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Abstract—Entity resolution (ER) is the task of deciding which
records in one or more databases refer to the same real-world
entities. A crucial step in ER is the accurate classification of pairs
of records into matches and non-matches. In most practical ER
applications, obtaining training data is costly and time consuming.
Various techniques have been proposed for ER to interactively
generate training data and learn an accurate classifier. We
propose an approach for training data selection for ER that
exploits the cluster structure of the weight vectors (similarities)
calculated from compared record pairs. Our approach adaptively
selects an optimal number of informative training examples for
manual labeling based on a user defined sampling error margin,
and recursively splits the set of weight vectors to find pure enough
subsets for training. We consider two aspects of ER that are highly
significant in practice: a limited budget for the number of manual
labeling that can be done, and a noisy oracle where manual labels
might be incorrect. Experiments on four real public data sets
show that our approach can significantly reduce manual labeling
efforts for training an ER classifier while achieving matching
quality comparative to fully supervised classifiers.

I. INTRODUCTION

Entity resolution (ER) is an important step in various
application domains, including e-commerce, healthcare, na-
tional censuses, the social sciences, crime and fraud detection,
and national security. In these domains, the databases to be
matched often do not contain entity identifiers. ER therefore
has to rely on available attributes, such as names and addresses
for people, or titles and author names for publications.

The basic steps in ER [5] consist of the pair-wise com-
parison of records, using functions that calculate similarities
between attribute values, followed by the classification of the
compared record pairs into matches (assumed to refer to the
same entity) and non-matches (assumed to refer to different
entities). The comparison of attribute values is commonly
based on approximate string matching functions that return a
normalized similarity between 0 (totally different values) and
1 (exact matching values). For each compared record pair, a
weight vector is formed that contains the similarities over the
different attributes of that pair [5].

Various classification techniques have been proposed for
ER [5]. While supervised techniques generally result in much
better matching quality, these techniques require training data
in the form of labeled true matching and true non-matching
record pairs. In most practical applications of ER actual truth
data are nonexistent or difficult to obtain, and training data
have to be manually generated, a task known to be difficult
both in terms of cost and quality [1], [2], [22].

As databases grow in size, the process of comparing
record pairs becomes more challenging because the number
of possible pairs grows quadratically with the size of the

databases to be matched. Blocking and indexing techniques [5]
are commonly applied to reduce the number of comparisons by
splitting the databases into blocks and only comparing records
within each block. Even after blocking, however, the number of
generated candidate record pairs is often still much larger than
the number of true matches, and therefore ER classification is
generally a very imbalanced problem, which makes random
sampling for selecting training data a serious challenge.

Several active learning techniques have been proposed for
selecting training data for ER [1], [2], [6], [17], [19], [22].
The central idea of active learning is to reduce the labeling
efforts through actively choosing informative or representative
examples. Recently proposed active learning approaches [1],
[6] for ER are heavily grounded on a monotonicity assumption:
a record pair with higher overall similarity is more likely to be
a true match than a pair with lower similarity. This assumption
does not generally hold, as illustrated in Figure 1 which shows
the distributions of true matches and non-matches from four
real-world data sets where all four clearly violate the mono-
tonicity assumption. This leads to the question of how can we
effectively select training data if the monotonicity assumption
does not hold and assuming the classes are imbalanced?

We propose an approach that, under a limited budget,
exploits the cluster structure in data through active learning [7].
Our approach selects a subset (cluster) of informative weight
vectors into the training data set by recursively splitting the
set of weight vectors into smaller subsets until subsets are
found that are pure (as we formally define in Section III). Pure
subsets are those where the majority of their weight vectors
refer to either matches or non-matches. The optimal number
of examples to be labeled is calculated adaptively based on a
sampling error margin. The resulting training set can then be
used for any supervised ER classifier. Unlike other work, our
approach does not rely on a monotonicity assumption.

We conduct an evaluation on four real-world data sets and
compare our approach with several fully supervised and un-
supervised ER classifiers, and with a recently proposed state-
of-the-art active learning technique for ER [2]. Our results
show that our approach can achieve classification performance
comparable to fully supervised approaches with only a few
hundred manual labels required for all four data sets.

II. PRELIMINARIES AND PROBLEM STATEMENT

Let R be a set of records from one or more data sets, each
r ∈ R having a set of attributes A. We use r.a to refer to the
value of an attribute a ∈ A in record r. Given two records
r1, r2 ∈ R, a similarity weight w of attribute a between r1
and r2, denoted as w = f(r1.a, r2.a), is a value in the range
0 ≤ w ≤ 1, where f is a function that quantifies the similarity
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Fig. 1. Examples where the monotonicity assumption of similarities does
not hold: Weight vectors that are generated from the data sets we use in our
experiments (Section IV), with true matches shown as blue circles and true
non-matches as yellow triangles. ED refers to the edit-distance and JW to the
Jaro-Winkler approximate string comparison functions [5]. Similarities over
several attributes are summed and normalized into [0, 1].

between r1.a and r2.a, such as an approximate string compara-
tor [5]. For a set A = {a1, . . . , ad} of attributes selected for
performing ER tasks, each compared pair of records (r1, r2)
results in a weight vector 〈w1, . . . , wd〉 ∈ [0, 1]d, where wi is
the similarity weight of attribute ai between r1 and r2.

A weight vector set W consists of all weight vectors over
A which correspond to the pairs of two different records in R
(potentially after blocking or indexing has been applied [5]).
A cluster Wi ⊆ W is a subset of weight vectors in W.
A partition of W is a set of clusters {W1, . . . ,Wm} that
contains all weight vectors in W, with Wi ∩Wj = ∅ for
1 ≤ i 	= j ≤ m and ∪Wi = W for 1 ≤ i ≤ m.

In practical applications of ER, human experts who are
tasked with manual labeling of training examples often have
different levels of expertise [5]. As a result, the accuracy of
labeling will likely vary. Additionally, the cost of labeling
in real-world applications is often restricted by operational
constraints such as limited time or budget. To account for
these practical limitations of manual labeling, we consider
that a human oracle can be noisy [8], which simulates a non-
perfect manual labeling process, and that it is budget-limited.
Formally, a human oracle ζ over a weight vector set Wi is
a function ζ : Wi �→ {M,N}, where M and N indicate the
match and non-match status of a weight vector, respectively.
ζ takes a set of weight vectors as input, and based on manual
inspection of the attribute values of their corresponding records
assigns each weight vector with either M or N . ζ is also
associated with a pair 〈bud(ζ), acc(ζ)〉, where bud(ζ) > 0 is
a budget limit indicating the maximum total number, btot, of
weight vectors that can be labeled by ζ, and acc(ζ) ∈ [0, 1]
indicates the accuracy of the labels provided by ζ.

We view an ER classifier as a black-box that classifies
record pairs into the two classes of matches, M , and non-
matches, N , through their corresponding weight vectors [5].

More specifically, an ER classifier takes as input a weight
vector set Wi, and a subset of labeled (with M and N ) weight
vectors WT

i ⊆Wi as the training set. Once trained on WT
i , it

classifies the weight vectors in Wi \WT
i into the two subsets

(clusters) WM
i of matches and WN

i of non-matches, with
WM

i ∩WN
i = ∅. Any binary classifier, as previously used

for ER classification [5], can be employed in our approach.

Analogously, an ER selector in our work is also considered
as a black-box that, given a weight vector set Wi as input,
selects and returns a subset of Wi. The selection process
should return a set of weight vectors that are informative for
the set Wi and represent its characteristics. This selection
can be based on different characteristics of Wi, such as its
quality, diversity, size, or location. We discuss several selection
strategies for such an ER selector in Section III-B4.

Our interactive training data selection algorithm employs
an ER classifier L and an ER selector S, and generates a set
of clusters. Of these clusters, some are labeled as pure (as
defined in Section III-B2) if the majority (according to a user
set parameter) of weight vectors in a cluster are either in class
M or N . Otherwise, a cluster is labeled as fuzzy. We use
θ(L, S) to denote such a training data selection algorithm.

The ER training data selection problem we consider is
to develop an algorithm θ(L, S) that generates a high quality
training data set under a given budget constraint bud(ζ), i.e.,
Cθ(L, S) ≤ bud(ζ), where Cθ(L, S) is the labeling cost of
θ(L, S) referring to the number of labeled weight vectors used
in the training data selection process.

III. INTERACTIVE TRAINING DATA SET SELECTION

We next describe our algorithm in detail and then explain
its key components in Section III-B.

A. Algorithm Description
The detailed description of our algorithm is presented in

Algorithm 1. The input to the algorithm is a weight vector set
W, a set of functions and parameter settings, some of which
will be described in Section III-B. The output of the algorithm
are the final match and non-match training sets TM and TN ,
with TM ∩TN = ∅, as selected from the given input weight
vector set W (with TM ⊂W and TN ⊂W).

The main iteration of the algorithm (line 3 onwards) loops
as long as there are clusters in the queue Q and the total
oracle budget btot has not been fully used (b ≤ btot). In
each iteration, the first cluster in the queue, Wi, is processed
depending upon CLUSTER ORDER(). In line 5, based on the
match proportion πi we calculate ni, the number of examples
required for manual labeling for the selected cluster, as we
will discuss in Section III-B1. In the first iteration (with b = 0
indicating no manual labeling has been done, lines 6 and 7), the
INIT SELECT() function is used to select a first set of weight
vectors Si ⊆Wi to be manually classified by the oracle, while
in subsequent iterations (lines 8 and 9) the MAIN SELECT()
function is used. Both types of selection functions select ni

informative weight vectors Si from a cluster Wi.

The selected weight vectors in Si are then manually
classified by the human oracle ORACLE() (line 10) into a match
set TM

i and a non-match set TN
i . These are both added to the

final training sets in line 11, and removed from the cluster Wi

in line 12. The used budget is also increased in line 12 by the
number of manually classified weight vectors |Si| (ni).
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Algorithm 1: Adaptive and Interactive Training Data Set Selection for Entity Resolution (AdInTDS)

Input:
- Weight vector set: W - Cluster ordering function: CLUSTER ORDER() (as described in Section III-B3)
- Budget limit: btot - Initial selection function: INIT SELECT() (as described in Section III-B4)
- Minimum purity threshold: pmin - Main selection function: MAIN SELECT() (as described in Section III-B4)
- Sampling margin of error: e - Human oracle for labeling: ORACLE()
- Minimum size of a cluster: smin - Classifier function used for splitting clusters: CLASSIFIER()
Output:
- Match and non-match training sets TM and TN

1: TM = ∅;TN = ∅; b = 0 // Initialize training sets as empty, and initialize number of so far manually labeled examples
2: Q = [(W, 0.5)] // Initialize queue of clusters with all weight vectors and match proportion estimate πi = 0.5
3: while Q �= ∅ and b ≤ btot do: // As long as there are clusters in the queue and the budget has not been fully used
4: (Wi, πi) = CLUSTER ORDER(Q) // Get next cluster and its match proportion (according to queue ordering as described in Section III-B3)

5: ni = z2
α/2πi(1− πi)/e

2 // Calculate number of examples to select for manual labeling from cluster using Equation (1)

6: if b = 0 then: // First iteration (no manual labeling has so far been done)
7: Si = INIT SELECT(Wi, ni) // Initial selection of informative weight vectors, as discussed in Section III-B4
8: else: // Following iterations
9: Si = MAIN SELECT(Wi, ni) // Select informative weight vectors in later iterations, as discussed in Section III-B4

10: TM
i ,TN

i , pi = ORACLE(Si) // Manually label selected weight vectors and calculate purity using Equation (2)

11: TM = TM ∪TM
i ; TN = TN ∪TN

i // Add manually labeled weight vectors to training sets
12: Wi = Wi \ Si; b = b + |Si| // Remove manually labeled weight vectors from cluster, and update number of manual labels done so far
13: if pi ≥ pmin then: // Cluster is pure enough

14: if |TM
i | > |TN

i | then: // More matches than non-matches

15: TM = TM ∪Wi // Add whole cluster to match training set
16: else: // More non-matches than matches

17: TN = TN ∪Wi // Add whole cluster to non-match training set
18: else if |Wi| > smin and b ≤ btot then: // Cluster has low purity and is large enough, and budget is not exhausted, so split cluster further

19: if TM
i �= ∅ and TN

i �= ∅ then: // Cluster contains both matches and non-matches

20: CLASSIFIER.train(TM
i ,TN

i ) // Train classifier on manually labeled weight vectors

21: WM
i ,WN

i = CLASSIFIER.classify(Wi) // Classify current cluster, split into match and non-match sub-clusters

22: Q.append((WM
i , pi)); Q.append((WN

i , pi)) // Append new clusters together with purity of parent cluster to queue

23: return TM and TN

Besides the match and non-match sets, in line 10 the oracle
also returns the purity pi of the cluster, as will be described
further in Section III-B2. If the purity of the cluster is equal
to or higher than the minimum required cluster purity pmin

(i.e. pi ≥ pmin), then all weight vectors in the cluster are
added into one of the training sets (lines 14 to 17). On the
other hand, if the purity of the cluster is not high enough, the
cluster will be split further if (1) it is larger than the specified
minimum cluster size smin, (2) the total oracle budget btot has
not been fully used, and (3) both training sets TM

i and TN
i are

not empty (lines 18 to 21). If TM
i and TN

i are both not empty,
then a classifier is trained using these two training sets (line
20), and this classifier is used to split the cluster Wi into a
match and a non-match sub-cluster WM

i and WN
i . These two

sub-clusters are appended to the queue in line 22, together with
the purity pi of the parent cluster which is used as an estimate
of the match proportion in these two sub-clusters.

B. Key Algorithm Components
1) Sample Size Calculation: Because of the limited oracle

budget we aim to minimize the number of examples that need
to be selected for manual labeling per cluster while ensuring
there are enough examples to make informed decisions with
high confidence. The generally high class imbalance in weight
vector sets requires us to take the estimated proportion of
matches in a cluster into account when calculating the number
of samples required for a cluster of a certain size.

The required minimum sample size n for a certain confi-
dence level for a given estimated proportion of matches π of
the form π ± e (where the error margin e is specified by the
user) can be calculated as [15] (line 5 in Algorithm 1):

n =
z2α/2π(1− π)

e2
, (1)
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Fig. 2. Sample size n required for different estimates of the proportion of
matches π and margins of error e for a 95% confidence level.

where zα/2 is the critical value of the Normal distribution at
α/2. For example, for a confidence level of 95%, α = 0.05
and zα/2 = 1.96 [15].

Figure 2 illustrates the sample size n for different propor-
tions of matches π and different error margins e. As can be
seen, with larger values of π (i.e. class imbalances) smaller
sample sizes are required, while for smaller error margins e
the sample size increases significantly. In our algorithm, in the
first iteration we set π = 0.5 (line 2) as we do not know the
actual class imbalance, while in all following iterations we set
π as the purity of a cluster’s parent cluster as this provides us
with an estimate of a cluster’s class imbalance (line 22).

2) Cluster Purity: We calculate the purity pi of a cluster
Wi based on the labeling of the human oracle (line 10) using
the manually labeled weight vector set Si as the proportion of
labeled weight vectors that have the majority label:

pi = purity(Wi) = max

(
mi

mi + ui
,

ui

mi + ui

)
, (2)

where mi = |TM
i | and ui = |TN

i | with mi + ui = |Si|. For
a given minimum purity threshold pmin ∈ [0.5, 1], Wi is said
to be pure if purity(Wi) ≥ pmin; otherwise Wi is fuzzy. As
we split a weight vector set Wi into smaller clusters (line 21
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in the algorithm), the purity of the sub-clusters will increase if
the accuracy of the classifier is better than 50%, because the
classifier will split Wi such that matches are more likely in
sub-cluster WM

i and non-matches in WN
i .

3) Cluster Queue Ordering: With a limited budget, the hu-
man oracle can only label a restricted number (btot) of weight
vectors. The cluster Wi selected from the queue Q for manual
labeling at each iteration (line 4 of Algorithm 1), therefore,
should be the one that can provide the best improvement in
the quality and coverage of the training data. We consider the
following CLUSTER ORDER() methods:

FI-FO: In this method clusters are processed in the order
they are appended to Q (first-in first-out) in line 22. This means
no cluster characteristics are considered in the ordering [22].

MaxPuri: In each iteration this method selects the cluster
with the highest purity, as calculated using Equation 2 for its
parent cluster (line 10) because the purity of newly created
clusters (in line 21) is unknown and could only be established
by manual classification. Our hypothesis is that the cluster with
the highest purity will more likely achieve the pmin threshold
compared to clusters with lower purity, and given a limited
budget this cluster is therefore more likely added into the
training set than other clusters.

MinPuri: In this method we select the cluster with the
lowest purity based on the purity of its parent. Our hypothesis
is that clusters with low purity are the most ambiguous ones,
and in line with traditional active learning approaches for
ER [17], [19], splitting such ambiguous clusters to obtain
smaller clusters will likely lead to some of the most difficult
to classify weight vectors to be manually labeled.

Close01: This method follows the 01Init initial selection
method, where clusters closest to the [1]d (exact match) and
[0]d (totally different) corners are selected. Following earlier
work [3], our hypothesis is that clusters closest to these corners
will more likely be pure and therefore added to the training
data set. We calculate the centroid distance (average link) for
each cluster in Q to [1]d and [0]d and select the cluster with
the smallest distance to either of these.

CloseMid: In this method, we select the cluster farthest
away from both the [1]d and [0]d corners. Similar to the
MinPuri method, our hypothesis is that this selects clusters
for labeling that are most ambiguous, leading to a training set
that contains difficult to classify weight vectors.

Balanced: In this method we consider both the characteris-
tics of the clusters in Q and the current size of the training data
sets TM and TN . We follow the Close01 method, but select
the cluster closest to either the [1]d or [0]d corner such that the
resulting sizes of TM and TN become more balanced [12].

Sample: In this method, we select the cluster which has the
largest ratio of cluster size divided by the number of samples
required, i.e. argmaxi(|Wi|/ni). Our hypothesis is that this
cluster will give us the best splitting of the weight vector space
for the smallest manual labeling effort (ni).

Weighted: In this final method, we weight different criteria
to get an overall score for each cluster. Specifically, we calcu-
late si = ws ·ncsi+wp ·(pi−0.5)/0.5+wl ·(1−nssi)+wb ·sb
for each cluster in the queue Q, where ws, wp, wl, and
wb are the weights for cluster size, cluster purity, cluster
labeling sample size, and training set balance, respectively,
with ws + wp + wl + wb = 1. ncsi is the normalized cluster

size for Wi in the queue Q with regard to all clusters in Q,
and similarly nssi is the normalized sample size of Wi. The
balance score is calculated as sb = (|TM |/(|TM |+|TN |)−πi)
This balance score will be large for clusters which lead to a
more balanced training set.

4) Weight Vector Selection: The informativeness of the
weight vectors selected for manual labeling crucially influ-
ences the quality of the final training data set. The selection
functions used in Algorithm 1 (lines 7 and 9) need to be chosen
carefully. The aim of these functions is to select weight vectors
from a cluster Wi into Si that are able to represent the match
and non-match status of all weight vectors in Wi.

Following the selection methods evaluated in [9], to repre-
sent the diversity of the weight vectors in a cluster, we propose
three methods for INIT SELECT() (line 7 in Algorithm 1):

FarInit: Using the farthest-first clustering algorithm [11],
this method selects the ni (sample size) weight vectors in Wi

that are farthest apart from each other. The hypothesis is to
start with a set of vectors with the highest possible diversity.

01Init: Two records that have the same values in all d
compared attributes, leading to a weight vector o = [1]d, likely
refer to the same entity. Two records that have completely
different values in all attributes, with a weight vector z = [0]d,
very likely refer to two different entities. Following earlier
work on training data selection for ER [3], we initialize the
training set by selecting the ni/2 weight vectors in Wi closest
to o and the ni/2 vectors closest to z.

CorInit: This approach combines the ideas of both pre-
vious methods by selecting weight vectors with the highest
possible diversity in terms of all attributes in A. We select
the ni weight vectors that are closest to the corners of the d-
dimensional hypercube of similarity values {[v1, . . . , vd]|vi ∈
{0, 1} for i = 1, . . . , d}, where there are 2d corners in total.
This method requires ni ≥ k2d in order to select at least k
weight vectors per corner.

For the MAIN SELECT() function used in all iterations after
the first (line 9 in Algorithm 1) we consider the following two
methods to select weight vectors from a cluster Wi:

Far: Similar to the FarInit method, this method selects
weight vectors from Wi with the largest distances between
each other using the farthest-first clustering algorithm [11].

FarMed: This method first uses the Far method to select
ni−1 farthest apart weight vectors in Wi, and then selects the
medoid weight vector closest to the center of the cluster. The
hypothesis behind this approach is to obtain a better picture
of the distribution of matches and non-matches in a cluster by
considering both the boundary and the center of the cluster.

IV. EXPERIMENTS AND RESULTS

We conducted experiments on four data sets, as sum-
marized in Table I: ACM-DBLP and DBLP-Google Scholar
(DBLP-GS) [13], CORA1, and a North Carolina Voter Regis-
tration (NCVR) database2. We used the Febrl system for pair-
wise comparisons [4]. For each data set we employed several
blocking keys and various string comparison functions [5]. The
output of this step are sets of weight vectors of the compared
record pairs and their true match and non-match labels.

1Available from: http://secondstring.sourceforge.net
2Available from: ftp://alt.ncsbe.gov/data/
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TABLE I. CHARACTERISTICS OF DATA SETS USED IN EXPERIMENTS.

Data set Number of Number of unique M : N class Time for pair-wise Attributes used for blocking /
name(s) records weight vectors imbalance comparisons Dimensionality of weight vectors

ACM-DBLP [13] 2,616 / 2,294 687,910 1 : 1785 79.2 sec Title, venue, authors, year / 3
DBLP-GS [13] 2,616 / 64,263 8,124,258 1 : 3273 868.3 sec Title, venue, authors, year / 3

CORA1 1,295 286,141 1 : 16 47.3 sec Title, venue, authors, publisher, year / 4

NCVR2 224,073 / 224,061 3,495,580 1 : 27 363.6 sec First/last name, street, zip code, city / 5
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Fig. 3. F-measure against (a) minimum purity threshold, (b) oracle accuracy, (c) budget, (d) sampling error margin, (e) different initial and main selection
methods, (f) different queue ordering methods, and (g) comparison with baseline approaches. Note the different y-axis scales.

We used the following parameter variations in our exper-
iments: minimum purity pmin = [0.95, 0.9, 0.85, 0.8, 0.75],
oracle accuracy acc(ζ) = [1.0, 0.95, 0.9, 0.85, 0.8, 0.75],
total budget btot = [100, 200, 500, 1000, 2000, 5000, 10000],
sample error margin e = [0.05, 0.1, 0.15, 0.2], and all selection
and cluster queue ordering methods discussed above. Default
parameter values, that gave us the best results based on an
extensive set of initial experiments, are shown in bold font.
The classifier used for splitting weight vectors (lines 20 and
21 in Algorithm 1) was a decision tree with either entropy or
information gain [16] as attribute selection measure.

We evaluated the effectiveness of our approach using F-
measure [5]. We compared our approach (which we refer to
as AdInTDS) with: (1) fully supervised decision tree (DTree-
S), (2) fully supervised SVM with linear and polynomial
kernels (SVM-S), (3) unsupervised k-nearest neighbor clus-
tering (kNN-US) [3], (4) unsupervised k-means clustering
(kMeans-US), and (5) unsupervised farthest-first clustering
(Far-US) [4]. We also compared our approach with a state-of-
the-art active learning approach for ER as proposed by Bellare
et al. [2] (CVHull). Our approach and all baseline approaches
were implemented in Python 2.7.3 (except CVHull which was
implemented in C++), and we ran all experiments on a Ubuntu
14.04 server with 2.4 GHz CPUs and 128 GBytes of memory.
The programs and data sets are available from the authors.

We investigated how different values for the main param-
eters of our approach (i.e., pmin, acc(ζ), btot, and e) and
the INIT SELECT(), MAIN SELECT() and CLUSTER ORDER()
methods determine the quality of the ER classification results.
As shown in Figure 3 (a), F-measure increases with larger min-
imum purity thresholds since higher minimum purity leads to
clusters of higher quality, which will improve the classification
results. As expected, the F-measure also gets better when the
accuracy of the oracle increases (Figure 3 (b)), where only a

perfect labeling process leads to high quality results. These two
parameters, minimum purity and oracle accuracy, are the ones
which influence the performance of our approach the most.

Larger budgets (btot) allow more weight vectors to be
manually labeled, resulting in small increments of F-measure
results, as shown in Figure 3 (c). An interesting aspect of
our approach is that an F-measure ≥ 0.8 is achieved on all
data sets even with a small budget of btot = 500. The sample
error margin results, shown in Figure 3 (d), indicate that our
approach is quite robust with regard to this parameter.

The F-measure results for different selection methods are
presented in Figure 3 (e). The three initial selection methods
perform well with average F-measure of 0.8 or above on
all four data sets. The two main selection methods Far and
FarMed also perform similarly. In Figure 3 (f) we show how
different orderings of clusters to be selected for labeling affect
the quality of the generated training data set. The Balanced,
Sample and Weighted methods outperform the other methods
in terms of higher F-measure on most data sets.

Finally, we compared our approach with the six baseline
approaches described above. The F-measure results in Figure 3
(g) illustrate that our approach can achieve significantly higher
results compared to unsupervised approaches, and results com-
parable to the fully supervised approaches and to CVHull.
While CVHull achieved very high F-measure results on all
data sets (however with quite large variations), this approach
does not consider a limited budget and generally required a
larger number of manual labels to achieve its high results.

In Table II, we show F-measure results and corresponding
budget requirements of our approach compared with published
results of two other active learning approaches for ER [2],
[10] on the DBLP-GS and CORA data sets. As can be seen,
our approach performs comparatively and it achieves higher
or similar F-measure results for a smaller budget.
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TABLE II. COMPARISON OF F-MEASURE RESULTS FOR CERTAIN

BUDGETS WITH OTHER PUBLISHED ACTIVE LEARNING ER WORK.

Method Budget F-measure Budget F-measure
DBLP-GS data set [13] ACM-DBLP data set [13]

Bellare et al. (CVHull) [2] 860–940 0.92 400–470 0.965
Gokhale et al. [10] 2,082 0.921 – –

AdInTDS 200 0.938 200 0.938
AdInTDS 500 0.945 500 0.956
AdInTDS 1,000 0.946 1,000 0.957

V. RELATED WORK

Early work on active learning for ER was based on a
committee of classifiers that were iteratively refined using the
most ambiguous examples for labeling [17], [19]. An active
selection method of similar pairs was investigated in [12] to
select a balanced number of matches and non-matches.

More recent work [1], [2] has concentrated on the objective
of learning quality, such that given a minimum precision
specified by the user, a classifier was learned to achieve a
precision greater than this minimum and a recall close to the
best possible. Efficiency of active learning for ER has been
addressed using two techniques: (1) incorporating blocking
or indexing [5] and (2) optimizing active learning algorithms
under certain distribution assumptions, such as monotonicity of
similarities [1], [6] or low noise in the data [2]. A hierarchical
clustering approach for active learning, and the bias introduced
by this approach, have been discussed in [7].

A graph-based active name disambiguation technique was
proposed in [23] where the aim was to identify which name
mentions within sets of documents refer to the same person. A
similar approach is CrowdER [20]. In both approaches, a small
number of highly similar pairs were used to train an initial
classifier, followed by the manual labeling of ambiguous pairs
by a crowd (non-experts) system. Neither of these approaches
however considered a limited budget nor imperfect labeling,
which have to be expected when using crowd-sourcing.

Two approaches that consider noisy labels and budget
constraints for selecting examples to be manually labeled in
crowd-sourced applications have been proposed in [14]. A
strategy for managing the limited labeling budget was proposed
in [21] to ask questions in decreasing order of pair-wise
similarities. Several instance selection strategies for active
learning in imbalanced class problems have been evaluated in
a recent study [9], where the authors found that no selection
method outperformed all others on different data sets.

A number of studies have attempted to control label-
ing noise [8]. Repeated labeling strategies were investigated
in [18], while [24] proposed an approach to select the most
reliable oracle among multiple noisy oracles for labeling.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an adaptive and interactive training data
selection approach for ER that significantly reduces labeling
costs while generating training data, and that can achieve high
matching quality comparable to fully supervised training.

While crowd-sourcing has shown to provide powerful solu-
tions for ER [10], [20], [23], many applications of ER deal with
the matching of sensitive data (like medical records) where
privacy and confidentiality concerns prohibit the use of crowd
services for manual labeling. Therefore, approaches such as
ours will continue to play an important role for efficiently
generating high quality training data for ER.

As future work, we plan to incorporate the accuracy of an
oracle into the calculation of purity as well as the number of
samples required, and to develop ways to jointly optimize the
selection and ordering problems with the aim to maximize the
quality of training data generated by our approach.
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