the records r; and r;, respec-
tively. The selection of attributes and their similarity func-
tions is a general requirement for any ER methods and has
been well studied in previous works [11], [26]. Thus, below
we focus on discussing the parameters that are specific to
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our method: (1) the number 1 of hash tables, (2) the size k of hash
tables (i.e., the number of minhash functions per hash table),
and (3) a w-way semantic hash function.

Generally, there are three steps for tuning the parame-
ters: (i) determine two similarity thresholds s; and s; w.r.t.
a desired error ratio ¢, which correspond to the distance
values dj, and d; previously discussed in Section 3 (.e.,
s, =1—dy and s; =1 — dp); (ii) determine the parameters !
and k based on s; and s, and their desired collision proba-
bilities p; and p,; (iii) determine the parameter w based on
the quality of semantic features. For Step (i), we first need
to learn the probability density function f,(x) of true
matches over textual similarity from the training dataset.
Then, by fg " fs(x)d = €, s, can be automatically determined
given a desired e. Similarly, s; may be determined so that
records whose textual similarity is lower than s; are consid-
ered to be in different blocks. For Step (ii), the desired prob-
abilities of s; and s, need to be decided. That is, the
probability of finding records whose textual similarity is
greater than s, is at least p, and the probability of finding
records whose textual similarity is less than s; is at most p;.
Since the probability of placing two records with a similar-

ity s into one block is 1 — (1 — s*)', I and k can be automati-
cally determined based on the conditions [ < log; (1 — ps)
h

and [ > lOg k(1= D). For Ste (111), if the semantic features
1-s p
°l

are noisy, uncertain (i.e., semantic features of some records
are missing) or heterogeneous (different records of the
same entities may have different semantic features), a
w-way OR semantic function is preferred; otherwise, a
w-way AND semantic function may be chosen. The pur-
pose of adding a w-way semantic hash function is to filter
out true non-matches whose semantic similarities are less
than certain degree. Fig. 5 shows that the choice of the
parameter w amplifies the collision probability of semanti-
cally similar records such that increasing w in a w-way
AND function lowers the probability and increasing w in a
w-way OR function increases the probability.

Note that, these parameters can be determined based on a
small training dataset. Nonetheless, the performance of our
method may be affected, which depends on how close the
similarity distribution of records in the training dataset is to
the similarity distribution of records in an entire dataset.

6 EXPERIMENTS

We have implemented our semantic-aware LSH blocking
framework to investigate the following three questions:
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1) Blocking parameters: How effectively the parameters
of the semantic-aware LSH blocking can be deter-
mined, in relating to the similarity distribution of a
training data set, and desired error ratio and colli-
sion probabilities?

2)  Blocking quality: Can the semantic-aware LSH block-
ing yield blocks with better quality, in comparison to
the LSH blocking only over textual similarity space?
What are the effects of the incorporated semantic
hash functions on blocking quality under different
settings of w and ©? How do the proposed LSH
blocking methods perform in comparison with the
state-of-the-art blocking techniques?

3)  Blocking efficiency and scalability: How efficiently
will the semantic-aware LSH blocking be used for
ER? Does it support good scalability for constructing
blocks?

Our implementation code is written in Java. The experi-
ments were conducted on a server with 128 GBytes of main
memory and two six-core Intel Xeon CPUs running at 2.4
GHz. Nonetheless, for the data sets we used in our experi-
ments, up to 8 GBytes of memory were required.

Data sets. We used two real-world data sets in our experi-
ments: Cora® and NC Voter [13]. The Cora data set contains
1,879 machine learning publications, which is publicly avail-
able, as well as its ground truth. The NC Voter data set is a
large voter registration data set from North Carolina, USA. It
contains more than 2 million records about voters” informa-
tion, such as first name, last name, gender and race. We have
extracted 292,892 records from the original data set, in which
30,000 records with the ground truth labels were used for the
experiments on blocking quality, while the whole set of
records was used for the experiments on blocking efficiency.
The reason why we used 30,000 records for the experiments
on blocking quality is to facilitate the comparison with the
state-of-the-art blocking techniques discussed in Christen’s
survey paper [12]. When using the whole set of records of NC
Voter, some of these state-of-the-art blocking techniques, e.g.,
threshold based string-map blocking [25], were prohibitively
slow to generate the blocks in our experiment environment.

Evaluation measures. We used four common measures to
evaluate the quality of blocking: Pair Completeness (PC), Pair
quality (PQ), Reduction Ratio (RR) and F-Measure (FM) [12],
[17], [26]. Let B be the set of blocks generated by applying
a blocking method over records in R, P(S) = {(t1,t2)|t1,t2 €
S,t1 #1to}, ' be a set of distinct pairs in B (e, |['|=
| U epP(0)]/2), 'y, be a set of distinct pairs in I' that repre-
sent the same entity, I',, be a collection of all (possibly
redundant) pairs in B (i.e., [T = 5 22D Q) be a set
of all distinct pairs in the entire data set (i.e., |Q]=
|P(D)|/2), and )y, be a set of record pairs in ) that repre-

_‘Ftp‘ PQ:HL[{}‘O‘, RR =

_‘Qtp"

- % and FM=%. PC measures the degree to which

blocks retain true matches, PQ measures the percentage of
true matches in the pairs of the blocks, RR measures the
degree to which blocks reduce pair comparisons, and FM is
the harmonic mean of PC and PQ.

sent the same entity. Then we have: PC

3. http:/ /www.cs.umass.edu/~mccallum/
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Fig. 6. The textual similarity distribution under different g values, and the collision probability under different k and | values.

6.1 Blocking Parameters

We calculated the Jaccard similarity distribution of the
exact values and g-grams with ¢ = 2, 3, 4 of true matches
in the two data sets. The textual similarity distributions
of the Cora and NC Voter data sets are shown in the
upper-left and upper-right subgraphs of Fig. 6, respec-
tively. The textual similarity distribution of the Cora data
set was measured using the values of two attributes
authors and title of the publication records, while the tex-
tual similarity distribution of the NC Voter data set was
obtained according to the values of two attributes first
name and last name of the voter records. Following the
principle of deciding y-robustness of similarity metrics,
we set ¢ =4 for the Cora data set, and ¢ = 2 for the NC
Voter data set.

The parameters k and [ for the Cora data set were
determined in terms of the collision probabilities shown
in the lower-left subgraph of Fig. 6 and an error ratio
e=5%. By [;" fs(x)d=¢ as discussed previously, we
have s, = 0.3. Then [ and k£ were tuned such that the col-
lision probability of records whose textual similarity is
greater than 0.3 is at least 40 percent under the error ratio
5 percent, and on the other hand, to control the percent-
age of true non-matches in the same block, we chose
s; = 0.2 such that any records whose textual similarity is
less than 0.2 should only have less than 10 percent proba-
bility of being placed into the same block. The distance
between s; = 0.2 and s;, = 0.3, together with the required
probabilities, determines k>4 and [ > 63 for the Cora
data set. Considering the time and space efficiency of
generating blocks, we chose k=4 and [ = 63. Our experi-
mental results confirm that these parameters yield the
desired results (i.e., the PQ wvalue is best and the PC
value is close to the best among k=1,...,6, as will be
illustrated in Fig. 9). Analogously, we chose k=9 and
1 =15 for the NC Voter data set. Because most of matches
whose textual similarity is greater than 0.8, the choice of
k=9 and [ = 15 leads to at least 90 percent probability of
placing two records with 0.8 textual similarity into the
same block. The collision probabilities for k = 4,5,6,7,8,9
and /=15 are depicted in the lower-right subgraph
of Fig. 6.

6.2 Semantic Features
In our experiments over the Cora data set, we used the bib-
liographic taxonomy tree shown in Fig. 3 and a semantic
function based on patterns of missing values to define the
semantic interpretation of records. As a result, we have 5 bit
semantic signature for each record in Cora. Table 1 presents
an example of such patterns, which consider missing values
in three attributes journal, booktitle and institution of Cora. In
practice, missing values may just be empty strings and not
necessarily be NULL. But for convenience of expression, we
use NULL and NOT NULL refer to missing values and non-miss-
ing values, respectively. Take the second pattern in Table 1
for example, it describes that if a record has values in journal
and booktitle but the value of institution is missing, then this
record is related to the concepts C5 and Cy in ty. The set of
patterns described in Table 1 is also complete in the sense that
every record in Cora can be specified by one of the patterns.
For the NC Voter data set, we built a taxonomy tree upon
the meta-data for race and gender, and defined a semantic
function based on the values in the attributes race and gen-
der, which have uncertain values like ‘u’. As a result, we
have a 12 bit semantic signature for each record in NC
Voter. Due to the existence of uncertain semantic features,
performing the semantic-aware LSH blocking is a trade-off
decision between PC, and the other two measures (i.e., PQ
and RR). The general idea is to increase the PQ and RR val-
ues as much as possible, while maintaining the decrease of

TABLE 1
An Example of Patterns Based on Missing Values in
Three Attributes journal, booktitle, and institution from Cora

Attributes
Patterns - - —— Concepts
journal booktitle institution

1 NOT NULL NOT NULL NOT NULL Cs,Cy, Cy
2 NOT NULL NOT NULL NULL C3,Cy

3 NOT NULL NULL NOT NULL C5,Cq

4 NOT NULL NULL NULL Cy

5 NULL NOT NULL NOT NULL Cy,Cr,Cy
6 NULL NOT NULL NULL Cy

7 NULL NULL NOT NULL C7,Cy

8 NULL NULL NULL Ch
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Fig. 7. Experimental results for using different semantic hash functions over the Cora data set (Hy;: [w=2, u = A]; Hi2: [w=1, u = A or u = V]; Hys:
[w=2, u = V]; Hyy: [w=3, u = V]; Hy5: [w=4, n = V]), where w indicates the number of randomly chosen hash functions and . indicates the way of

constructing these hash functions, k = 4 and [ = 63.

the PC value within a tolerable range. The details are further
discussed in the rest of this section, along with the compari-
son on blocking quality under different w-way semantic
hash functions.

6.3 Blocking Quality

We have conducted experiments to evaluate the quality of
blocking from four aspects: (1) comparison of using differ-
ent semantic hash functions; (2) comparison of using basic
LSH and semantic-aware LSH; (3) comparison of using dif-
ferent taxonomy trees; (4) comparison with existing block-
ing techniques.

6.3.1 Comparison of Semantic Hash Functions

We evaluated the effects of using different semantic hash
functions on the quality of blocking. Figs. 7 and 8 present
the results of incorporating five different semantic hash
functions into the LSH blocking for textual similarity over
the Cora and NC Voter data sets, respectively.

For both data sets, the PC values decrease when w
increases in the case u = A, while the PC values increase
when w increases in the case u = V. This is consistent with
the collision probability of semantic hash functions shown
in Fig. 5. For the PQ values, the two data sets have different
results in terms of the semantic hash functions used in our
experiments, which were due to the different characteristics
of the data sets, including their textual similarity distribu-
tions shown in Fig. 6 and semantic features. For the Cora
data set, the PQ values always increase when w increases
and u = A, and decrease when w increases and p = V. This
indicates that records with higher degrees of semantic simi-
larities mostly refer to true matches. For the NC Voter data
set, however, due to the significant amount of uncertain val-
ues in race and gender, using semantic hash functions to find
records with higher semantic similarity may also lead to the
addition of non-matches into the same blocks, thus

Percentage
Percentage

H21 H22 H23 H24 H25 HQl H22 H23 H24 HZS

decreasing the PQ values. The RR values have the same
trends in both data sets, i.e., slightly decreasing when the
collision probabilities of finding semantically similar
records increase. The RR values for the NC Voter data set
also indicate that RR is not an informative measure when a
data set is large and relatively clean. From the FM values in
Figs. 7 and 8, we can conclude that, for both data sets, the
overall performance of PC and PQ goes stable when p =V
and w is greater than 50 percent of the total number of
semantic signatures.

6.3.2 Comparison of LSH and SA-LSH

We conducted an experiment to compare the blocking qual-
ity of using the LSH blocking that only considers textual
similarity (written as LSH) and using the semantic-aware
LSH blocking (written as SA-LSH). Fig. 9 show the blocking
results of using LSH and SA-LSH methods over the Cora
and NC Voter data sets, respectively. For the SA-LSH meth-
ods in Fig. 9, we used the lowest threshold for semantic sim-
ilarity, i.e., two records are semantically similar if their
semantic similarity is greater than 1/5 in the Cora data set
(resp. 1/12 in the NC Voter data set).

In Fig. 9a, the PC values of LSH increase to 97 percent
and above when £k increases to 3, and the PC values of SA-
LSH increase correspondingly but are lower than the PC
values of LSH. The gap between the PC values of LSH and
SA-LSH is correlated with the degree of noisiness in seman-
tic features. For example, by Fig. 9a, we know that the
semantic features of the Cora data set are noisy. This is
because some records in Cora do not comply with any pat-
terns in Table 1. In Fig. 9d, the PC values of LSH and SA-
LSH are the same. This is due to the fact that the semantic
features of the NC voter data set is not noisy, although they
may contain uncertain values. Figs. 9b and 9e show that SA-
LSH methods can considerably improve the PQ values of
LSH in both data sets, where Fig. 9b uses a 0-1 scale and
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Fig. 8. Experimental results for using different semantic hash functions over the NC Voter data set (Hy;: [w=1, u = A or u = V]; Hoo: [W=3, . = VJ;
Hoys: [w=5, u = V]; Hoy: [W=7, u = V]; Hos: [Ww=9, u = V]), where w indicates the number of randomly chosen hash functions and u indicates the way

of constructing these hash functions, k = 9and | = 15.
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Fig. 9. Experimental results for comparing LSH and SA-LSH: (a)—(c) over the Cora data set, and (d)—(f) over the NC Voter data set, where LSH refers
to basic LSH only over textual similarity space, and SA-LSH refers to semantic-aware LSH over textual and semantic similarity spaces.
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Fig. 10. Three variants of the bibliographic taxonomy tree t,;;,: (@) t(,1) (Ieft), (b) twi2) (center), and () ¢(5) (right).

Fig. 9e uses a 0-0.4 scale. For the Cora data set, both LSH
and SA-LSH methods have the highest PQ value at k = 4.
This is because the PC values reach almost 1 at &£ =4, and
increasing k leads to reducing true matches within the same
blocks. For the NC Voter data set, the SA-LSH methods
always have the higher PQ values when the £ value
increases. This is because that their corresponding PC val-
ues are far below 1. We choose k = 4 and | = 63 in Figs. 9a,
9b, and 9¢, and k = 9 and [ = 15 in Figs. 9d, 9e, and 9f, which
experimentally verified the validity of our choices on block-
ing parameters as discussed in Section 6.2. For both data
sets, SA-LSH methods have higher RR values than the cor-
responding LSH methods. This is because SA-LSH methods
can eliminate pairs that are textually similar but semanti-
cally dissimilar, whereas LSH methods fail to filter out these
pairs. Nevertheless, because the NC Voter data set is large
and relatively clean, the gap of the RR values between LSH
and SA-LSH is not obvious.

6.3.3 Comparison of Taxonomy Trees

To investigate the impacts of taxonomy trees on blocking
results, we conducted an experiment that takes into account
the variants of taxonomy trees, and compares their blocking
results. In particular, our focus was on examining how the
structural changes on a taxonomy tree (e.g., missing con-
cepts) may affect the quality of blocks. The experiment was
performed over the Cora data set with the same parameter
setting as described in Section 6.3.2, and we have used three
variants of taxonomy trees as described in Fig. 10.

Table 2 describes the impacts of applying SA-LSH on the
blocking results generated by LSH when using different

taxonomy trees () (i = 1,2,3). We can see that the PC
values always decrease and the PQ, RR and FM values
always increase after incorporating semantic features into
the LSH blocking process. Nevertheless, for these three var-
iants (i.e., ftup1) removes Peer Reviewed and Non-Peer
Reviewed from typ, tgi2) misses Book from ty;, and #g,3)
misses Journal from t,;), the decrease of the PC values is
less than the decrease of the PC value using ¢;. This is
because the records that are originally related to missing
concepts have been changed to relate with their parent con-
cepts, which increases the semantic relatedness among
records and helps capture true matches that were not
semantically related in #4;;. In addition to this, the three var-
iants of #;; also have different impacts on PQ. For #,1), it
has a better PQ value than £, 9) and £(,3). This is because
some records in Cora cannot be clearly identified as peer-
reviewed or non-peer-reviewed based on patterns of miss-
ing information, so removing Peer Reviewed and Non-Peer
Reviewed only slightly decreases PQ. For #(,;,2) and #3),

TABLE 2
Experimental Results for Comparing the Impact on Blocks
over Cora Using Different Taxonomy Trees

Taxonomy trees

Loib Lwin,1) Lviv,2) Lwin3)

PC —-355+059 —-332+030 —-3.05+0.18 —3.02+0.21
PQ +2475+391 423524240 +2323+280 +14.01+1.48
RR +224+054 +220+£024 +207+£031 +141+0.19
FM +16264+342 +15.824+1.72 +1540+2.17 +929+1.16
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TABLE 3
The State-of-the-Art Blocking Techniques Used in Our Comparison

[ No. of parameter settings [| Time (sec) |

- . No. of candidate pairs
Blocking technique ‘ Abbrev. | Cora | NC Voter |[ NC Voter (the best-performing settin% for FM) {
Traditional blocking [18] TBlo 1 1 0.9088 15,272
Array based sorted neighbourhood [21], [22] SorA 5 5 1.0097 29,999
Inverted index based sorted neighbourhood [10] Sorll 5 5 1.1828 58,549
Adaptive sorted neighbourhood [41] ASor 8 8 2.4507 15,272
Q-gram based indexing [6] QGr 4 4 4.9046 15,288
Threshold based canopy clustering [32] CaTh 8 8 13.7577 15,333
Nearest neighbour based canopy clustering [10] CaNN 8 8 70.3243 151,804
Threshold based string-map blocking [25] StMT 32 30 2197.4365 132,896
Nearest neighbour based string-map blocking [1] StMNN 32 32 1662.5243 84,002
Suffix-array based blocking [2] SuA 6 6 1.7224 23,305
Suffix-array based blocking using all sub-strings [2] | SuAS 6 6 2.2947 36,876
Robust suffix-array blocking [15] RSuA 48 48 3.6113 23,305
Locality-sensitive-hashing based blocking LSH 1 1 2.340 5,110
Semantic-aware locality-sensitive-hashing SA-LSH 1 1 3.872 3,565

because the number of records originally related to Book is
much smaller than the number of records originally related
to Journal in ty;;, the PQ value of £, 9) is thus better than the
PQ value of #;, 3. Compared with the results of only apply-
ing LSH, the RR values of applying SA-LSH with ;)
(t=1,2,3) generally increase. However, the degree of
increases varies in terms of missing concepts. In the case of
more missing concepts, more records become semantically
related through the parent concepts of missing concepts,
regardless whether or not they represent the same entities.

6.3.4 Comparison to State-of-the-Art

We conducted an experiment to compare the quality of our
proposed blocking methods with the state-of-the-art block-
ing techniques discussed in Christen’s survey paper [12].
Table 3 depicts these state-of-the-art blocking techniques,
their abbreviations, the number of parameter settings that
were evaluated over the data sets, and the average time
taken for building blocks over NC Voter.

Following the experimental setup in [12], we used a total
of 163 parameter settings for Cora and 161 parameter set-
tings for NC Voter. The reason why NC Voter has a less
number of parameter settings than Cora is that 2 of the 163
parameter settings (i.e., StMT with the string similarity
bigram, thresholds {0.95/0.85,0.9/0.8}, the grid size 1,000
and mapping dimension 15) failed to generate any blocking

(a) F-Measure (FM)

results over the NC Voter data set, but worked well over the
Cora data set. More specifically, a blocking key on authors
and title was defined for the Cora data set, and similarly, a
blocking key on first name and last name was defined for the
NC Voter data set. For SorA and Sorll, the window size was
setto {2,3,5,7,10}. For ASor, RSuA, StMT and StMNN, the
string similarity functions Jaro-Winkler, bigram, edit-distance
and longest common substring [12] were used. For ASor,
RSuA and QGr, similarity thresholds were set to {0.8.0.9}.
For SuA, SuAS and RSuA, the minimum suffix length and
maximum block size were set to {3,5} and {5,10,20},
respectively. For all blocking techniques using g-grams, q
was set to {2,3}. For CaTh and CaNN, the Jaccard and TF-
IDF cosine similarities were used, in combination with the
thresholds {0.9/0.8,0.8/0.7} for CaTh and {5/10,10/20} for
CaNN. For StMT and StMNN, the grid size was set to
{100,1000}, and the mapping dimension to {15,20}. The
thresholds were set to {0.95/0.85,0.9/0.8} for CaTh and
{5/10,10/20} for CaNN. All blocking techniques presented
in Table 3 were implemented in Python.

Fig. 11 describes the experimental results of comparing
LSH and SA-LSH with the blocking techniques listed in
Table 3. For each blocking technique, the result with the
best-performing parameter setting is presented. We can see
that the FM values of LSH and SA-LSH are much better
than the others. The PQ values of LSH and SA-LSH are
higher than the others over both data sets, while a number

(b) Pair Quality (PQ)
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Fig. 11. Experimental results for comparing LSH and SA-LSH (k=9, I=15) with the state-of-the-art blocking techniques.
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Initial blocks Final blocks Initial blocks Final blocks
Method | —5——po+ | Weight | PC | Por | Fm* || Method |—pc—por ["Weight | PC | PQ* | FMF
WEP JS 0.867 | 0.749 | 0.803 WEP ARCS | 0.800 | 0.504 | 0.618
CEP EJS 0.188 | 0.933 | 0.313 CEP ARCS | 0.847 | 0.152 | 0.258
WNP 0.999 | 0.0497 ]S 0.921 | 0.368 | 0.526 WNP 0.847 | 0.150 ARCS | 0.842 | 0.111 | 0.196
CNP CBS 0.193 | 0.515 | 0.281 CNP JS 0.802 | 0.244 | 0.374
SA-LSH - 0.969 | 0.148 | 0.257 SA-LSH - 0.847 | 0.360 | 0.505

(a) Cora data set

(b) NC Voter data set

Fig. 12. Experimental results for comparing SA-LSH and the meta-blocking method over: (a) Cora (left) and (b) NC Voter (right).

of blocking techniques such as CaNN, StMT and StMNN
have very low PQ values (less than 1 percent) for the NC
Voter data set. For the PC values, although LSH and SA-
LSH performed much better than the others over the Cora
data set, their PC values were slightly lower over the NC
Voter data set. The RR values of all blocking techniques
are quite close.

We have conducted an experiment to verify how
effectively using semantic features can improve the LSH
blocking in comparison with the meta-blocking method
introduced in [37]. Four pruning algorithms (i.e., WEP,
CEP, WNP, and CNP) and five weighting schemes (.e.,
ARCS, CBS, ECBS, JS, and EJS) have been proposed in [37],
and the authors have implemented them in Java. Fig. 12
presents the experimental results, where the result of each
pruning algorithm is taken from a weighting scheme with
the highest FM* value, and the parameter settings for
SA-LSH are the same as in Fig. 11. Note that, PQ*:% is used
in [37], which is different from PQ used by us and some others
[12], [26], and accordingly, FM*:%;S%. From Fig. 12, we
can see that WNP+JS and WEP+ARCS have the highest FM*
values for the Cora and NC Voter data sets, respectively.
Thus, the meta-blocking method performs better than SA-
LSH in terms of FM* values. Nevertheless, our experiments
show that SA-LSH has the highest PC value over Cora, and
has the same highest PC value with several combinations of
prune algorithms and weighting schemes over NC Voter.

6.4 Blocking Efficiency and Scalability

We have also performed experiments to explore: (a) the effi-
ciency of the LSH and SA-LSH methods in comparison with
other blocking techniques; (b) the scalability of the LSH and
SA-LSH methods in terms of the increasing numbers of
records in data sets. For the task (a), we used the same NC
Voter data subset as used in Section 6.3, which has 3,000
records. For the task (b), in addition to using the NC Voter
data subset in Section 6.3 and the full NC Voter data set
with 292,892 records as test data sets, we also created
another six test data sets of different sizes which contain
10,000, 50,000, 100,000, 150,000, 200,000 and 240,000 records
from the full NC Voter data set, respectively. Then we ran

1.0/~
0.8 i1l
0.6/l
0.4l 1IN

Percentage
Percentage
Percentage

0.2

0.0 Mo
10 50 100 150
Thousands of records

Thousands of records

our experiments five times for each test data set, and took
their average runtime used in the blocking process.

In Table 3, the blocking time and number of candidate
pairs for each blocking technique were taken from the best-
performing result in the sense that its FM value is the highest
one among the results in all parameter settings. We can see
that the times vary significantly amongst the state-of-the-art
blocking techniques (i.e., from 0.9088 seconds for TBlo to
2197.4365 seconds for StMT). The best-performing results for
both StMT and StMNN have the longest time to build blocks.
In comparison with these, the blocking times of LSH and SA-
LSH are 2.340 and 3.872 seconds, respectively, which include
the time for constructing the taxonomy tree and building the
semantic function (i.e., mappings from the records in the NC
Voter data set to the related concepts in the taxonomy tree).

Fig. 13 presents the PC, PQ, RR and scalability results of
LSH and SA-LSH, in which the horizontal axis indicates the
sizes of data sets, and SF in Fig. 13d refers to the process of
building the semantic function, including the construction
of the taxonomy tree. From Figs. 13a, 13b, and 13c, we can
see that LSH and SA-LSH have almost same PC values,
which again indicates that the semantic features of these
NC Voter data sets are not noisy. Nevertheless, the PQ val-
ues vary in different data sets, and the PQ values of SA-LSH
are always significantly higher than the PQ values of LSH.
For the RR values, both LSH and SA-LSH have the value
0.9999 over all data sets. Fig. 13d presents the times required
by LSH and SA-LSH over data sets of different sizes, and
their corresponding times of constructing the taxonomy tree
and building the semantic function. Three dashed lines are
the trendlines added for indicating their scalability.

7 CONCLUSION

In this paper we have developed the semantic-aware LSH
blocking framework that takes into account both textual
and semantic similarities in the ER blocking process. Our
experimental results show that semantic information can be
leveraged to improve the blocking quality, and the integra-
tion of textual similarity and semantic similarity with the
LSH technique provides us an efficient and scalable block-
ing technique for ER with improved quality.

(c) RR (d) Time
R 40 ; ‘
35| *=— LSH

R 3 ;g v—v SA-LSH =
0.6 oo

; § 20 SF
0.4f 8 15

Ll 10+
0.2} o[
0.0l 0 ;

10 50 100 150 200 240 292 0 50 100 150 200 250 300

Thousands of records Thousands of records

Fig. 13. The PC, PQ, RR, and time performance of LSH and SA-LSH (k=9, I=15) over the NC Voter data sets of different sizes.
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In the future, we plan to extend our methods to handling
heterogenous data sets by leveraging context information
and knowledge reasoning tools within a network environ-
ment. In particular, we will investigate the mining and
learning methods for discovering semantic features. This
task is important for increasing the applicability and effi-
ciency of our proposed semantic-aware LSH blocking
framework to real-world ER problems. We envision devel-
oping knowledge bases for given ER tasks, which contain
the semantic features discovered through the mining and
learning process.
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