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ABSTRACT

Entity resolution (ER) is a common data cleaning task that
involves determining which records from one or more data
sets refer to the same real-world entities. Because a pairwise
comparison of all records scales quadratically with the num-
ber of records in the data sets to be matched, it is common
to use blocking or indexing techniques to reduce the num-
ber of comparisons required. These techniques split the data
sets into blocks and only records within blocks are compared
with each other. Most existing blocking techniques do not
provide control over the size of the generated blocks, despite
this control being important in many practical applications
of ER, such as privacy-preserving record linkage and real-
time ER. We propose two novel hierarchical clustering ap-
proaches which can generate blocks within a specified size
range, and we present a penalty function which allows con-
trol of the trade-off between block quality and block size in
the clustering process. We evaluate our techniques on three
real-world data sets and compare them against three base-
line approaches. The results show our proposed techniques
perform well on the measures of pairs completeness and re-
duction ratio compared to the baseline approaches, while
also satisfying the block size restrictions.

Categories and Subject Descriptors

H.2.8 [Database management]: Database applications—
Data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Clustering
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1. INTRODUCTION
Entity resolution (ER) is a common data cleaning and

pre-processing task that aims to determine which records
in one or more data sets refer to the same real-world en-
tities [7]. It has numerous applications, including match-
ing customer records following a corporate merger, detecting
persons of interest for national security, or linking medical
records from different health organisations. In many cases
ER is performed in static mode where all matching decisions
are conducted at once. However, it can also be performed in
real-time, where the task involves finding the most similar
record(s) to a given query record [18].

In both static and real-time ER, a key step is to compare
the similarities of record pairs [2]. However, comparing all
records in a data set, or between multiple data sets, scales
quadratically with the number of records in the data sets and
can be computationally infeasible if the data sets are large.
As a result, blocking or indexing techniques are commonly
used to limit the number of comparisons so that only record
pairs that have a high likelihood of referring to the same
real-world entity are compared [2]. This is done by dividing
the data set(s) into (possibly overlapping) blocks and only
performing comparisons between records in the same block.

In this paper we study the problem of how to control block
sizes when generating blocks for ER. Our study is motivated
by the observation that there are various application areas
where maximum and minimum block sizes are important.

• One application area is real-time ER [18] where oper-
ational requirements mean that only a certain number
of comparisons can take place within a specific (or lim-
ited) time-span (e.g. sub-second). Therefore, blocking
is important to ensure that these comparisons are with
the candidate records that most likely correspond to
matches. In such cases, having a maximum block size
ensures that operational requirements can be satisfied.

• In privacy-preserving record linkage [22], there may
be privacy requirements on both the minimum and
maximum block size. For example, to guarantee k-
anonymous privacy [21] it is necessary that each block
contains at least k records. If all blocks have a similar
size this reduces the vulnerability of the ER process
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Figure 1: Example of algorithm flow using the data set from Table 1 with smin = 2 and smax = 3. The initial
data set is split using the first blocking key 〈FN , F2〉 (the first two characters of the FirstName attribute) and
the small blocks are merged. The block that is still too large after the initial split is split again, this time
using the second blocking key 〈SN , Sdx〉 (Soundex encoding of the Surname attribute). The small blocks are
again merged until we end up with three blocks in the specified size range (blocks shown with bold frames).

to frequency-based attacks [22]. In this situation it is
important to produce blocks in the specified size range.

• Finally, if blocking is being used as a preliminary step
for an ER approach that has poor scalability, restrict-
ing the maximum size of blocks is very important. Col-
lective entity resolution techniques, such as those pro-
posed by Bhattacharya and Getoor [1], Kalashnikov
and Mehrotra [12] and Dong et al. [6], all give high
match quality at the expense of scalability. Similarly,
techniques such as Markov logic network based ER
[20] have very poor scalability for networks above a
certain size. Ensuring block sizes are below a cer-
tain size threshold allows the matching power of these
techniques to be fully harnessed by running them on
smaller subsets of large data sets.

In this paper, we propose two recursive clustering ap-
proaches for generating blocks within a specified size range.
The idea behind our approaches is to use an initial blocking
key to split a data set into individual blocks. If some of the
blocks are too small we merge them, and if blocks are too
large we use a second blocking key to split them. We merge
any resulting small blocks, split any that are still too large
using a third blocking key, and so on. Our two approaches
differ in how we perform the clustering during the merge
steps and as a result, give different distributions of block
sizes, as we will present in Section 4.

Motivating Example. Throughout the rest of this paper
we make use of the example data set in Table 1 to help
illustrate this process. Figure 1 shows the algorithm flow of
our approaches on this small data set.

Contributions. In this paper, we develop a novel blocking
framework based on recursive agglomerative clustering to
produce blocks in a specified size range. We then propose
a novel penalty function which allows us to relax the hard
block size restrictions and gives us control over the block
generation process by selecting a trade-off between block
size and block quality. We have conducted experiments on

Record ID First Name Surname Postcode

r1 John Smith 2000
r2 Johnathon Smith 2009
r3 Joey Schmidt 2009
r4 Joe Miller 2902
r5 Joseph Milne 2092
r6 Paul 3000
r7 Peter Jones 3000

Table 1: Example data set.

three real-world data sets and the results show our proposed
approaches perform well on measures of block quality (both
pairs completeness and reduction ratio [2]) in comparison
to three baseline approaches, and can effectively generate
blocks within the specified size range.

Outline. We next discuss recent literature relating to iter-
ative blocking and clustering methods. In Section 3 we de-
scribe the notation we use and formally define our problem.
In Sections 4 and 5 we describe our blocking approaches and
a penalty function which allows a trade-off between block
size and block quality. In Section 6 we conduct an experi-
mental evaluation of our approaches and we finish with con-
clusions and directions for future work in Section 7.

2. RELATED WORK
Blocking (also called indexing) for ER is an area of active

research and several recent surveys have been conducted [3,
7, 15]. In the following we briefly describe some key prior
research that relates to our work, in particular, the blocking
techniques that adopt an iterative approach or that aim to
control the size of blocks.

Several iterative blocking techniques have been studied for
ER in recent years [5, 18, 23]. Whang et al. [23] proposed
an iterative blocking process in order to perform ER. Rather
than processing each block individually, the approach prop-
agates the results from processed blocks (i.e. where records
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have been compared) to inform decisions in subsequent blocks.
Once two records are determined as a match, they are merged,
and the resulting new record is propagated into other blocks
where the combination of attributes may cause previously
undetected matches to be found. The results of previous
comparisons are stored so that comparisons are not repeated
unnecessarily. However, these techniques give no control
over the size of the blocks that are produced.
Das Sarma et al. [5] also developed an iterative blocking

approach that combines splitting and merging to efficiently
block large-scale data sets for ER. The work makes use
of labelled training examples to generate blocking schemas
in an automated fashion. The authors performed a post-
processing step of merging small canopies (blocks) to in-
crease recall based on a heuristic of minimising combined
size and maximising the number of matches. While this
technique gives some control of the block sizes, it does not
enforce hard size contraints and also requires labelled train-
ing examples, whereas our approaches are unsupervised.
Ramadan et al. [18] modified the sorted neighbourhood

approach [2] for real-time ER to allow for updating a block-
ing key value tree in response to a query record. The au-
thors examined an adaptive window-size approach to vary
the number of candidate records returned for comparison
based on either a similarity or a size threshold. The sim-
ilarity between neighbouring nodes in a tree can be pre-
calculated to reduce query times. This approach does not
enforce minimum and maximum size constraints nor does
it generate individual blocks which makes it unsuitable for
applications such as privacy-preserving record linkage.
Zhu et al. [25] examined the clustering problem under

size constraints, although not in the context of ER. They
proposed an approach to produce clusters of a certain size,
which can also be relaxed to a size range. Nevertheless, the
authors only tested their approach on small data sets that
have less than one thousand records or no more than three
clusters. Their approach also requires computing the com-
plete similarity between all pairs of records in a data set,
which limits its usefulness for blocking in ER tasks where
the aim is specifically to avoid this complete pairwise com-
parison. Work by Ganganath et al. [10], Malinen and Fränti
[16] and Rebollo-Monedero et al. [19] have the same lim-
itations. In contrast to their work, our approach aims to
support larger data sets, and does not require a complete
pairwise comparison of all records.

3. PROBLEM STATEMENT
We assume that a data set R consists of records, each of

which is associated with a set A of attributes. The value of
an attribute a ∈ A in a record r ∈ R is denoted as r.a.
To split a set of records Rx ⊆ R into blocks we make use

of one or more blocking keys. A blocking key, ki,j = 〈ai, fj〉
is a pair consisting of an attribute ai ∈ A and a function fj .
The function fj takes as input an attribute value and returns
another value, such as a phonetic encoding, a substring, or a
reversed string. For a given blocking key ki,j = 〈ai, fj〉, we
generate a blocking key value (BKV) for record ry ∈ Rx by
applying function fj to ry.ai, denoted vi,j,y = fj(ry.ai). For
example, possible functions include the first two characters
(F2), exact value (Ext) and a Soundex encoding (Sdx) [7].
To illustrate this using the example in Table 1, we con-

sider the following blocking keys: the first two characters of
the FirstName attribute 〈FN , F2〉, a Soundex encoding of

the Surname attribute 〈SN , Sdx〉 and the exact value of
the Postcode attribute 〈PC, Ext〉. The BKV of 〈FN , F2〉
applied to r1 is ‘Jo’ (the first two characters of ‘John’), the
BKV of 〈SN , Sdx〉 applied to r1 is ‘S530’ (the Soundex en-
coding of ‘Smith’) and the BKV of 〈PC, Ext〉 applied to r1
is ‘2000’.

To split a set of records Rx into blocks we use a blocking
key ki,j to generate a BKV vi,j,y for each ry ∈ Rx and
we create one block for each unique BKV generated. We
insert each record into the block corresponding to its BKV.
This means two records ry, rz ∈ Rx will be inserted into
the same block if and only if they generate the same BKV
using blocking key ki,j , i.e. fj(ry.ai) = fj(rz.ai). During
our approaches we also need to merge blocks. This results
in a single block being associated with multiple BKVs. We
denote the set of BKVs associated with block bi as V (bi).

Based on a pre-defined list of blocking keysK = 〈ki,j , kl,m,
. . .〉, we aim to adaptively split R into to a set of blocks B by
using the BKVs generated by one or more blocking keys in
K. However, we also want to control the size of the blocks we
produce. The size of a block b, denoted as |b|, is the num-
ber of records in the block. To control the size of blocks, we
use two size parameters: smin and smax with smin ≤ smax,
to specify the minimum and maximum block sizes that are
permitted, respectively.

Problem statement. Given a data set R, two size pa-
rameters smin and smax, and a list of blocking keys K =
〈ki,j , kl,m, . . .〉, the problem we study is to use K to parti-
tion the records in R into a set B of non-overlapping blocks
such that for each b ∈ B, smin ≤ |b| ≤ smax, and within
each block the number of true matches is maximised and the
number of true non-matches is minimised.

In practice, smin and smax can be set in accordance with
operational requirements such as computational limitations,
real-time efficiency requirements, or privacy-preserving re-
quirements. As is common with other blocking techniques,
we can also improve the robustness of our approaches by
running them multiple times with different lists of blocking
keys for a single ER task [3]. This reduces the impact that
a single typographical error or incorrect value has on the
ER process [2]. In future work we intend to further investi-
gate the impact of different blocking keys and whether the
optimal list of keys can be discovered automically.

4. CLUSTERING APPROACHES
We propose two recursive clustering approaches for gener-

ating blocks within a specified size range. The idea behind
our approaches was illustrated in Figure 1. We iteratively
split and merge blocks until the size parameters smin and
smax are satisfied. The first approach processes blocks in
order of decreasing block similarity (i.e., similarity-based),
and the second approach in order of increasing block size
(i.e., size-based). In Section 4.1 we briefly describe the way
we calculate the similarity between BKVs as well as between
blocks (clusters) during clustering, then in Sections 4.2 and
4.3 we describe our two approaches, and in Section 4.4 we
discuss their respective advantages and disadvantages.

4.1 Similarity Functions
During clustering we aim to merge blocks with similar

BKVs together, since this is more likely to bring true matches
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Algorithm 1: SimilarityBasedClustering(R, K, ς, n, smin, smax)
Input:

- Set of records: R

- List of blocking keys: K
- Block similarity function: ς
- Current recursion depth: n // Set as n = 1 for first call to algorithm
- Minimum block size: smin

- Maximum block size: smax

Output:

- Set of correct sized blocks: B∗

1: B = GenerateBlocks(R, K[n]) // Generate blocks using the nth blocking key in K

2: B−, B∗, B+ = SizePartition(B, smin, smax) // Partition B into too small, correct size, too large blocks
3: Q = GeneratePriorityQueue() // Create empty queue, ordered by similarity
4: for bi in B− ∪ B∗ do:

5: for bj in B− ∪ B∗ \ bi do:
6: if |bi| + |bj | ≤ smax then:
7: Q.Insert(ς(bi, bj), bi, bj) // Insert correct sized pairs into the queue
8: while Q 6= ∅ do:
9: sim, bi, bj = Q.Pop() // Get the first pair from the queue
10: bij = MergeBlocks(bi, bj)

11: for bk in B− ∪ B∗:
12: if |bij | + |bk| < smax then:
13: Q.Insert(ς(bij , bk), bij , bk) // Put back in queue with new block similarity
14: if |bij | < smax then:
15: B∗ = B∗ ∪ bij // Add to correct size blocks

16: for bi in B+ do: // Process the too large blocks
17: Bi = SimilarityBasedClustering(bi, K, ς, n + 1, smin, smax) // Call recursively with n + 1
18: B∗ = B∗ ∪ Bi

19: return B∗

together into the same block. This requires a way of mea-
suring the similarity between two BKVs. In addition, once
blocks are merged, each block can be associated with multi-
ple BKVs as shown in Figure 1, so we also require a way of
combining the pairwise similarities between BKVs into an
overall block similarity measure.
To calculate the similarity between two BKVs v1 and

v2, denoted as ζ(v1, v2) we use traditional string compar-
ison functions such as Jaro-Winkler or Jaccard similarity
[2]. However, this does not always give good results for
blocking keys using functions such as Soundex encodings or
the first two characters of an attribute. For example, none
of the above similarity functions give a good indication of
the similarity between the Soundex codes ‘S530’ and ‘S550.’
In order to obtain a better similarity measure, we use the
original unencoded attribute values and apply a traditional
string comparison function on them instead. For the above
example we take the values that encode to ‘S530’ (such as
‘Smith’ and ‘Smythe’) and compute their similarity with val-
ues that encode to ‘S550’ (such as ‘Simon’ and ‘Simeon’). If
possible, we calculate all pairwise combinations of all values
in a data set with these encodings to get a weighted average
similarity between pairs of Soundex codes.
However, if the full pairwise calculation is computation-

ally infeasible, we randomly sample a selection of original
values for each code and take the average similarity between
these. In practice we found that even small sample sizes still
produced results that were nearly identical to those of the
complete calculation. We discuss this further in Section 6.
To combine the pairwise similarity between BKVs into

an overall block similarity measure, denoted as ς(b1,b2),
we make use of three traditional approaches [24]: (1) sin-

gle link ς(b1,b2) = max(T ), (2) average link ς(b1,b2) =
mean(T ) and (3) complete link ς(b1,b2) = min(T ), where
T = {ζ(v1, v2) : v1 ∈ V (b1) and v2 ∈ V (b2)}.

4.2 Similarity-Based Blocking Approach
The similarity-based blocking approach is described in Al-

gorithm 1. To begin, we set n = 1 and take the set of

records as R. We generate a set B of blocks using the nth

blocking key in K (line 1). One block is created for each
unique BKV. Next, B is partitioned into three disjoint sets
B−, B∗ and B+, with bi ∈ B− if |bi| < smin, bi ∈ B∗ if
smin ≤ |bi| ≤ smax and bi ∈ B+ if |bi| > smax (line 2). We
place each pair of blocks in B− ∪ B∗ into a priority queue
Q, in order of their decreasing block similarity (lines 4-7).
We retrieve from Q the pair of blocks (bi, bj) with maxi-
mum ς(bi,bj) (line 9). We merge bi and bj into bij where
V (bij) = V (bi) ∪ V (bj). We then calculate ς(bij ,bk) for
all bk s.t. |bk| + |bij | ≤ smax and reinsert these new pairs
of blocks into Q (line 13). We then proceed with the pair of
blocks with the second highest block similarity (loop back to
line 9), and continue this process until no more merges are
possible. For each bi ∈ B+ (i.e. blocks that are too large,
|bi| > smax) we call the algorithm recursively with bi as the
new set of records and using the next blocking key in K to
generate new BKVs (lines 16-18).

Figure 1 illustrates this process applied to the example
data set in Table 1 with K = 〈〈FN , F2〉, 〈SN , Sdx〉〉 and
smin = 2 and smax = 3. We start by splitting the records
into blocks using the first blocking key 〈FN , F2〉 (the first
two characters of FirstName). The blocks that have a
size smaller than 2 (smin) are clustered and merged. Any
blocks with size greater than 3 (smax) are split using the
second blocking key 〈SN , Sdx〉 (the Soundex encoding of
Surname). Then, in a second merging phase, blocks that
are smaller than size 2 (smin) are again clustered. In this
case this finishes the algorithm since all blocks are now in
the correct size range. However, if there were still blocks
with size greater than 3 they would be split using a third
blocking key, for example 〈PC, Ext〉, any resulting small
blocks would again be clustered and merged, and so forth.
This continues until no blocks remain with size greater than
3 or we run out of blocking keys in K.

The main drawback of the similarity-based approach is the
need to calculate ς(bi,bj) for each pair of blocks in B−∪B∗

and store them in Q. In addition, as blocks are merged,
the block similarity needs to be calculated between the new
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Algorithm 2: SizeBasedClustering(R, K, ς, n, smin, smax)
Input:

- Set of records: R

- List of blocking keys: K
- Block similarity function: ς
- Current recursion depth: n // Set as n = 1 for first call to algorithm
- Minimum block size: smin

- Maximum block size: smax

Output:

- Set of correct sized blocks: B∗

1: B = GenerateBlocks(R, K[n]) // Generate blocks using the nth blocking key in K

2: B−, B∗, B+ = SizePartition(B, smin, smax) // Partition B into too small, correct size, too large blocks
3: Q = GeneratePriorityQueue() // Create empty queue, ordered by block size
4: for bi in B− do:
5: Q.Insert(bi) // Put the small blocks into the queue
6: while Q 6= ∅ do:
7: bi = Q.Pop() // Get the first block from the queue

8: bj = Argmax(ς(bi,bk)), ∀bk ∈ B− ∪ B∗ such that |bi| + |bk| ≤ smax // Get nearest block of correct size
9: bij = MergeBlocks(bi, bj)
10: if |bij | < smin then:
11: Q.Insert(bij) // Put new block back into the queue
12: else:
13: B∗ = B∗ ∪ bij // Add to correct size blocks
14: for bi in B+ do: // Process the too large blocks
15: Bi = SizeBasedClustering(bi, K, ς, n + 1, smin, smax) // Call recursively with n + 1
16: B∗ = B∗ ∪ Bi

17: return B∗

block and all remaining blocks. This reduces the scalability
of the approach and also leads to high memory overhead
since Q can become large, O(|B|2). Next we present an
alternative approach with better scalability that removes the
need to store all pairwise combinations of blocks in memory.

4.3 Size-Based Blocking Approach
The size-based blocking approach is described in Algo-

rithm 2. The initial setup for this approach is identical to
that of the similarity-based blocking approach. However, in
the size-based case the priority queue Q contains individ-
ual blocks, which are ordered by increasing block size (line
5). This is an important distinction since it significantly re-
duces the size of Q from O(|B|2) to O(|B|). In the main
loop of the algorithm (lines 6-13) we remove the smallest
block bi from Q (line 7), determine the block bj such that
|bi|+ |bj | ≤ smax and ς1(bi,bj) is maximised (line 8). Es-
sentially we find the most similar block to bi such that their
combined size would be less than smax. We merge bi and
bj into bij (line 9) and if |bij | ≤ smin, we reinsert bij into
Q. We then proceed to the next smallest block (loop back to
line 6) and continue this process until no blocks remain with
size less than smin. As with the similarity-based approach,
for each block in B+ the algorithm is called recursively with
n = n+ 1 and using the next blocking key in K.

4.4 Discussion and Algorithm Complexities
We now discuss the characteristics of the two approaches

and present their computational complexities. Depending
on the settings of smin and smax, it is possible that our
approaches may generate some blocks that are outside the
desired size range. For example, if smin = 0.8 ∗ smax, some
blocks may have a size in the range 0.5 ∗ smax to 0.8 ∗ smax.
Merging any two of these blocks would result in a block size
greater than smax, so none of them end up being merged.
However, if smin and smax satisfy smax ≥ 2 ∗ smin then
we are guaranteed that at most one block at the end will be
smaller than smin because if two blocks were left, they could
be merged as their combined size would still be below smax.
If blocks are left at the end of either algorithm which

are larger than smax, then there must exist some unique

combination of BKVs that occurs more frequently than smax

and our only option is to add another blocking key to K.
The similarity-based blocking approach ensures that pairs

of blocks with high block similarity are merged together. In
practice, the approach often creates many blocks that are
close in size to smax which makes it effective for load bal-
ancing in parellel ER applications [14]. However, if there is a
block left at the end which is too small, it may be quite small
in comparison to smin, which may make this approach less
suitable in applications where smin is important. The run-
ning time of the similarity-based approach is also typically
longer than that of the size-based approach.

In practice, if smax ≥ 2 ∗ smin, the size-based approach
tends to produce blocks that are more evenly distributed
within the size range, with potentially a single block that is
too small. Since the merging is done iteratively from small-
est to largest, if there is a block that is smaller than smin, its
size is typically close to smin, although this closeness is not
mathematically guaranteed. This means that for situations
where minimum block size is important the size-based ap-
proach is a good candidate. However, the size-based block-
ing approach is not as successful when there are multiple
large blocks with different BKVs from values that are quite
similar. For example, depending on the blocking keys used,
the first names ‘John’ and ‘Johnathon’ may generate differ-
ent BKVs but we would prefer to combine them into the
same block. However, because blocks are processed in order
of size and both blocks may be quite large, neither block
will be considered until late in the merging process. As a
result, by the time they are compared one of them may have
already grown too large (due to other merges) for them to
be merged. This situation can be partially overcome by the
penalty function detailed in the next section.

The selection of the blocking keys in K is important for
both approaches and has a significant effect on the running
time and the blocking quality. At present we rely on domain
expertise to select the blocking keys, taking into account
such factors as completeness, size of the domain, distribu-
tion of values and general data quality. As part of our future
work we intend to investigate methods for automatically se-
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Figure 2: Penalty function example configurations where the vertical dotted line in each plot is sscale.

lecting blocking keys, such as those developed by Kejriwal
and Miranker [13] and Ramadan and Christen [17].
In the worst case, the time complexity of the similarity-

based approach is O(|R|3log(|R|)), while the size-based ap-
proach is O(|R|3). For the similarity-based approach, Q
can contain O(|R|2) blocks (line 7) and during the loop
(lines 8 - 15) we have to perform O(|R|) insertions into Q
of time complexity O(log(|R|)) (line 13). For the size-based
approach the size of Q is at most O(|R|) (line 5) but calcu-
lating Argmax(ς(bi,bk)) (line 8) is potentially O(|R|2) so
we end up with an overall complexity of O(|R|3).
In practice the similarity-based approach is significantly

slower than the size-based approach. In addition the run-
ning time of both approaches is much more dependent on
the number of unique BKVs generated by the blocking keys
in K rather than the size of R. This is because we create one
block for each BKV during clustering so the running time of
the similarity-based approach becomes O(|B|3log(|B|)) and
the size-based approach becomes O(|B|3). In the worst case,
each record generates a unique BKV and we end up with the
asymptotic complexity above. Phonetic encodings such as
Soundex and Double Metaphone [7], which have hard limits
on the maximum number of unique BKVs they can create,
can be particularly effective in this regard. Similarly, select-
ing just the first one or two characters from an attribute also
restricts the maximum number of blocks that can be created
at each step. In addition, some optimisation techniques such
as pre-calculating and caching similarity values can be per-
formed to improve the efficiency of both techniques.

5. PENALTY FUNCTION
If two blocks have similar BKVs, then it may be prefer-

able to merge them even if they are large, and use the next
blocking key in K to split them and enforce the size restric-
tions. We now present a penalty function that replaces the
hard size restrictions (smin and smax) on merging blocks in
our approaches with a sliding scale, that combines block size
and block similarity to determine whether or not to merge
two blocks. The penalty function Φ is as follows:

Φ (bi,bj) = 1− α
−

(

|bi|+|bj |

sscale
−β

)

for α ≥ 1 and β ∈ R.

Two blocks bi and bj will be merged if they satisfy the
inequality ς(bi,bj) ≥ Φ(bi,bj). As the combined block size
gets larger, the similarity threshold required for merging also
increases, and vice versa.

The penalty function involves two parameters, α and β,
which together with sscale (related to smin and smax), pro-
duce the desired merging behaviour.

• α determines the trade-off between similarity and size.
Higher values of α produce a stricter similarity thresh-
old as the block size increases. In the limit as α → ∞,
Φ becomes a hard size restriction. In this case block
similarity does not affect the merging decisions.

• β constrains the clustering by enforcing either a min-
imum block size (β > 0) or a minimum similarity
threshold (β < 0). If β = 0 then there are no size or
similarity restrictions on the merging. We note that β
can only create one of these two types of restrictions
for a given clustering problem, since there may be no
solution if both a minimum block size and a minimum
similarity threshold are specified.

• sscale is a scaling parameter that is useful for compu-
tational reasons. In practice, including sscale removes
the need to repeatedly calculate extremely large ex-
ponents of numbers very close to 1 when computing
Φ(bi,bj). Eliminating sscale by changing α and β
gives a mathematically identical function, but with α
extremely close to 1 in practice. Including sscale im-
proves computational performance and prevents ma-
chine precision from influencing results. We explain
how to set sscale below.

We next provide the idea behind the penalty function with
reference to the examples in Figure 2. In each example sscale
is set to 1,000 (the vertical dashed line). Consider the case
where α = 2 and β = 0 represented by the curved dashed
line from (0, 0) to the top right corner in each example. Be-
fore merging two blocks bi and bj where |bi|+ |bj | = sscale
(i.e. |bi| + |bj | = 1,000), the similarity between the blocks
must be at least 1 − 1

21
= 0.5. Before merging two blocks

with a combined size of 2 ∗ sscale, the similarity must be at
least 1 − 1

22
= 0.75. A size of 3 ∗ sscale requires similarity

greater than 0.875, and so on.
The value of α determines the rate at which the required

similarity approaches 1.0, with higher values approaching
more quickly than lower values as shown in Figure 2(a).
Changing the value of β has the effect of moving the curve
to the left or right as shown in Figure 2(b). For example,
β = −1 and α = 2 set a minimum similarity for merging
to be 1 − 1

21
= 0.5. If β = 1 and α = 2, then blocks will

be merged regardless of similarity until the combined size
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(a): PC - Cora, UKCD, NCVR-450
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(b): RR - Cora, UKCD, NCVR-450
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(c): FM - Cora, UKCD, NCVR-450
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Figure 3: 3(a) Pairs Completeness, 3(b) Reduction Ratio, and 3(c) F-Measure results for standard blocking
(Std), Soundex encoding (Sdx), sorted neighbourhood (Snh), our proposed size-based approach (Size), and
our proposed similarity-based approach (Sim). Block size distributions for 3(d) Cora, 3(e) UKCD, and 3(f)
NCVR-450. We do not include block size distributions for the sorted neighbourhood approach since this
technique uses a window of constant size.

is at least 1,000 (equal to sscale). By combining different
values of α and β we can obtain a wide variety of merging
conditions as shown in Figure 2(c).
We now explain how best to choose the values of α, β and

sscale in order to achieve the desired merging behaviour. If
minimum block size is not critical, the default we use on a
data set is sscale = 0.5 ∗ smax, α = 2 and β = 0. This sets a
similarity threshold of 0.75 to merge blocks with combined
size greater than smax and prevents blocks with very low
similarity from being merged regardless of size. If minimum
block size is important, then the default parameters we use
are sscale = smin, α = (2 ∗ smax)/(smax − smin) and β = 1.
This causes blocks to be merged regardless of similarity up
to a combined size of smin, and sets a similarity threshold
of 0.75 to merge blocks with a combined size larger than
smax. In both cases, with some knowledge of the data, the
value of α can be scaled to increase or decrease the similarity
threshold of 0.75 as desired.
To incorporate the penalty function, both Algorithm 1

and 2 have to be slightly modified. In Algorithm 1, we
replace the size restrictions on bi and bj in lines 4 - 6 with
the penalty function condition, and the same for bk and bij

in lines 11 and 12. In Algorithm 2, all blocks are inserted
into Q in line 5, not just blocks with size less than smin.
Similarly bij is always reinserted into Q in line 11, regardless
of size. Additionally, in line 8, we replace the size restriction
on bk with the penalty function condition on bi and bk.

6. EXPERIMENTAL EVALUATION
We have evaluated our approaches on three data sets. (1)

Cora: This is a public bibliographic data set of scientific

papers that has previously been used to evaluate ER tech-
niques [20]. This data set contains 1,295 records and truth
data is available. (2) UKCD: This data set consists of cen-
sus data for the years 1851 to 1901 in 10 year intervals for
the town of Rawtenstall and surrounds in the United King-
dom. It contains approximately 150,000 individual records
of 32,000 households. A portion of this data (nearly 5,000
records) has been manually linked by domain experts. Fu
et al. [9] have used this data set for household based group
linkage where the task is to link households across time. (3)
NCVR: This data set consists of voter registration data for
the state of North Carolina in the USA [4].1 It contains 8.2
million records consisting of the full name, address, age and
other personal information of voters registered in the state.
For most of our experiments we make use of a subset of this
data set containing 447,898 records, named NCVR-450. We
use the full data set to test the scalability of our approaches.

To evaluate our approaches we compared performance
with standard blocking [8], Soundex encoding [7], and sorted
neighbourhood based indexing [11]. For evaluation mea-
sures we used pairs completeness and reduction ratio [2] and
a combination of the two measures similar to F-Measure:
Pairs Completeness (PC) = sM

nM
, Reduction Ratio (RR) =

1− sM+sN
nM+nN

and the combined F-Measure (FM) = 2∗PC∗RR
PC+RR

,

where nM , nN , sM , sN correspond to the total number of
matched pairs, the total number of non-matched pairs, the
number of true matched candidate record pairs and the num-
ber of true non-matched candidate pairs, respectively.

1ftp://alt.ncsbe.gov/data/
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Cora
smin - smax 20 - 50 20 - 100 50 - 100
Block similarity measure ς Single Average Complete Single Average Complete Single Average Complete

Size-based
PC 83.45 84.19 80.90 92.95 92.24 81.95 92.95 91.55 85.90
RR 96.86 97.03 97.01 96.20 96.35 96.50 93.64 93.61 93.63
FM 89.66 90.16 88.23 94.55 94.25 88.63 93.29 92.57 89.60

Similarity-based
PC 87.77 88.27 85.52 92.95 92.95 92.95 93.07 92.97 92.95
RR 96.51 96.61 96.71 95.64 96.09 96.14 92.80 93.28 93.55
FM 91.93 92.25 90.77 94.28 94.49 94.52 92.93 93.12 93.25

UKCD
smin - smax 50 - 100 100 - 200 500 - 1,000
Block similarity measure ς Single Average Complete Single Average Complete Single Average Complete

Size-based
PC 89.64 88.72 87.49 93.65 93.32 91.57 97.44 96.77 95.92
RR 99.95 99.95 99.95 99.89 99.89 99.90 99.47 99.48 99.48
FM 94.51 94.00 93.31 96.67 96.49 95.55 98.44 98.11 97.67

Similarity-based
PC 90.43 90.24 89.33 93.76 93.82 93.18 97.32 97.27 97.42
RR 99.94 99.94 99.95 99.88 99.89 99.89 99.38 99.44 99.45
FM 94.95 94.84 94.34 96.72 96.76 96.42 98.34 98.34 98.42

NCVR-450
smin - smax 500 - 1,000 2,500 - 5,000 5,000 - 10,000
Block similarity measure ς Single Average Complete Single Average Complete Single Average Complete

Size-based
PC 96.17 96.25 96.15 96.49 96.53 96.48 96.63 96.64 96.63
RR 99.81 99.82 99.82 99.07 99.08 99.09 98.19 98.16 98.19
FM 97.96 98.00 97.95 97.76 97.79 97.77 97.40 97.39 97.40

Similarity-based
PC 96.17 96.35 96.32 96.50 96.57 96.55 96.67 96.68 96.66
RR 99.79 99.80 99.81 98.96 99.01 99.07 98.00 98.03 98.05
FM 97.95 98.04 98.03 97.71 97.77 97.79 97.33 97.35 97.35

Table 2: Effects of parameter settings on PC, RR and F-Measure for Cora, UKCD, and NCVR-450, showing
different configurations of smin, smax and the three different block similarity measures (ς) single link, average
link, and complete link. The best value(s) in each row is shown in bold.

We do not explicitly model block quality. However, since
merging blocks can only improve improve PC, we merge
blocks until smax is reached, regardless of block quality. If
higher quality blocks are preferred over larger blocks, this
can be achieved by using the penalty function, where a min-
imum similarity threshold will prevent blocks with a low
likelihood of containing true matches from being merged,
regardless of block size.
All our experiments were performed on a server with 6-

core 64-bit Intel Xeon 2.4 GHz CPUs, 128 GBytes of mem-
ory and running Ubuntu 14.04. All programs were written
in Python 3. For similarity functions we used Jaro-Winkler
for single proper name attributes (i.e. first name or last
name) and q-gram based Jaccard similarity for other string
attributes with q = 2 [2].
Each of our experiments uses a single list of blocking keys.

As with many blocking techniques, the overall results could
be improved by combining the blocks generated from mul-
tiple lists of blocking keys, with a corresponding reduction
in smax so as to maintain any efficiency requirements. In
future work we plan to investigate the automatic selection
of blocking keys to reduce the need for domain expertise.
The experimental results on the Cora, UKCD, and NCVR-

450 data sets are shown in Figure 3(a) - 3(c). For Cora we
set smin = 50, smax = 100 and K = 〈〈T itle, Ext〉, 〈Author,
Ext〉〉. For UKCD we set smin = 500, smax = 1, 000 and
K = 〈〈Surname, Ext〉, 〈First Name, Ext〉, 〈Birth Parish,
Ext〉〉. For NCVR-450 we set smin = 500, smax = 1, 000 and
K = 〈〈Surname, F2〉, 〈First Name, F2〉〉.

On all three data sets, we achieve equal or better F-
Measure values than the three baseline approaches. This
indicates that our approaches achieve comparable blocking
quality to other common blocking techniques. However, the
main focus of our approaches was to satisfy the block size
restrictions while achieving high quality blocking. We also
show the distribution of block sizes generated by our ap-
proaches in Figure 3(d) - 3(f). As can be seen from the
results, both our approaches produce blocks in the required
size range, 500 - 1,000 records for UKCD and NCVR-450,
and 50 - 100 records for Cora. While the size-based approach
tends to distribute the block sizes throughout the interval
[smin, smax], the similarity-based approach tends to generate
the majority of blocks with size close to smax. This means
it creates fewer blocks overall and makes it appropriate for
parallel ER applications.

We tested different parameter settings for our approaches
to examine how sensitive they are to changing smin, smax,
and the block similarity measure ς, and the results are shown
in Table 2. In most cases, the choice of block similarity mea-
sure ς has minimal effect on the results. However, complete
link did not work well with the size-based approach, partic-
ularly on the Cora data set. Changing smin and smax affects
the trade-off between PC and RR as expected.

We tested the penalty function and the results are shown
in Figure 4. For Cora we set sscale = 50 and smax = 100,
and for UKCD and NCVR-450 we set sscale = 500 and
smax = 1, 000. When β = 0 (no minimum block size or
minimum similarity threshold), the penalty function gener-
ally achieves the best combination of PC and RR values,
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(b) - Penalty function size-based - UKCD
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(c) - Penalty function size-based - NCVR-450
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(d) - Penalty function similarity-based - Cora
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(e) - Penalty function similarity-based - UKCD

α = 1.1

α = 1.5

α = 2

α = 5

α = 15

−4 −2 0 2 4

β

95

96

97

98

99

100

F
-M

e
a
su

re
(%

)

(e) - Penalty function similarity-based - NCVR-450
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Figure 4: Penalty function results for Cora - 4(a) and 4(d), UKCD - 4(b) and 4(e), and NCVR-450 - 4(c)
and 4(f). For each data set we display how different combinations of α and β affect the F-Measure values.
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Figure 5: The scalability of the different approaches on the full NCVR data set.

the exception being for low values of α where the similarity
threshold is very low, even for large blocks which results in
poor RR values. High values of α and negative values of
β mean the similarity threshold to perform any merging is
high. This essentially negates the clustering steps of the al-
gorithms, which results in poor PC values for data sets with
lower data quality. High values of α in combination with
positive values of β produce generally balanced blocks. We
note that for the UKCD data set, setting α = 1.1 performs
very poorly. It repeatedly merges many blocks in each iter-
ation of the algorithm and either runs out of blocking keys
(resulting in poor RR values), or has to use attributes that
have poor data quality (resulting in poor PC values). For
the NCVR-450 data set, the penalty function produces very
similar results regardless of the settings for α and β. The
merging of blocks has less impact on the NCVR-450 data
set, since it is relatively clean so merges do not increase PC
values substantially, and also large enough that it requires
many merges to reduce RR values significantly.

We also tested the scalability of our approaches using sub-
sets of different sizes of the entire NCVR data set. We set
smin = 500, smax = 1, 000 andK = 〈〈Surname, F2〉, 〈First
Name, F2〉〉 and the results are shown in Figure 5(a). As
can be seen, even though the asymptotic complexity of each
approach is cubic or worse, because functions such as F2 or
Sdx generate a limited number of BKVs the scalability is still
nearly linear in practice. However, in the future we plan to
optimise both approaches to improve their scalability.

We compared the total number of candidate pairs gener-
ated as well as the largest block generated by the different
approaches and the results are shown in Figure 5(b) and
Figure 5(c). Controlling the maximum block size ensures
that the total number of candidate pairs increases linearly
with the size of the data set which means that once the data
set becomes large, our techniques generate fewer candidate
pairs than the traditional and Soundex based approaches.
As a result, even though our approaches increase the time
required for blocking compared to the baseline approachs,
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in general this will be more than made up for by a reduction
in the time required to perform the matching.
In addition, the worst case block size is also controlled

by our approaches. This means that if the blocking is be-
ing performed as a pre-processing step for an ER technique
with scalability worse than quadratic, such as Markov logic
networks [20], or privacy-preserving record linkage [22], then
the time saving will be even greater than that indicated by
the reduction in the number of candidate pairs. Controlling
the worst-case block size means that our techniques are suit-
able for real-time ER, where operational requirements limit
the number of comparisons that can be performed [18].
Finally, we investigated the impact of the sample size in

the similarity calculations on the NCVR-450 data set us-
ing Soundex encodings. Even with a sample size of 1, the
clustering still produced similar results to the complete cal-
culation and the reduction in F-Measure was less than 0.1%
in all cases. As a result, we conclude that the sample size
does not significantly affect the performance.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have developed two novel recursive clus-

tering approaches which can generate blocks for ER within a
given size range. We have also proposed a penalty function
which allows us to control the trade-off between block size
and block quality, and fine tune either approach. We have
evaluated our approaches on three data sets. Our experi-
mental results show that both our techniques perform well
in comparison to the baseline approaches and create blocks
in the required size range.
In the future, we intend to extend the current work in

several directions. First, we hope to investigate the pos-
sibility of automatically selecting the blocking keys using
techniques similar to Kejriwal and Miranker [13]. We also
aim to investigate optimisations to the algorithms and the
use of different clustering techniques, to improve the quality
of the results and the scalability of our approaches.
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