
Efficient Interactive Training Selection
for Large-Scale Entity Resolution

Qing Wang(B), Dinusha Vatsalan, and Peter Christen

Research School of Computer Science, The Australian National University,
Canberra, ACT 0200, Australia

{qing.wang,dinusha.vatsalan,peter.christen}@anu.edu.au

Abstract. Entity resolution (ER) has wide-spread applications in many
areas, including e-commerce, health-care, the social sciences, and crime
and fraud detection. A crucial step in ER is the accurate classification of
pairs of records into matches (assumed to refer to the same entity) and
non-matches (assumed to refer to different entities). In most practical
ER applications it is difficult and costly to obtain training data of high
quality and enough size, which impedes the learning of an ER classi-
fier. We tackle this problem using an interactive learning algorithm that
exploits the cluster structure in similarity vectors calculated from com-
pared record pairs. We select informative training examples to assess the
purity of clusters, and recursively split clusters until clusters pure enough
for training are found. We consider two aspects of active learning that
are significant in practical applications: a limited budget for the num-
ber of manual classifications that can be done, and a noisy oracle where
manual labeling might be incorrect. Experiments using several real data
sets show that manual labeling efforts can be significantly reduced for
training an ER classifier without compromising matching quality.

Keywords: Data matching · Record linkage · Deduplication · Active
learning · Noisy oracle · Hierarchical clustering · Interactive labeling

1 Introduction

Entity resolution (ER), also known as data matching, record linkage, or duplicate
detection, is the process of identifying and matching records that correspond to
the same entities from one or more databases [6]. As the databases to be matched
generally do not include entity identifiers, ER has to be based on the available
attributes, for example, personal names, addresses and dates of birth. In the past
decades, ER has attracted much interest from various application domains, the
most prominent being health, census statistics, e-commerce, national security
and digital libraries. For recent surveys see [6,14].

The core steps in ER in their most basic form consist of the pair-wise com-
parison of records using functions that calculate numerical similarities between

This research was partially funded by the Australian Research Council (ARC), Veda,
and Funnelback Pty. Ltd., under Linkage Project LP100200079.

c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part II, LNAI 9078, pp. 562–573, 2015.
DOI: 10.1007/978-3-319-18032-8 44

Efficient Interactive Training Selection for Large-Scale Entity Resolution 563

attribute values, followed by either an unsupervised or supervised classification of
pairs of records into matches and non-matches [6,14]. The comparison of attribute
values used in ER is commonly based on approximate string comparison func-
tions that return a normalized similarity between 0 (totally different values) and
1 (exact matching values). For each compared record pair, a weight vector is cal-
culated with the similarities over the different attributes of that pair [6].

Various supervised and unsupervised learning techniques [3,5,7,9,13] have
been proposed for ER in past years. While supervised techniques generally result
in much better matching quality, these techniques require training data in the
form of labeled examples of true matching pairs of records that refer to the same
entity, and true non-matching pairs of records that refer to different entities.
While in certain, mostly academic, situations such training data are available,
in most practical applications of ER actual truth data are difficult to obtain. In
many cases training data have to be manually generated, a task that is known to
be difficult both in terms of cost and quality [6]. The traditional way of selecting
training data is to use random sampling. However, from a robust statistical
point of view, random sampling needs to select a significantly large number of
examples for guaranteeing the quality of training data, which was also verified in
our experiments discussed in Sect. 5. Another difficulty of using random sampling
is caused by the imbalance of the ER problem, as the vast majority of record pairs
will correspond to non-matches [6]. Two challenges thus stand out in particular
when training data are to be manually generated over large-scale data sets:
(1) How can we ensure “good” examples are selected for training? (2) How can
we minimize the user’s burden of labeling examples?

Active learning is a promising approach for selecting training data [1,19,22].
The central idea is to reduce the labeling efforts through actively choosing infor-
mative or representative examples [16]. In doing so, instead of choosing a large
quantity of examples to label as is required for fully supervised learning, active
learning only selects examples based on the hints from previously labeled exam-
ples, which can often yield a training set that is small but still sufficient for
supporting accurate classification.

Although successful, existing active learning methods for ER have limitations
in achieving efficient training for large-scale data sets. Most of these methods are
grounded on a monotonicity assumption – a record pair with higher similarity
is more likely to represent the same entity than a pair with lower similarity.
This assumption is valid in some real-world applications but does not generally
hold, as we will illustrate in Sect. 3. Thus, two difficult issues arise in selecting
training data: (1) How do we know whether the monotonicity assumption holds
on a data set since training data are not available? (2) How can we effectively
select training data when the monotonicity assumption does not hold?

In this paper we develop a generic active learning method for efficiently select-
ing ER training data over large data sets. Unlike other works, we do not rely
on the monotonicity assumption. Instead, our method exploits the cluster struc-
ture in data through active learning, which can circumvent the first issue above,
meanwhile solving the second issue. The basic idea of our method is illustrated in

564 Q. Wang et al.

0.0
0.0

0.0
0.0

0.0
0.00.0

0.0

1.0

1.01.0

1.0

1.0

1.01.0

1.0

w[1] w[1] w[1] w[1]

w[0]w[0]w[0]w[0]

(d) After third iteration(c) After second iteration(b) After first iteration (a) Initial state

+
+

-

- -

-

-
-

+
+

+

+

+

+ -
-

-

- - +
+

-
?

?

?

? ?

?

?

?
?

?

?

?

? ?

?

?

? ? ?
?

?

?

+
+

-

- ?

?

?
?

?
?

?

?

?

? ?

?

-

? ? ?
?

?
+

+

-

- ?

?

?
-

+
+

+

+

?

? ?

?

-

- ? +
?

-

Fig. 1. Example of the training selection process with 2-dimensional weight vectors.
Weight vectors that have been labeled as matches are shown with a ⊕, non-matches
with a �, and unlabeled ones with a circled question mark. The shaded areas in (d)
represent fuzzy clusters, while the other areas in (d) represent pure clusters, which are
to be used as training data for an ER classifier.

Fig. 1, where (a) shows weight vectors that are generated from pair-wise record
comparisons, and the labels of these weight vectors are unknown. Then, (b) to
(d) show how the weight vectors are interactively selected and manually classi-
fied, and how the set of weight vectors is recursively split into smaller clusters
until each cluster is classified as being pure or fuzzy (to be formally defined
in Sect. 4) based on the label purity of its informative weight vectors. During
this process, the training set is interactively constructed by gathering the weight
vectors from pure clusters.

We make the following contributions in this paper. (1) We develop an inter-
active training method which can be applied to ER training tasks without prior
knowledge of the match and non-match distributions of the underlying data
sets. (2) Our training method incorporates a budget-limited noisy human oracle,
which ensures: (i) the overall labeling efforts can be controlled at an acceptable
level and as specified by the user, and (ii) the accuracy of labeling provided by
human experts can be simulated. This is in contrast to existing active learning
methods for ER which often assume a perfect and unlimited labeling process [20].
(3) We experimentally evaluate our method on four real-world data sets from
different application domains.

In the following section we discuss related work. In Sect. 3 we present the
problem and building blocks of our approach, which we describe in detail in
Sect. 4. We experimentally evaluate our approach in Sect. 5, and conclude the
paper in Sect. 6 with an outlook to future work.

2 Related Work

Active learning has previously been studied in many problem domains, such as
text classification and speech recognition [20]. In the area of ER, active learning
has been explored for learning ER classifiers, which classify pairs of records as
matches or non-matches through actively selecting a reduced number of examples

Efficient Interactive Training Selection for Large-Scale Entity Resolution 565

for labeling [1,2,10,19,22]. In the following we provide a brief overview of work
that relates to our study in this paper.

Early work on active learning strategies for finding informative or repre-
sentative examples typically used disagreement between multiple classifiers. For
example, a committee of classifiers was used to identify the most representative
examples for labeling [19,22], i.e., labeling is iteratively required for pairs of
records where the classifiers return contradictory labels for the same example.
Sampling based active learning and its bias have been discussed in [11].

Later work has concentrated on the learning quality guarantee, that typi-
cally has a linear combination of the two measures precision and recall as the
learning objective. For example, in [1,2], given a minimum precision specified by
the user, a learned classifier aims to have a precision greater than the minimum
precision and a recall close to the best possible. Compared with these active
learning techniques, our algorithm has several interesting properties: (1) pro-
viding an integrated view on labeling budget control and quality guarantee,
(2) using interactive purity-based classification to reduce examples for labeling,
and (3) not relying on the monotonicity assumption for improving quality.

To improve the efficiency of active learning, two techniques have commonly
been used. One is to incorporate blocking or indexing [6] into the learning pro-
cess with parameters that are tuned manually [1,2] or semi-automatically [10].
Blocking in ER is the process of dividing data sets into smaller blocks according
to some criteria so that only records within the same block are compared with
each other. In principle, existing blocking techniques can be easily incorporated
into active learning algorithms as a pre-processing step before learning. The
second technique is to optimize active learning algorithms under certain distri-
bution assumptions, such as the monotonicity [1] and low noise [2] assumptions.
Our training method is completely independent of any assumption concerning
the data set or any blocking technique used, which makes our method more
generally applicable.

A number of studies have attempted to control labeling noise using cer-
tain strategies. Repeated labeling strategies were investigated in [21], includ-
ing round-robin repeated labeling and selective repeated labeling based on the
uncertainty of labels. In [12], a combined strategy was proposed, which selects
examples that are more likely to be correctly labeled yet still provide high quality
information, and examples that are most likely to have been incorrectly labeled.
In [23] the most reliable oracle was selected among multiple noisy oracles for
labeling. In this paper, we explore active learning in the presence of a noisy
human oracle, which allows us to simulate the challenging manual clerical label-
ing process in real-world ER applications.

3 Problem Statement and Building Blocks

We study the problem of reducing the labeling costs for selecting training data,
while keeping the quality of ER classification at a high level. In contrast to
the works of [1,2], we do not rely on the monotonicity assumption since it does

566 Q. Wang et al.

Fig. 2. Examples where the monotonicity assumption of similarities does not hold:
non-matches with the highest similarity (denoted by light green crosses) and matches
with the lowest similarity (denoted by dark blue dots)

not generally hold for ER. This is evident from the plots in Fig. 2, which show the
non-matches with the highest similarity and matches with the lowest similarity
from three of the real-world data sets we used in our experimental evaluation in
Sect. 5. To address this problem, we propose an active learning approach that,
given a set of weight vectors and a classifier, recursively splits the weight vectors
into clusters, and classifies these as being matches or non-matches if the purity
of informative weight vectors in a cluster is higher than a specified threshold. In
the following we present the building blocks of our proposed approach.

Let R be a set of records from one or more data sets, each r ∈ R hav-
ing a set of attributes. We use r.A to refer to the value of an attribute A in
a record r. Given two records r1, r2 ∈ R and an attribute A of r1 and r2,
a similarity weight of A between r1 and r2 is a value in [0, 1], denoted as
f(r1.A, r2.A), where f is a similarity function [6] that quantifies the similar-
ity between r1.A and r2.A. Taking the edit distance similarity function fed for
example [6], fed(r1.fname, r2.fname) = 1.0 − 3

6 = 0.5, where r1.fname = Rob
and r2.fname = Robert.

For a set A = {A1, . . . , An} of attributes selected for performing ER tasks,
each compared pair (r1, r2) of records that has the attributes A results in a
weight vector 〈a1, . . . , an〉 ∈ [0, 1]n over A, where ai is the similarity weight of
Ai between r1 and r2 (i = 1, . . . , n). For example, the pair (r1, r2) of records over
the attributes {fname, sname, age} with r1.fname = Rob, r1.sname = Smith,
r1.age = 30, r2.fname = Robert, r2.sname = Smith and r2.age = 31 may
correspond to a weight vector 〈0.5, 1, 0.5〉. A weight vector set W over A consists
of all the weight vectors over A to which the pairs of records in R correspond.
A cluster Wi ⊆ W is a subset of weight vectors in W. A partition of W is a set
{W1, . . . ,Wm} of pairwise disjoint clusters whose union contains all the weight
vectors in W, i.e. Wi ∩ Wj = ∅ for 1 ≤ i 	= j ≤ m, and

⋃

1≤i≤m

Wi = W.

We consider a noisy human oracle that simulates a non-perfect manual cleri-
cal labeling process. The main reason behind such noisy human oracles is due to
the fact that human experts often have different levels of expertise for labeling

Efficient Interactive Training Selection for Large-Scale Entity Resolution 567

matches and non-matches [6]. Thus, depending on which human expert is asked
for labeling an example, the labeling accuracy varies. A human oracle takes a
set of record pairs and their corresponding weight vectors as input, and based
on manual inspection of the attribute values of these records assigns each weight
vector with a label. Let Wi be a weight vector set. Then a human oracle over Wi

is a function ζ : Wi
→ {M,N}, where M and N are the two labels indicating
match and non-match of a weight vector, respectively. Moreover, each human
oracle ζ is associated with a pair 〈bud(ζ), acc(ζ)〉, where bud(ζ) > 0 is a budget
limit (btot) indicating the maximal number of weight vectors that can be labeled
by ζ, and acc(ζ) ∈ [0, 1] is indicating the accuracy of labels provided by ζ. If
acc(ζ) = 1 then the oracle is perfect.

We view an ER classifier as a black-box that classifies record pairs into
matches and non-matches through their corresponding weight vectors [6]. More
specifically, an ER classifier takes as input a weight vector set Wi and a subset
of labeled (with M and N) weight vectors WT

i ⊆ Wi as the training set, and
generates a partition of Wi into WM

i of matches and WN
i of non-matches, with

WM
i ∩ WN

i = ∅. A variety of classifiers have previously been used for ER, such
as decision trees [22], SVMs [7,19] and k-nearest neighbor [4], any of which can
be used in our approach.

4 Recursive Interactive Training Algorithm

In this section we discuss the details of our approach. A high-level description
of our interactive training approach is provided in Algorithm 1. Let W be a
weight vector set, and TM and TN be the subsets of W that are selected into
the match and non-match training sets, respectively, with TM ∩ TN = ∅.

After initialization, the algorithm starts with W being inserted into an empty
queue Q of clusters to be processed (line 2). The main iteration (line 4) loops
as long as the queue is not empty (i.e. there are clusters to process) and the
total oracle budget btot has not been fully used (b ≤ btot). In each iteration, the
first cluster Wi in the queue is being processed. In the first loop (with b = 0
indicating no manual labeling has been done), the init select() function is
used to select a first set of weight vectors Si ⊆ Wi to be manually classified by
the oracle, while in sub-sequent iterations the main select() function is used.
Different approaches for these selection functions will be described in Sect. 4.1.
In general, a selection function selects k informative weight vectors Si from a
cluster Wi (lines 7 or 9).

The weight vectors in Si are then manually classified by the human oracle
(line 11) into a match set TM

i and non-match set TN
i , which are added to the

final training sets TM and TN , respectively (line 12). The used budget is also
increased (line 10) by the number of manually classified weight vectors |Si|. Then,
the purity pi of the cluster is calculated (line 13), as will be described further
below. All weight vectors in the cluster are added into one of the training sets
(lines 14 to 17) if the cluster is pure enough (pi ≥ pmin); otherwise, the cluster
requires further splitting if it is larger than a minimum cluster size cmin, and

568 Q. Wang et al.

Algorithm 1. Recursive interactive training algorithm
Input:
- A weight vector set: W
- Budget limit: btot
- Minimum purity threshold: pmin

- Initial selection function: init select(·)
- Main selection function: main select(·)
- Human oracle for labeling: oracle(·)
- Number of weight vectors to select for labeling: k
- Minimum size of a cluster: cmin

- Classifier function used for splitting clusters: classifier

Output:

- Match and non-match training set TM and TN

1: TM = ∅,TN = ∅ // Initialize training sets as empty
2: Q = [W] // Initialize queue of clusters
3: b = 0 // Initialize number of manually labeled examples
4: while Q �= ∅ and b ≤ btot do:
5: Wi = Q.pop() // Get first cluster from queue
6: if b = 0 then:
7: Si = init select(Wi, k) // Initial selection of weight vectors
8: else:
9: Si = main select(Wi, k) // Select informative weight vectors
10: b = b + |Si| // Update number of manual labeling done so far

11: TM
i ,TN

i , pi = oracle(Si) // Manually classify selected weight vectors

12: TM = TM ∪ TM
i ; TN = TN ∪ TN

i ; Wi = Wi \ (TM
i ∪ TN

i)
13: if pi ≥ pmin then:

14: if |TM
i | > |TN

i | then:

15: TM = TM ∪ Wi // Add whole cluster to match training set
16: else:

17: TN = TN ∪ Wi // Add whole to non-match training set
18: else if |Wi| > cmin and b ≤ btot then: // Low purity, split cluster further

19: if TM
i �= ∅ and TN

i �= ∅ then:

20: classifier.train(TM
i ,TN

i) // Train classifier

21: WM
i ,WN

i = classifier.classify(Wi) // Classify current cluster

22: Q.append(WM
i); Q.append(WN

i) // Append new clusters to queue

23: return TM and TN

the total oracle budget btot has not been fully used, and if TM
i and TN

i are
not empty (lines 18 to 22). If TM

i and TN
i are both not empty, they will be

used to train a classifier for the current cluster Wi (line 20). The splitting of
Wi (line 21) leads to two smaller clusters WM

i and WN
i of matches and non-

matches, respectively, which are then added to the queue (line 22). In principle,
the two smaller clusters WM

i and WN
i should have a higher purity compared to

Wi. Clusters that are small (|Wi| ≤ cmin) and not pure are not considered for
inclusion into the final training sets.

The algorithm thus generates a partition of W such that the weight vectors
in each pure cluster are selected into the training sets, i.e., the weight vectors
from a match cluster into TM and the ones from a non-match cluster into TN ,
while the weight vectors in fuzzy clusters (those too small for further splitting
and not pure enough) are discarded.

The purity pi of a cluster Wi is calculated based on the classification done
by the human oracle (line 11) using the manually classified weight vector set Si

as the proportion of classified weight vectors that have the majority label:

pi = purity(Wi) = max

(|TM
i |

|TM
i ∪ TN

i | ,
|TN

i |
|TM

i ∪ TN
i |

)

, (1)

Efficient Interactive Training Selection for Large-Scale Entity Resolution 569

where |TM
i ∪ TN

i | = |Si|. For a given purity threshold pmin ∈ [0.5, 1], a cluster
Wi is labeled as pure if purity(Wi) > pmin; otherwise Wi is labeled as fuzzy.

4.1 Weight Vector Selection Methods

The informativeness of selected weight vectors crucially influences the quality of
the final generated training sets TM and TN . Therefore, the selection methods
in Algorithm 1 need to be carefully chosen. Here we propose three methods for
the init select function and four methods for the main select functions.

Let Wi be a set of weight vectors over the predefined set A of attributes. For
the initial selection (line 7 in Algorithm 1) using INIT SELECT we consider: (1)
Far: Farthest-first weight vectors with random initialization [15], based on the
farthest first clustering algorithm which selects the k weight vectors from Wi

that are farthest apart from each other. The idea of this approach is to start with
a selection of weight vectors with the highest possible variety. (2) 01: Weight
vectors that are closest to the two corners [1]|A| and [0]|A|. These are most
likely to represent matches and non-matches, respectively, as they correspond
to weight vectors closest to exact matching and totally different record pairs [7].
(3) Corner: Weight vectors that are closest to all corners {[a1, . . . , a|A|]|ai ∈
{0, 1} for i = 1, . . . , |A|}, where there are 2|A| corners in total. This approach
combines the ideas of both Far and 01, selecting weight vectors with the highest
possible variety in terms of all the attributes in A.

Analogously, for follow-up selection of weight vectors from a cluster Wi dur-
ing the main iteration of Algorithm 1 (line 9) using MAIN SELECT we consider:
(1) Ran: A random selection of k weight vectors. We use this as a baseline in our
experiments to evaluate the effectiveness of the other selection methods. (2) Far:
Farthest-first weight vectors selection within a cluster, as done in the Far initial
selection method. This will give us weight vectors at the outer boundary of a
cluster. (3) Far-Med: Here we select the k −1 farthest apart weight vectors from
Wi, and additionally we add the medoid weight vector closest to the center of
the cluster. The idea is to not just manually classify pairs at the boundary of
a cluster, but also one weight vector in its center to get a better picture of the
distribution of matches and non-matches in the cluster.

In the following section we evaluate these different methods in combination
with different parameter settings on several real-world data sets.

5 Experimental Evaluation

We conducted experiments on four data sets: ACM-DBLP [17], CORA1, DBLP-
Google Scholar (DBLP-GS) [17], and the North Carolina Voter Registration
(NCVR) database2. The characteristics of these data sets are summarized in
Table 1. As can be seen, all data sets exhibit a high to very high class imbalance

1 Available from: http://secondstring.sourceforge.net
2 Available from: ftp://alt.ncsbe.gov/data/

http://secondstring.sourceforge.net
ftp://alt.ncsbe.gov/data/

570 Q. Wang et al.

Table 1. Characteristics of data sets used in experiments

Data set Number of Number of unique Class Time for pair-wise
name(s) records weight vectors imbalance comparisons

NCVR 224,073 / 224,061 3,495,580 1 : 27 441.6 sec
CORA 1,295 286,141 1 : 16 47.0 sec

DBLP-GS 2,616 / 64,263 8,124,258 1 : 3273 963.1 sec
ACM-DBLP 2,616 / 2,294 687,910 1 : 1785 95.3 sec

between true matches and true non-matches. We used the Febrl open source
record linkage system for the pair-wise linkage step, together with a variety of
blocking/indexing and string comparison functions [8]. The output of this step
are sets of weight vectors of the compared record pairs, and their known true
labels (match or non-match).

The following parameter variations were used in our experiments: minimum
purity threshold pmin = [0.95, 0.9, 0.85, 0.8, 0.75], oracle accuracy acc(ζ) = [1.0,
0.95, 0.9, 0.85, 0.8, 0.75], total budget btot = [100, 200, 500, 1, 000, 2, 000, 5, 000,
10, 000], number of weight vectors selected k = [9, 19, 49, 69, 99], and the
different initial selection (Far, 01 and Corner) and selection (Ran, Far and
Far-Med) methods discussed in the previous section. The classifiers used for
splitting weight vectors were decision trees (DTree) with entropy and information
gain [18]. Default values for the parameters were set to minimum purity pmin =
0.95, oracle accuracy acc(ζ) = 1.0, number of weight vectors selected k = 49 for
the CORA data set and k = 69 for the other data sets, total budget btot = 1, 000
for the CORA data set and btot = 5, 000 for the other data sets, minimum cluster
size cmin = 50, initial selection method 01 and selection method Far, as these
settings resulted in the best quality based on a set of pre-experiments.

We evaluated the effectiveness of our approach using the F-measure [6],
and the efficiency using the time required for the classification. The baseline
approaches we used to compare with our approach (which we refer as DTree-
AL) were: (1) fully supervised decision tree (DTree-S), (2) fully supervised
support vector machines with linear and polynomial kernels (SVM-S), (3) unsu-
pervised automatic k-nearest neighbor clustering (kNN-US) [7], (4) unsupervised
k-means clustering (kMeans-US), and (5) unsupervised farthest first clustering
(Far-US) [8]. Our proposed active learning approach and the baseline approaches
are implemented in Python 2.7.3, and we ran all experiments on a server with
6-core 64-bit Intel Xeon 2.4 GHz CPUs, 128 GBytes of memory and running
Ubuntu 14.04. The programs and test data sets are available from the authors.

We first evaluated how different values for the six main parameters of our app-
roach (i.e., pmin, acc(ζ), btot, k, INIT SELECT methods, and MAIN SELECT
methods) affect the quality of the classification results. Fig. 3 (a) shows the
F-measure of our approach for different minimum purity thresholds (pmin).
F-measure increases with an increasing pmin since a higher purity of cluster
requirement results in more accurately classified clusters. As expected the
F-measure also increases when the accuracy of the oracle (acc(ζ)) increases
(Fig. 3 (b)).

Efficient Interactive Training Selection for Large-Scale Entity Resolution 571

Fig. 3. F-measure against (a) minimum purity threshold, (b) oracle accuracy, (c) bud-
get, (d) number of weight vectors selected, (e) different initial selection methods and
(f) different main selection methods averaged over the results of all classifiers

F-measure increases with larger budgets (btot) and larger number of weight
vectors selected (k) as can be seen from Fig. 3 (c) and (d), respectively. Larger
budgets allow more vectors to be manually labeled, and a larger number of weight
vectors selected from each cluster can represent the clusters more effectively,
resulting in increased F-measure. However, as can be seen when k = 99, a smaller
number of clusters can be manually assessed with larger k, potentially leading
to lower F-measure. An interesting result is that a high F-measure (of ≥ 0.8) is
achieved on all data sets even with a small budget size of btot = 200.

Among the three initial selection methods, 01 comparatively performs well,
though all three methods achieve high F-measure on all four data sets except the

572 Q. Wang et al.

Fig. 4. Comparison of (a) F-measure and (b) total required time (log scale) of our
active learning (AL) approach with different baseline supervised (S) and unsupervised
(US) classifiers, averaged over the results of all variations of each classifier

Far method on the ACM-DBLP data set, as shown in Fig. 3 (e). The selection
methods Far and Far-Med perform equally well on all four data sets, while Ran
does not consistently perform well, particularly over two relatively large data
sets DBLP-GS and NCVR, due to its random selection. (see Fig. 3 (f)).

Finally, we compared our approach with five baseline approaches as described
above. Fig. 4 (a) shows the F-measure (effectiveness) of all six approaches and
Fig. 4 (b) shows their total time required for classification (efficiency). The
results illustrate that our active learning approach achieves significantly higher
F-measure results compared to unsupervised approaches, and comparable results
to fully supervised approaches, while requiring significantly lower runtime than
all other approaches on all four data sets.

6 Conclusions and Future Work

We have developed an active learning approach for reducing the labeling costs in
ER while achieving high linkage quality results. Experiments conducted on four
real data sets validate the efficiency and effectiveness of our approach compared
to both existing fully supervised and unsupervised ER classifiers.

As future work we plan to study the following two issues. First, how does
the ordering of clusters (line 5 in Algorithm 1) in the queue affect the training
quality? Since only a limited labeling budget is available, the number of weight
vectors a human oracle can manually label is restricted. Once the labeling budget
is run out, the training selection process terminates. Thus, the cluster selected for
manual labeling at each iteration should be the one that can provide an optimal
improvement in the quality, coverage and representativeness of the training data
set. Second, how can our approach be improved if the accuracy of a human oracle
is known? Knowing this accuracy may significantly affect the purity calculation
of clusters. It is thus plausible to enhance the performance of our approach by
taking the accuracy of a human oracle into account.

Efficient Interactive Training Selection for Large-Scale Entity Resolution 573

References

1. Arasu, A., Götz, M., Kaushik, R.: On active learning of record matching packages.
In: ACM SIGMOD, Indianapolis, pp. 783–794 (2010)

2. Bellare, K., Iyengar, S., Parameswaran, A.G., Rastogi, V.: Active sampling for
entity matching. In: ACM SIGKDD, Beijing, pp. 1131–1139 (2012)

3. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: ACM SIGKDD, Washington DC, pp. 39–48 (2003)

4. Chaudhuri, S., Ganti, V., Motwani, R.: Robust identification of fuzzy duplicates.
In: IEEE ICDE, Tokyo, pp. 865–876 (2005)

5. Chen, Z., Kalashnikov, D.V., Mehrotra, S.: Exploiting context analysis for combin-
ing multiple entity resolution systems. In: ACM SIGMOD, Providence, pp. 207–218
(2009)

6. Christen, P.: Data Matching. Data-Centric Systems and Applications. Springer
(2012)

7. Christen, P.: Automatic training example selection for scalable unsupervised record
linkage. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008.
LNCS (LNAI), vol. 5012, pp. 511–518. Springer, Heidelberg (2008)

8. Christen, P.: Development and user experiences of an open source data cleaning,
deduplication and record linkage system. SIGKDD Explorations 11(1) (2009)

9. Cochinwala, M., Kurien, V., Lalk, G., Shasha, D.: Efficient data reconciliation.
Information Sciences 137(1), 1–15 (2001)

10. Dal Bianco, G., Galante, R., Heuser, C.A., Gonçalves, M.A.: Tuning large scale
deduplication with reduced effort. In: SSDBM, Baltimore, p. 18 (2013)

11. Dasgupta, S., Hsu, D.: Hierarchical sampling for active learning. In: IEEE ICML,
Helsinki, pp. 208–215 (2008)

12. Du, J., Ling, C.X.: Active learning with human-like noisy oracle. In: IEEE ICDM,
Sydney, pp. 797–802 (2010)

13. Elfeky, M.G., Verykios, V.S., Elmagarmid, A.K.: TAILOR: a record linkage tool-
box. In: IEEE ICDE, San Jose, pp. 17–28 (2002)

14. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate record detection: A survey.
IEEE TKDE 19(1), 1–16 (2007)

15. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Mathematics of Operations Research 10(2), 180–184 (1985)

16. Huang, S.J., Jin, R., Zhou, Z.H.: Active learning by querying informative and
representative examples. In: NIPS, Vancouver, pp. 892–900 (2010)

17. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on
real-world match problems. VLDB Endowment 3(1–2), 484–493 (2010)

18. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: Machine learning
in Python. The Journal of Machine Learning Research 12, 2825–2830 (2011)

19. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
ACM SIGKDD, Edmonton, pp. 269–278 (2002)

20. Settles, B.: Active learning literature survey, vol. 52, pp. 55–66. University of Wis-
consin, Madison (2010)

21. Sheng, V.S., Provost, F., Ipeirotis, P.G.: Get another label? improving data quality
and data mining using multiple, noisy labelers. In: ACM SIGKDD, Las Vegas, pp.
614–622 (2008)

22. Tejada, S., Knoblock, C.A., Minton, S.: Learning domain-independent string trans-
formation weights for high accuracy object identification. In: ACM SIGKDD,
Edmonton, pp. 350–359 (2002)

23. Wu, W., Liu, Y., Guo, M., Wang, C., Liu, X.: A probabilistic model of active
learning with multiple noisy oracles. Neurocomputing 118, 253–262 (2013)

	Efficient Interactive Training Selection for Large-Scale Entity Resolution
	1 Introduction
	2 Related Work
	3 Problem Statement and Building Blocks
	4 Recursive Interactive Training Algorithm
	4.1 Weight Vector Selection Methods

	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

