
ERGAN: Generative Adversarial Networks for
Entity Resolution

Jingyu Shao∗, Qing Wang∗, Asiri Wijesinghe∗, Erhard Rahm†
∗Research School of Computer Science, the Australian National University

{Jingyu.Shao, Qing.Wang and Asiri.Wijesinghe}@anu.edu.au
†Database Group, University of Leipzig

Rahm@informatik.uni-leipzig.de

Abstract—Entity resolution targets at identifying records that
represent the same real-world entity from one or more datasets.
A major challenge in learning-based entity resolution is how
to reduce the label cost for training. Due to the quadratic
nature of record pair comparison, labeling is a costly task that
often requires a significant effort from human experts. Inspired
by recent advances of generative adversarial network (GAN),
we propose a novel deep learning method, called ERGAN, to
address the challenge. ERGAN consists of two key components:
a label generator and a discriminator which are optimized
alternatively through adversarial learning. To alleviate the issues
of overfitting and highly imbalanced distribution, we design two
novel modules for diversity and propagation, which can greatly
improve the model generalization power. We have conducted
extensive experiments to empirically verify the labeling and
learning efficiency of ERGAN. The experimental results show
that ERGAN beats the state-of-the-art baselines, including un-
supervised, semi-supervised, and unsupervised learning methods.

Index Terms—Entity Resolution, Generative Adversarial Nets,
Imbalanced Class Problem

I. INTRODUCTION

Entity Resolution (ER) is an important and ubiquitous
component of real-world applications in various fields, such as
national census, health sector, crime and fraud detection, bib-
liographic statistics, and online shopping [4]. Learning-based
ER methods have been widely used in the past years. However,
due to the quadratic nature of record pair comparison required
by ER tasks [3], labeling is costly, time consuming, and highly
imbalanced. This raises the difficulty of applying supervised
learning methods for ER in many real-world applications.

To reduce the labeling effort, a number of semi-supervised
learning methods have been proposed [11], [22], [19]. Some
of them are proposed based on a low-density separation
assumption, i.e. there exists a low-density “boundary” so that
instances belonging to different classes can be distinguished
[1], [13]. However, such a boundary may not always exist
or can be clearly identified, especially when the number of
labeled instances is small [8]. Some semi-supervised learning
methods have ultilized the idea of self-learning, which firstly
trains a classifier using labeled instances, and then selects
unlabeled instances with predicted labels to train a classifier
iteratively [11]. Although promising, these methods often lead
to the issue of overfitting when labeled instances in training
are limited [16].

In this paper, we focus on tackling the following two
challenges, which cannot be handled by the existing ER
methods: (1) the overfitting problem; (2) the imbalanced
class problem. The overfitting problem happens when the
number of labeled instances is limited and a learning model
is powerful enough to remember all the features of training
instances. In such cases, the learning model can correctly
predict the classes of seen instances with high certainty, but
fail to predict the classes of unseen instances, thus losing the
generalization ability. For the imbalanced class problem, it
is due to the fact that the number of matches (record pairs
referring to the same entity) is far less than the number of
non-matches in ER tasks. Traditionally, blocking techniques
can help alleviate the imbalanced class problem by grouping
potentially matched instances into the same cluster. However,
selecting a blocking method also requires prior knowledge or
sufficient training instances [21], [18], which is still hard to
achieve under a very limited number of training instances.

Generative adversarial network (GAN) and its variants have
recently emerged as a powerful deep learning technique for
real-world applications across various domains such as image
generation and natural language processing [7], [6]. Inspired
by these advances, in this paper, we develop a novel generative
adversarial network, called ERGAN, to solve the aforemen-
tioned challenges faced by ER applications. In ERGAN, there
are two key components: (1) a label generator G that aims
to generate pseudo labels for unlabeled instances, and (2) a
discriminator D that aims to distinguish instances with pseudo
labels from instances with real labels. The discriminator D is
trained using not only a small number of instances with real
labels but also a large number of instances with high-quality
pseudo labels. However, the question arises: how to ensure
the high-quality of pseudo labels generated for unlabeled
instances? Unfortunately, the existing GAN and its variants
cannot guarantee this when the number of instances with
real labels is limited. To address this question, our model
ERGAN is designed to incorporate two modules: diversity
module and propagation module into the label generator G
and the discriminator D, respectively. The diversity module
enables the diversity of unlabeled instances during the sam-
pling process, while the propagation module guarantees that
only unlabeled instances with high-quality pseudo labels can

Unlabeled Instances
(𝑋𝑈)

𝑥, 𝑦

Label Generator

𝑥, 𝐺 𝑥

Discriminator

Back-Propagation

Labeled Instances
(𝑋𝐿, 𝑌)

G

Propagation
Module

D
Diversity
Module 𝐷(𝑥, 𝐺 𝑥)

Fig. 1: Overview of our framework. Using only a limited number
of labeled instances for training, ERGAN takes unlabeled instances
as input and classifies them as being matches or non-matches.

be propagated into the training of the discriminator D. Then, G
and D converge to the equilibrium point, achieving the global
optimality.

Figure 1 shows an overview of ERGAN. It is worthy to note
that, although we only consider ERGAN for entity resolution
in this paper, the techniques of ERGAN for handing overfitting
and imbalanced data can be much more widely applicable.

II. PROBLEM FORMULATION

Let R be an ER dataset consisting of a set of records where
each r ∈ R is associated with a number of attributes A. Each
record pair (ri, rj) in R corresponds to a feature vector x
where each element of x indicates a feature value, e.g., the
textual similarity of values in an attribute in A.

Let X = {x(ij)|(ri, rj) ⊆ R × R} be the set of all feature
vectors (i.e., instances) corresponding to record pairs in R and
Y = {M,N} be a label space, where M and N refer to two
labels match and non-match, respectively. There is a small
subset XL ⊆ X of instances that are labeled, while the other
instances in X are unlabeled, i.e., XU = X−XL. We assume
|XL| << |XU |, i.e., X has a very limited number of labeled
instances in XL but a large number of unlabeled instances
in XU . We denote (XL, Y) as a set of instances in XL and
their labels in Y , and (xL, y) ∼ (XL, Y) as a pair of instance
xL ∈ XL and its label y ∈ Y . Our task is to tackle the ER
classification problem as formulated below.

Definition 1. Given a set X of instances with X = XL∪XU

and |XL| << |XU |, and a label space Y = {M,N}, the ER
classification problem is to learn a model Λ that can predict
a label ŷ ∈ Y for each unlabeled instance x ∈ XU w.r.t.

max E(Λ)/|XU | (1)

where E(Λ) =
∑

x∈XU∧ŷ=y

1.

Intuitively, E(Λ) refers to the total number of unlabeled
instances in XU whose labels are correctly classified by Λ.

III. PROPOSED METHOD: ERGAN
Our proposed method ERGAN consists of two components:

(1) a label generator G; and (2) a discriminator D. Both G
and D are differentiable functions.

A. Label Generator
In ERGAN, a label generator G can obtain instances

from p(XU), but does not know about p(Y) nor p(X,Y).
Nevertheless, we know that p(XU) ≈ p(X) because XU ⊆ X
and |XU |/|X| is close to 1. The goal of G is to learn a
conditional distribution pg(Y |XU) ≈ p(Y |XU), i.e., given an
instance x ∼ p(XU) as input, G generates a pseudo label ŷ
for x. Ideally, the pseudo label ŷ generated for an instance x
by G should be the same as the real label of x. To simulate
the conditional distribution p(Y |XU), the label generator G
receives feedback (i.e. gradients) from the discriminator D and
is trained iteratively through backpropagation.

Diversity module. One major difference of our ERGAN from
the original GAN and its variants such as CatGAN [20] is
that we consider the diversity of instances in the minibatch
sampling process. More specifically, for all instances in X ,
we partition them into a number of non-overlapping subspaces
alike in certain features {X1, . . . , Xb} such that instances in
the same subspace are more similar than those in different
subspaces. Accordingly, labeled instances in XL and unla-
beled instances in XU are partitioned into these b subspaces,
i.e., XL

i = Xi ∩XL and XU
i = Xi ∩XU .

Let v = (v1, ..., vb) be a vector corresponding to b sub-
spaces, where each vi = (v1

i , . . . , v
ni
i)T ∈ [0, 1]ni and

ni = |XU
i |. That is, each vji (1 ≤ j ≤ ni) is associated with an

instance in XU
i . Then, a minibatch of m instances is selected

from XU according to the following objective function:

maximize ||v||2,1 s.t.
∑
i,j

vji = m (2)

where ||v||2,1 is a l2,1-norm function defined as:

||v||2,1 =

b∑
i=1

||vi||2 =

b∑
i=1

√√√√ ni∑
j=1

vji
2

(3)

Here, ||vi||2 is the l2-norm of vi. When vji = 1, the instance
in XU

i corresponding to vji is selected into the minibatch;
otherwise, that instance is not selected. When the value of the
l2,1-norm is small, instances are selected from a small number
of subspaces in XU and the diversity of instances is low.
Conversely, when maximizing the l2,1-norm in Eq. 2, instances
are selected from as many subspaces in XU as possible and
the diversity of instances is high.

Objective function of G. After a minibatch of unlabeled
instances is selected from XU according to Eq. 2, the label
generator G generates a pseudo label G(xi) for each unlabeled
instance xi in the minibatch. Then, (xi, G(xi)) is sent to
the discriminator D. After receiving the gradient from D, G
updates its parameters according to the following objective:

LG =min
G

Ex∼p(XU
i)[log(1−D(x,G(x)))] (4)

B. Discriminator

Unlike GAN, a discriminator D in our ERGAN does not
know about the real distribution p(X,Y). Instead, D has
access only to a limited number of instances with real labels,
i.e. (XL, Y). The goal of D is to distinguish whether a labeled
instance (x,G(x)) is from the real distribution p(X,Y), i.e.,
given a pair (x,G(X)) as input, D generates a scalar value in
[0, 1] to indicate the probability that G(x) is the same as the
real label y of x.

Propagation module. To achieve the above goal, as opposite
to GAN and its variants in which the discriminator has the true
distribution p(X,Y), D in ERGAN is designed to approxi-
mate the true joint distribution p(X,Y) progressively through
a propagation module. The general principle of propagation is
that, the more confident the pseudo label G(x) of an instance
x is the same as its real label y, the more likely such an
instance is selected. Specifically, let (Xt, G(Xt)) denote all
unlabeled instances with their pseudo labels at the t-th iteration
of propagation. These instances are fed to D to obtain their
scores D(Xt, G(Xt)) that indicates the probabilities of their
pseudo labels being the same as their real labels. Based on the
scores, a subset ∆Xt ⊆ Xt of instances is selected according
to the following objective function:

argmax
∆Xt⊆Xt

∑
x∈∆Xt

D(x,G(x))

subject to |∆Xt| = γ

(5)

where γ is a hyper-parameter for the number of unlabeled
instances being selected in the t-th iteration of propagation.

Then, this subset of instances with their high-quality pseudo
labels (∆Xt, Ŷ) is propagated into the set of labeled instances
(X∗, Y)t to train D, i.e.,

• (X∗, Y)0 = (XL, Y)
• (X∗, Y)t = (X∗, Y)t−1 ∪ (∆Xt, Ŷ)

Hence, at the t-th iteration of propagation, D has access to
(X∗, Y)t, which is a mixed set of labeled instances from
XL (with real labels) and unlabeled instances from XU (with
pseudo labels generated by G). The following holds:

(X∗, Y)0 ⊆ (X∗, Y)1 ⊆ · · · ⊆ (X∗, Y)t (6)

Figure 2 shows an example of the propagation in two itera-
tions, where the grey dash line indicates a boundary between
two classes (red and blue) and is learned through propagation.

Objective function of D. The objective function of D at the
t-th iteration of propagation is defined as:

LD =max
D

Ex∼p(XU
i)log[(1−D(x,G(x)))]

+ λE(x,y)∼(X∗,Y)t log[D(x, y)]
(7)

where λ ∈ [0, 1]. In the following, we will explain how
unlabeled instances with their pseudo labels, i.e., (Xt, Ŷ), is
selected at the t-th iteration of propagation.

(a) Seed Samples (b) 1-st Iteration (c) 2-nd Iteration

x
c

x
c

x
c

x
c x

c

x
c

Fig. 2: An illustration for propagation of ERGAN. A boundary
between two classes (red and blue) is learned through propagation.

C. Choice of Hyper-parameters

Our algorithm is described in Algorithm 1. The number of
subspaces b is decided based on the attributes in each dataset.
Suppose that a dataset has four attributes, we first obtain the
median value for each attribute, and then partition instances
into 42 = 16 subspaces according to whether attribute values
of each instance are above or below the median values of
these four attributes [19]. n is a hyper-parameter referring to
the number of iterations for converging G and D, and t is
decided by the total number XU of unlabeled instances and
the number γ of instances being propagated in each iteration,
i.e. t = d |X

U |
γ e.

Algorithm 1: Minibatch stochastic gradient descent
and label propagation of ERGAN

Input: b subspaces in X; XU ; (XL, Y);
Output: (X∗, Y)t where X∗ = X

1 Initialize t = 0; (X∗, Y)0 = (XL, Y);
X0 = X1 = XU

2 while Xt 6= ∅ do
3 for n iterations do // Batch training
4 Sample a minibatch {x1, ..., xm} from XU

w.r.t. Eq. 2
5 Generate pseudo labels

{(x1, G(x1)), ..., (xm, G(xm))}
6 Sample a minibatch {(xL1 , y1), ..., (xLm, ym)}

from (X∗, Y)t

7 Update the parameters of D w.r.t. Eq. 7
8 Update the parameters of G w.r.t. Eq. 4

9 t=t+1 // Label propagation
10 Generate pseudo labels for Xt

11 Select ∆Xt ⊆ Xt for propagation w.r.t. Eq. 5
12 (X∗, Y)t = (X∗, Y)t−1 ∪ (∆Xt, Ŷ);

Xt+1 = Xt −∆Xt

IV. EXPERIMENTAL SETUP

We evaluate ERGAN to answer: 1) How does ERGAN
perform in comparison with the state-of-the-art unsupervised,
semi-supervised and fully supervised methods? 2) How do the
design choices such as the diversity module, the propagation
module, and GAN’s architecture affect the performance of
ERGAN?

Datasets. Four datasets are used in our experiments whose
characteristics are summarized in Table I: the first three

TABLE I: Characteristics of datasets. The instances of these
datasets are generated from their record pairs.

Dataset #Attributes #Instances Imbalance #Subspaces
(|A|) (|X|) Rate (b)

Cora 4 837,865 1:49 16
DBLP- ACM 4/4 6,001,104 1:2,698 16
DBLP- Scholar 4/4 168,112,008 1:71,233 16
NCVoter 18/18 1,000,000 1:4,202 64

datasets contain the bibliographic records1 and the last one
contains real-world voter registration information of people
from North Carolina in the USA2.

Baselines. We compare ERGAN with the following base-
lines, whose details are described in Section VI: (1) Unsu-
pervised methods: Two-Steps (2S) [3] and Iterative Term-
Entity Ranking and CliqueRank (ITER-CR) [23]. (2) Semi-
supervised methods: Semi-supervised Boosted Classifier
(SBC) is the state-of-the-art semi-supervised learning method
[11]. (3) Several state-of-the-art fully supervised methods:
Logistic Regression (LR) and Support Vector Machine
(SVM) are two supervised classifiers provided in Magellan
that is an open-source ER solution [12]. eXtreme Gradient
boosting (XGboost) is an ensemble learning based method
[2]. DeepMatcher (DM) is a deep learning based approach
specified for ER [14]. Deep Transfer active learning (DTAL)
combines both transfer learning and active learning for han-
dling ER tasks [10].

To compare with the baselines that use word embeddings,
we use ERGAN+WE to refer to the model of ERGAN
augmented with word embeddings for attribute values. In our
ablation study, we use ERGAN-D and ERGAN-P to refer to
a model being obtained by removing the diversity and prop-
agation modules from ERGAN, respectively, and ERNN a
model in which the GAN architecture (i.e. G and D are trained
alternatively) is replaced by a single multi-layer perceptron for
semi-supervised learning with the diversity module. We set
λ = 1, m ≤ 100, and γ = |X∗|. Our models use the same
word embedding and similarity comparison techniques as the
baselines.

Measures. We use the widely used F-Measure(FM) in ER
tasks for performance evaluation [4].

V. EXPERIMENTAL RESULTS

We discuss the results of our experiments in this section.

A. Performance Comparison

Task 1. We conduct an experiment to evaluate how our
methods perform against the baselines. Following the previous
work for the supervised methods DM [14] and DTAL [10], we
split the datasets with 60% for training and the rest for testing.

Table II shows the results of the experiment, where the
last three methods DM, DTAL and ERGAN+WE are deep-
learning methods which use word embeddings for attribute
values and the other methods use Jaccard similarity for

1Available from: http://secondstring.sourceforge.net
2Available from: http://alt.ncsbe.gov/data/

TABLE II: Experimental results of f-measure with 60% training.
The results marked by ∗ are taken from the original papers and the
others are obtained by running the code provided by the authors.

Method
Datasets

Cora DBLP- DBLP- NCVoterACM Scholar

2S [3] 62.69 91.43 68.78 98.96
ITER-CR* [23] 89.00 – – –
SBC [11] 85.71 97.09 85.47 99.78
SVM [12] 88.95 97.19 85.71 98.48
LR [12] 80.25 95.56 83.84 99.37
XGBoost [2] 91.34 97.20 86.63 100
ERGAN 93.03 98.23 88.32 100

DM [14] 98.58 98.29 94.68 100
DTAL* [10] 98.68±0.26 98.45±0.22 92.94±0.47 –
ERGAN+WE 98.72±0.15 98.51±0.23 94.73±0.35 100

comparing attribute values (without using word embeddings).
We can see that, the unsupervised method 2S performs the
worst among all the methods. However, the other unsupervised
method ITER-CR performs better than SBC, SVM and LR
due to its ability to leverage graph based structure. Compared
with the fully supervised methods, the semi-supervised method
SBC performs better than LR, comparably with SVM, but
worse than XGBoost. Our method ERGAN performs better
than any non-deep-learning method, but worse than the deep-
learning methods with word embedding, i.e., DM, DTAL and
ERGAN+WE. Nonetheless, our method ERGAN+WE out-
performs all the baseline, including two deep-learning methods
DM and DTAL, over all databases they have the results.

Observation 1. With sufficient training data, ERGAN+WE
performs better than ERGAN due to the power of word em-
bedding for records. ERGAN+WE has superior performance
against all the baselines consistently.

Task 2. To study performance under a limited number of
instances with real labels, we further conduct an experiment
using only a small percentage for training, ranging from 0.1%
to 10% of the datasets, and the rest for testing.

Figure 3 shows the experimental results. ERGAN performs
best among all the methods over all the datasets when training
data is below 1%. ERGAN+WE performs poorly in this
range. However, the performance of ERGAN+WE increases
rapidly with increasing training data and exceeds all the
other methods on all the datasets when training data reaches
10%. LR and DM have a similar trend as ERGAN+WE,
but perform significantly worse. The semi-supervised method
SBC performs better than ERGAN+WE only when training
data is small, i.e. below 0.2% for Cora and below 0.9% for
DBLP-ACM, DBLP-Scholar and NCVoter. The performance
of SVM and XGBoost varies in datasets, i.e., perform well
on Cora and DBLP-ACM, but badly on DBLP-Schloar and
NCVoter. This demonstrates that the performance of SVM
and XGBoost is sensitive to the imbalance rate of a dataset,
and they fail to handle imbalanced data when no sufficient
training data is available. For NCVoter, due to a clear boundary
existing between matches and non-matches in the underlying
distribution, the performance of all the methods that perform
poorly for small training data can be dramatically improved

0.
1

0.
2

0.
3

0.
5 1 2 3 5 10

Label cost %

0.0

0.2

0.4

0.6

0.8

1.0
F-

m
ea

su
re

(a) Cora

SBC
SVM
LR
XGBoost
DM
ERGAN
ERGAN+WE

0.
1

0.
2

0.
3

0.
5 1 2 3 5 10

Label cost %

0.0

0.2

0.4

0.6

0.8

1.0
(b) DBLP-ACM

0.
1

0.
2

0.
3

0.
5 1 2 3 5 10

Label cost %

0.0

0.2

0.4

0.6

0.8

1.0
(c) DBLP-Scholar

0.
1

0.
2

0.
3

0.
5 1 2 3 5 10

Label cost %

0.0

0.2

0.4

0.6

0.8

1.0
(d) NCVoter

Fig. 3: Experimental results of f-measure with 0.1% – 10% training.

after using 0.6% or more training data. In general, we may
conclude that, compared with the case of 60% training in
Table II, the performance gain of the methods with word
embedding against the methods without word embedding does
not exist anymore. Instead, the methods with word embedding
performs worse than most of the methods without word
embedding when training data is small, i.e., below 1%.

Observation 2. When decreasing training data, ERGAN+WE
gradually performs worse than ERGAN. This is because,
ERGAN+WE transforms instances into a high dimensional
space through word embedding and thus requires much more
labels in training than ERGAN.

B. Ablation Analysis

We conduct an ablation study to evaluate the effects of the
key components of ERGAN, including the adversarial learning
architecture, the diversity module and the propagation module,
under different label costs, ranging from 0.1% to 60% for
training. The results are presented in Table III. We observe
that the performance of all the methods ERNN, ERGAN-
D, ERGAN-P and ERGAN become stable and gradually
converge when the label cost increases, e.g. in the case of 60%
training. Nonetheless, ERGAN performs the best among all
the methods, and the performance of the other methods varies
in different datasets. In the following, we will discuss how
each key component of ERGAN may affect the performance.

Adversarial learning architecture. The performance of ERNN
generally lies in between ERGAN-D and ERGAN-P, and
significantly worse than ERGAN. This indicates that the use of
adversarial learning architecture by ERGAN helps improve the
performance. Particularly when training data is limited, e.g.,
for 0.1% training, ERGAN improves around 3% on Cora and
more than 8% on DBLP-ACM upon ERNN.

Diversity module. In Table III, the results of ERGAN-D are
the worst among all the methods over all the datasets. This
indicates that diverse instances are more informative for model
training, which can improve the label efficiency. Specifically,
with 0.1% training, ERGAN-D fails to work (i.e., f-measure
value is 0) on three datasets except for Cora. This is because
ERGAN-D lacks the diversity module and can only randomly
select instances for training. As a result, all training instances

are selected from the majority class (non-matches), and ac-
cordingly no matched instance can be classified correctly
by ERGAN-D, i.e. all the instances are classified as non-
matches. Since datasets in ER applications are usually highly
imbalanced, training data without diversity may hardly contain
instances from the minority class (matches) when labels are
limited, thus leading to poor performance.

Propagation module. Table III shows that ERGAN-P gener-
ally has better performance than ERNN and ERGAN-D, and
thus it may affect the performance of ERGAN least compared
with the other two key components: the adversarial learning
architecture and the diversity module, especially when the
label cost is small, e.g. 0.1% and 1% training. Additionally,
when the label cost is 60%, the performance of ERGAN-P
and ERGAN is the same. This is because instances with real
labels in 60% training data can provide sufficient information
for learning, and the propagation of instances with pseudo
labels becomes unnecessary.

Observation 3. In ERGAN, all the three key components, i.e.,
the adversarial learning architecture, the diversity module and
the propagation module, are necessary, each serving as an
integral part of the entire framework.

VI. RELATED WORK

Learning-based Entity Resolution (ER) approaches usually
adopt a learning model to classify whether two records refer to
the same entity. A recent supervised learning based approach
is Magellan [12], which considered learning models including
Decision Tree, Random Forest and Support Vector Machine
(SVM). A widely used ensemble classifier is extreme gradi-
ent boosting (XGBoost) [2], which used the sparsity-aware
algorithm and the weighted quantile sketch for approximate
learning. One approach under unsupervised learning for ER is
called two-steps (2S) [3], which first labeled a number (e.g.
10 percents of a dataset) of samples based on the similarity
of record pairs, i.e. most similar and dissimilar ones, and then
trained an SVM. A recent work is proposed by Jurek et. al.
[9], which considered both ensemble learning and automatic
self-learning for classification based on training labels which
are automatically generated from different similarity measure
schemes. The state-of-the-art semi-supervised learning ap-
proach is an ensemble learning based approach using ensemble

TABLE III: Experimental results of f-measure with 0.1%, 1%, 20% and 60% training for ablation analysis.

Datasets Cora DBLP-ACM DBLP-Scholar NCVoter
0.1% 1% 20% 60% 0.1% 1% 20% 60% 0.1% 1% 20% 60% 0.1% 1% 20% 60%

ERNN 84.46 90.67 91.43 92.78 88.05 95.68 98.20 98.22 82.76 83.17 86.71 87.73 99.39 100 100 100
ERGAN-D 79.87 85.14 91.27 92.97 0 93.30 97.16 98.21 0 78.85 83.43 88.29 0 99.58 100 100
ERGAN-P 85.18 90.76 91.42 93.03 92.67 95.96 98.21 98.23 83.43 85.34 86.55 88.32 99.39 99.79 100 100
ERGAN 87.45 91.07 91.54 93.03 96.89 96.93 98.22 98.23 84.23 85.85 86.86 88.32 99.45 100 100 100

classifier Adaboost [17] for label prediction based on seed
samples that have real labels.

Generative adversarial network (GAN) was proposed by
Goodfellow et. al. [7]. The key idea of GAN is that two
networks, a generator and a discriminator, play a minimax
game so that they converge gradually to an optimal solution.
The generator aims to generate fake instances to “fool” the
discriminator by simulating the distribution of real instances,
while the discriminator targets to distinguish fake instances
(generated by the generator) from real instances.

In recent years, several attempts have been made to design
deep learning solutions for ER tasks [14], [5]. Ebraheem et
al. proposed DeepER, which uses bi-directional Recurrent
Neural Networks (RNNs) with Long Short Term Memory
(LSTM) units to learn a distributed representation for each
record [5]. Mudgal et al. studied how to use deep learning
techniques developed in natural language processing to handle
the problems of attribute embedding, attribute summarization
and attribute comparison [14]. A recent work proposed by Nie
et al. [15] uses an align-compare-aggregate framework for a
token level sequence-to-sequence ER which aims to solve the
heterogeneous and dirty data problems.

VII. CONCLUSION

In this paper, we have proposed a novel method, called
ERGAN, to solve the ER classification problem with limited
labeled instances. ERGAN incorporates the diversity of in-
stances into sampling, prior to training the models. ERGAN
consists of a label generator G to generate pseudo labels
for unlabeled instances, and a discriminator D to distinguish
instances with pseudo labels from instances with real labels.
This method can be extended with word embedding for
handling attribute values, leading to an enhanced method,
called ERGAN+WE. Our experimental results show that the
performance of our methods beats all the baselines.

ACKNOWLEDGMENT

This work was partially funded by the Australian Research
Council (ARC) under Discovery Project DP160101934.

REFERENCES

[1] Sugato Basu, Arindam Banerjee, and Raymond Mooney. Semi-
supervised clustering by seeding. In International Conference on
Machine Learning (ICML), 2002.

[2] Tianqi Chen and Carlos Guestrin. Xgboost: a scalable tree boosting
system. In international conference on Knowledge Discovery and Data
mining (SIGKDD), 2016.

[3] Peter Christen. Automatic record linkage using seeded nearest neighbour
and support vector machine classification. In international conference
on Knowledge Discovery and Data mining (SIGKDD), 2008.

[4] Peter Christen. Data matching: concepts and techniques for record
linkage, entity resolution, and duplicate detection. Springer Science
& Business Media, 2012.

[5] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty,
Mourad Ouzzani, and Nan Tang. Distributed representations of tuples for
entity resolution. Proceedings of the VLDB Endowment, 11(11):1454–
1467, 2018.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information processing
systems (NeurIPS), pages 2672–2680, 2014.

[8] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern
recognition letters, 31(8):651–666, 2010.

[9] Anna Jurek, Jun Hong, Yuan Chi, and Weiru Liu. A novel ensemble
learning approach to unsupervised record linkage. Information Systems,
71:40–54, 2017.

[10] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa.
Low-resource deep entity resolution with transfer and active learning.
arXiv preprint arXiv:1906.08042, 2019.

[11] Mayank Kejriwal and Daniel P Miranker. Semi-supervised instance
matching using boosted classifiers. In European Semantic Web Con-
ference, pages 388–402. Springer, 2015.

[12] Pradap Konda, Sanjib Das, AnHai Doan, Adel Ardalan, Jeffrey R
Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, and
Shishir Prasad. Magellan: toward building entity matching management
systems over data science stacks. Proceedings of the VLDB Endowment,
9(13):1581–1584, 2016.

[13] Xiang Li, Yao Wu, Martin Ester, Ben Kao, Xin Wang, and Yudian Zheng.
Semi-supervised clustering in attributed heterogeneous information net-
works. In International Conference on World Wide Web (WWW), pages
1621–1629, 2017.

[14] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Young-
choon Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay
Raghavendra. Deep learning for entity matching: A design space
exploration. In Proceedings of the 2018 International Conference on
Management of Data, pages 19–34. ACM, 2018.

[15] Hao Nie, Xianpei Han, Ben He, Le Sun, Bo Chen, Wei Zhang, Suhui
Wu, and Hao Kong. Deep sequence-to-sequence entity matching for
heterogeneous entity resolution. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
pages 629–638, 2019.

[16] Dorian Pyle. Data preparation for data mining. morgan kaufmann,
1999.

[17] Gunnar Rätsch, Takashi Onoda, and K-R Müller. Soft margins for
adaboost. Machine learning, 42(3):287–320, 2001.

[18] Jingyu Shao and Wang Qing. Active blocking scheme learning for entity
resolution. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), 2018.

[19] Jingyu Shao, Qing Wang, and Fangbing Liu. Learning to sample: an
active learning framework. In International Conference on Data Mining
(ICDM), 2019.

[20] Jost Tobias Springenberg. Unsupervised and semi-supervised
learning with categorical generative adversarial networks. arXiv
preprint:1511.06390, 2015.

[21] Qing Wang, Mingyuan Cui, and Huizhi Liang. Semantic-aware blocking
for entity resolution. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 28(1):166–180, 2016.

[22] Qing Wang, Dinusha Vatsalan, and Peter Christen. Efficient interactive
training selection for large-scale entity resolution. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pages 562–573.
Springer, 2015.

[23] Dongxiang Zhang, Long Guo, Xiangnan He, Jie Shao, Sai Wu, and
Heng Tao Shen. A graph-theoretic fusion framework for unsupervised
entity resolution. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pages 713–724. IEEE, 2018.

