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In this paper we investigate data migration fundamentals from a theoretical perspective.
Following the framework of abstract interpretation, we first discuss models and schemata at
different levels of abstraction to establish a Galois connection between abstract and concrete
models. A legacy kernel is discovered at a high-level abstraction which consolidates heter-
ogeneous data sources in a legacy system.We then show that migration transformations can be
specified via the composition of two subclasses of transformations: property-preserving trans-
formations and property-enhancing transformations. By defining the notions of refinement
correctness for property-preserving and property-enhancing transformations, we develop a
formal framework for refining transformations occurring in the process of data migration. In
order to improve efficiency of static analysis, we further introduce an approach of verifying
transformations by approximating abstraction relative to properties of interest, meanwhile
preserving the refinement correctness as accurately as possible. The results of this paper lay
down a theoretical foundation for developing data migration tools and techniques.
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1. Introduction

Modernising legacy systems is one of the most challenging problems we often face when engineering information systems
[7,8,27,30]. With new technologies emerging and application domains evolving, legacy systems need to be migrated into new
systems at some point, to support enhanced functionality and re-engineered business models. Data migration, as a fundamental
aspect of projects on modernising legacy systems, has been recognised to be a difficult task that may result in failed projects as a
whole [23,38]. Industry survey results [23] reveal that the data migration market is rapidly growing and business companies
annually invest billions of dollars in data migration tasks (e.g., over 5 bn from the top 2000 global companies in 2007);
nevertheless, only 16% of projects successfully accomplish their data migration tasks (i.e., being delivered on time and on budget)
— 64% of data migration projects failed to be delivered on time and 37% were over-budget. A main reason for time and budget
overrun is the lack of a well-defined methodology that can help handle the complexity of data migration tasks.

In general data migration is the process of moving data from legacy data sources of a legacy system into new data sources of a
target system, in which legacy and new systems have different data structures. There are several issues that may considerably
complicate this process. First, legacy systems often have a number of heterogeneous data sources designed by using different data
modelling tools or interpreted under different semantics. This requires a thorough understanding of legacy data sources from
various aspects, such as explicit or implicit data constraints, interrelationships across different data sources, and data availability.
Second, legacy systems may have inaccurate, incomplete, duplicate or inconsistent data. On the other side, new systems often
require additional semantic constraints on data after being migrated. Thus, bringing the quality of data up to the standard of new
systems can be costly and time-consuming. A previous study [1] showed that 62% of data migration projects have significant data
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quality problems in new systems. Third, many data migration tasks such as data profiling, validating, and cleansing need to be
iteratively executed in a project and specification changes frequently happen in order to repair detected problems. It is estimated
[1] that 90% of the initial specifications change and over 25% of the specifications change more than once during the life of a data
migration project. These issues highlight the importance of methodologies and best practice approaches that can be used to guide
through the process of data migration.

In this paperwe investigate datamigration fundamentals froma theoretical perspective. In particular, we aim to develop a general
refinement scheme for migration transformations, linking high-level specifications to executable codes in a way practitioners can
systematically verify properties of datamigration. Our study provides answers to the following questions arising from datamigration
in practice.

• How can we control data quality within a data migration process to prevent the propagation of “dirty” data into a new system,
which often requires external data sources to be supplied for cleansing and enriching data?

• How can we react to specification changes in a way that keeps track of all relevant aspects on which the changes may impact,
such as inconsistencies between specifications, interrelated data and correctness of implementation?

• How can we compare legacy data sources with the migrated data in new systems to ensure that data was migrated properly in
terms of desired data semantics and integrity?

Data migration is usually undertaken as part of a larger project in modernising legacy systems (e.g., a system migration or
upgrade project). In such cases, transformations on data may lead to transformations on views, functionality and user interfaces
[27]. Nevertheless, we keep the scope of this paper restricted to transformations on datamodels and their corresponding schemata.

1.1. Our contributions

The first contribution in this paper is the understanding of links between abstract and concrete models by extending Galois
connections studied in abstract interpretation [15,35]. We first formalise model space to capture models at the same level of
abstraction, in which models are partially ordered in terms of a specific logic for expressing queries. This provides us the ability to
comparemodels thatmay associatewith different schemata in a similar way that relative information capacity [24] was studied for
handling semantic heterogeneity. A Galois connection between twomodel spaces at different levels of abstraction is established by
specifying abstraction and concretization functions that translate concrete models into abstract models and vice versa.

From a traditional perspective, the process of data migration involves three stages: Extract, Transform, and Load (ETL).
However, different from a conventional ETL used for data warehousing that only deals with analytic data, ETL in data migration
has to handle data in an operational environment, which is much more complicated. Therefore, our second contribution is the
formal development of the following ETL processes for data migration.

• Extract: A legacy kernel is first “extracted” at a high-level of abstraction, consolidating heterogeneous data sources in a legacy
system.

• Transform: We then “transform” a legacy kernel into a new kernel by specifying migration transformations that may involve
validating, cleansing and mapping data.

• Load: As “loading” a new kernel into targeted data sources is often straightforward, we will omit the discussion of this stage in
this paper.

We also analyse specific migration strategies [7,8,27] that can be applied in the ETL process of data migration.
The third contribution of this paper is a general refinement scheme that specifies the refinement correctness in terms of two

fundamental subclasses of migration transformations — property-preserving transformations and property-enhancing trans-
formations. By using our refinement scheme, the above ETL processes can be stepwise refined from high-level abstractions into
real-life implementations. As illustrated in Fig. 1, models in an abstract transformation (e.g., Mlegacykernel and Mnewkernel) can be
Fig. 1. ETL in data migrations.
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refined into more concrete models (e.g.,M⁎legacykernel andM⁎newkernel) of the corresponding transformation at a concrete level, and
similarly, computation segments of interest (e.g., extract, transform and load) at an abstract level can be refined into the
corresponding computation segments (e.g., extract⁎, transform⁎ and load⁎) at a concrete level.

Our last contribution is to extend the generic proof method proposed by Schellhorn [32] to verify properties of transformations
in real-life implementations. The key idea is to approximate abstraction of transformations in real-life implementations relative to
properties of interest in a way of preserving the refinement correctness as accurately as possible. In doing so, this generic proof
method can provide us with the ability to control complexity of data migration tasks and develop efficient verification techniques.

1.2. Outline

The rest of the paper is structured as follows. Section 2 presents a running example. We then introduce the definitions for
schema and model in Section 3. In Section 4 the connections between abstract and concrete models are exploited as Galois
connections. Section 5 presents the definitions for migration transformations and their two fundamental subclasses: property-
preserving transformations and property-enhancing transformations. After that, we consider three migration strategies in
Section 6 and the issues of refinement, abstraction and verification in Section 7. In particular, we introduce the notions of
refinement correctness for property-preserving and property-enhancing transformations, discuss the simplification of abstraction
and propose a generic proofmethod for verifying properties of migration transformation. After presenting a brief discussion on the
related work in Section 8, we conclude the paper in Section 9.

2. A running example

We will use the following running example to illustrate the theoretical framework and concepts developed in this paper.
Consider a shipping company that needs to migrate two legacy transport applications into a new transport system. We refer

the data sources of two legacy transport applications as RDMA and OOB, respectively. RDMA is associated with a relational schema,
while OOB has an object-oriented schema. The initial analysis by using data profiling tools shows that the design information of the
legacy data sources RDMA and OOB is out-of-date and incomplete due to various reasons. In order to improve data quality in the new
system, the shipping company requests three external insurance data sources (with possibly different data formats) from
insurance companies for cleansing up the insurance information, and six external transport data sources (also with possibly
different data formats) from associated transport companies for cleansing up the transport carrier data stored in the legacy data
sources.

Assume that the shipping company chooses the ER modelling to build abstract models for data sources. The original design
information of two legacy data sources needs to be recovered as much as possible before representing them as abstract models at
a high-level of abstraction. From a traditional viewpoint, approaches for database reverse engineering [20] can be used for this
purpose, which may involve two successive sub-steps — based on the analysis of implementation at the physical level, the design
of data sources is first recovered as a logical schema then transformed into a conceptual schema.

Suppose that RDMA is abstracted to themodel ERAwith the schema SA depicted in Fig. 2while OOB is abstracted to themodel ERBwith
the schema SB depicted in Fig. 3. In addition, Figs. 4 and 5 present the ER schemata Slegacy and Snew of the legacy kernel for the legacy
data sources and of the new kernel for the new transport system, respectively, determined by the shipping company. Although the
legacy data sources RDMA and OOB are heterogeneous data models, their ER models can effectively serve as a bridge to represent
heterogeneous legacy data sources in a unifying datamodelling framework, i.e., at the same level of abstraction. The formal definitions
of schema, model and connections between models at different levels of abstraction will be presented in Sections 3 and 4.

Then the shipping company starts to design transformations in the ETL process of data migration. Same as software design,
migration transformations are designed by refining a macroscopic statement of rules at a high-level of abstraction in a stepwise
fashion, until executable operations are reached. In each step, more details are added into the specification of a transformation.
Fig. 2. SA — an ER schema of legacy data source RDMA.



Fig. 3. SB — an ER schema of legacy data source OOB.
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In the following we use abstract state machines (ASMs) — a practical and scientifically well-founded specification language
[10] to illustrate two transformations: the first is to extract data from the legacy data source RDMA into the legacy kernel (i.e., in
Example 1), and the second is to clean up insurance data in the legacy kernel (i.e., in Example 2). Correspondingly, they represent
two basic building blocks for migration transformations: i) property-preserving transformations preserve data and their desired
semantics among models that may have different schemas; ii) property-enhancing transformations enhance the semantics of
data in a given model by imposing new properties, which leads to improved data quality. The formal definitions of ASMs and
transformations will be presented in Section 5.

Example 1. The following transformation PA serves as a blueprint for designing how data should be extracted from the legacy
data source RDMA into the legacy kernel.
seq
forall x with x∈TRUCK do

EXTRACTEDTOCARRIER(x, “truck”, “A”)

enddo
forall x with x∈VESSEL do

EXTRACTEDTOCARRIER(x, “vessel”, “A”)

enddo
forall x with x∈TRAIN do

EXTRACTEDTOCARRIER(x, “train”, “A”)

enddo
forall x with x∈SHIPMENT do

EXTRACTEDTOSHIPMENT(x, “A”)

enddo
forall x with x∈TRANSPORT do

EXTRACTEDTOTRANSPORT(x, “A”)

enddo
forall x with x∈ INSURANCE do

EXTRACTEDTOINSURANCE(x)
enddo

endseq

There are two properties that PA must satisfy: 1) each forall rule extracts out all objects of one type in SA and stores them in
Slegacy; 2) the model over Slegacy must maintain the constraints defined on these objects over SA.
Fig. 4. Slegacy — an ER schema of legacy kernel.



Fig. 5. Snew — an ER schema of new kernel.
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Suppose that we want to reflect a design decision on EXTRACTEDTOCARRIER of PA, which leads to a refined transformation P⁎A by
replacing EXTRACTEDTOCARRIER(x,y,z) of PA with the following rule (assume that trains in RDMA are only provided by “NZ Trans”).

par
if y=“truck”⋀z=“A” then

seq
o :=SEARCHTRANSPORTCOMPANY(x.NO, “NZ Trans”)
INSERTINTOCARRIER(x.NO, “truck”, o.TYPE, x.PRODYEAR, “NZ Trans”, z)

endseq
endif
if y=“vessel”⋀z=“A” then

seq
o :=SEARCHTRANSPORTCOMPANY(x.NAME, x.OWNER)

INSERTINTOCARRIER(x.NAME, “vessel”, x.TYPE, o.PRODYEAR, x.OWNER, z)
endseq

endif
if y=“train”⋀z=“A” then

seq
o :=SEARCHTRANSPORTCOMPANY(x.NUM, x.COMPANYNAME)
INSERTINTOCARRIER(x.NUM, “train”, “ ”, o.YEAR, x.COMPANYNAME, z)

endseq
endif
if z=“B” then

…

endif
endpar
Truck
No ProdYear
tr1 2001
tr2 2003

Vessel
Name Type Owner
v200 tanker Arina

Train
Num CompanyName
t77 KiwiRail
t88 CSXCorporation

Shipment
No Shipper Receiver Goods
sh1 BY Trading Co. J&J Warehouse, Dunedin household
sh2 Mitsubishi  Motors Automoto Ltd, Wellington Cars
sh1 BY TradingCo. Warehouse Dunedin household

Transport
No ShipNo TNo VName TNum
ts1 sh1 tr1 v200
ts2 sh2 tr2 t88

Insurance
No TranNo Company Category
in1 ts1 State Total Loss Coverage
in2 ts2 AA Basic Risk
in3 ts2 P.A.F. All Risk Coverage

Fig. 6. MA — a simple relational model of SA in Fig. 2.
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PA⁎ enriches data by adding relevant information from external transport data sources into the legacy kernel. Similarly, we can
further refine EXTRACTEDTOSHIPMENT(x,y), EXTRACTEDTOTRANSPORT(x,y) and EXTRACTEDTOINSURANCE(x) until the resulting transformation is
executable. Given the relational modelMA of SA in Fig. 6, the transformation PA can extract out data inMA and transform them into
ME as shown in Fig. 7. □

Example 2. Suppose that we want to use the external insurance data sources provided by insurance companies to validate and
enrich insurance data in the legacy kernel of our running example.
• ϕ1: Each insurance in INSURANCE must be found in one of three external insurance data sources;
• ϕ2: The details of each insurance in INSURANCE must match the information found in three external insurance data sources.

Moreover, we add two constraints on Slegacy to filter out “dirty data”:

• ϕ3: Each transport must have at least one insurance.
• ϕ4: Each transport has no more than one insurance in the same category.

The following transformation PB describes a blueprint for cleaning up insurance data in the legacy kernel, consisting of two steps:
a) identifying dirty data in accordance with each constraint, then b) applying different cleansing strategies CLEANUPINSURANCEi(x) for
dirty data corresponding to different constraints.

seq
– Clean up invalid insurances violating ϕ1

forall x with INSURANCE(x)∧ INSURANCECOMPANIES(x)
do

CLEANUPINSURANCE1(x)
enddo

– Clean up incorrect insurances violating ϕ2

forall x with INSURANCE(x) ∧ INSURANCECOMPANIES(x)∧ MATCH(x)
do

CLEANUPINSURANCE2(x)
enddo
Carrier

Code Type Subtype ProdYear OwnerName Source

tr1 truck flatbed 2001 NZTrans A
tr2 truck refrigerator 2003 NZTrans A

v200 vessel tanker 2000 Arina A
t77 train null 2007 KiwiRail A
t88 train null 1998 CSX Corporation A

Shipment

No Shipper Receiver Goods Source

sh1 BY Trading Co. J&J Warehouse, Dunedin household A
sh2 Mitsubishi Motors Automoto Ltd, Wellington Cars A
sh1 BY Trading Co. Warehouse Dunedin household A

Transport

No ShipNo CarrierCode CarrierType

ts1 sh1 tr1 truck
ts1 sh1 v200 vessel
ts1 sh1 null train
ts2 sh2 tr2 truck
ts2 sh2 null vessel
ts2 sh2 t88 train

Insurance

No TranNo Category CoName CompanyAddress

in1 ts1 Total LossCoverage State 35 King St, Dunedin
in2 ts2 Basic Risk AA 6 Kiler Place, Auckland
in3 ts2 All Risk Coverage P.A.F. 9 Arnold St, Wellington

Fig. 7. ME — a simple relational model of Slegacy in Fig. 4.
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– Clean up missing insurances violating ϕ3

forall x with TRANSPORT(x)∧ INSURANCED(x)
do

CLEANUPINSURANCE3(x)
enddo

– Clean up multiple insurances paid for the same transport violating ϕ4

forall x with TRANSPORT(x)∧MULTIPLEINSURANCES(x)
do

CLEANUPINSURANCE4(x)
enddo

endseq

To ensure the desired data quality after this data cleaning task, PB must satisfy two properties: 1) every model obtained after
executing the kth forall rulemust satisfy the conditionφk, whereφ1=ϕ1,φ2=ϕ1⋀ϕ2,φ3=ϕ1⋀ϕ2⋀ϕ3 andφ4=ϕ1⋀ϕ2⋀ϕ3⋀ϕ4;
2) each rule CLEANUPINSURANCEi(x) is only allowed to delete objects x or the ones that refer to x.

Suppose that we want to refine CLEANUPINSURANCEi(x) to reflect more specific strategies for dirty data cleaning. The refined
transformation PB⁎ is obtained by replacing CLEANUPINSURANCEi(x) (1≤ i≤4) of PB as follows.

• CLEANUPINSURANCE1(x)=DELETEINSURANCE(x)
• CLEANUPINSURANCE2(x) =

seq
DELETEINSURANCE(x)
output := FETCHRECORDSFROMINSURANCECOMPANY(x, 1)
forall y with y∈output do

INSERTINSURANCE(y)
enddo

endseq
• CLEANUPINSURANCE3(x) =

Seq
output := FETCHRECORDFROMINSURANCECOMPANY(x, 2)
forall y with y∈output do

INSERTINSURANCE(y)
enddo

endseq
• CLEANUPINSURANCE4(x) =

Seq
output := FINDINSURNACE(x)
DELETETRANSPORT(x)
forall y with y∈output do

DELETEINSURANCE(y)
enddo
INSERTDIRTYINSURANCE(x, y)

endseq

where FETCHRECORDFROMINSURANCECOMPANY(x, status) =

if status=1 then
FETCHBYINSURANCECODE

endif if
if status=2 then

FETCHBYTRANSACTIONNO

endif

In PB⁎, invalid insurances with respect to ϕ1 are deleted from INSURANCE, dirty data with respect to ϕ2 and ϕ3 are cleaned up by
using external insurance data sources, e.g., in the refinement of CLEANUPINSURANCE3(x) new insurances from external insurance data
sources are inserted into INSURANCE. These added insurances may be dirty with respect to ϕ4; nevertheless, any dirty data with
respect to ϕ4 can be cleaned up in the refined CLEANUPINSURANCE4(x), which removes the related transports and their insurances
from TRANSPORT and INSURANCE into a place specific for holding dirty data under review. □
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In both the examples described above, we start with specifying a transformation at a high-level abstraction in which desired
properties are made explicitly, then refine the transformation until it is executable. Apparently, there are many ways of refining a
transformation.How canwedecidewhether a refinement is correct in terms of certain desired properties? In Section 7wewill develop
a general refinement scheme and the notions of correctness for these two subclasses of migration transformations. They can support a
disciplined use of refinements so as to correctly reflect intended design decisions. Because the specification of a transformation often
changes in a data migration task, maintaining the links between high-level specifications and their refinements become particularly
important for systematically verifying properties of data migration. When such links are accurately maintained, the impacts of a
specification change can be easily verified on the high-level specifications, meanwhile the correct refinement can ensure that the
verified properties are actually preserved in the corresponding executable transformations at the implementation level.

3. Schemata and models

In a datamigration project, data sources of legacy andnewsystems are often designed by using different datamodelling approaches.
Nevertheless, components supported by many data modelling approaches can be viewed as objects, e.g., entities and relationships in
entity–relationship models, tuples in relational data models, and elements in XML. In this paper we take an object-based view on
models, which gives us the flexibility to relate different models to each other, regardless of their levels of abstraction.

Let us fix a familyD of basic domains and a set C of constructors (e.g., record, list, set, multiset, and array). Then an object type
over (D, C) can be inductively defined by applying a subset of constructors in C over a subset of basic domains inD. For example, a
relation can be regarded as an object type defined by applying a record constructor over a finite number of basic domains. Let τ be
an object type. Then an object of τ is a mapping that assigns for each basic domain of τ a value from that domain.

In order to capture additional semantic restrictions on data models, we need a suitable logic1 L for expressing their properties
(i.e., constraints). We use the notations F(L, T) (or simply F(T) when there is no ambiguity about L) referring to the set of
formulae of L inductively defined by applying all rules of L for building formulae over a set T of object types, and fr(φ) referring to
the set of free variables in formula φ. A formula φwith fr(φ)=∅ is called Boolean formula. A constraint over T is a Boolean formula
φ∈ F(L, T) of the form ∀x1,…,xn. (ψ1⇒ψ2), where fr(ψ1)∪ fr(ψ2)={x1,…,xn}. In the following we exemplify several types of
constraints existing in most relational data models [12], where, for simplicity, we choose the first-order logic.

• Primary key constraints: for relation r(A1,…,An) with the primary key on attribute A1, we have
1 The
cardina
terms [2
∀x1;…; xn; y1;…; yn: r x1;…; xnð Þ∧r y1;…; ynð Þ ∧∨1 b i ≤ nxi≠yið Þ⇒x1≠y1ð Þ:
• Foreign key constraints: for relation r1(A1,…,An) with the primary key on attribute A1, and relation r2(A1′,…,Am′) with a foreign
key on attribute A1′ referring to A1 of r1, we have
∀y1;…; ym: r2 y1;…; ymð Þ⇒∃x1;…; xn: r1 x1;…; xnð Þ∧x1 ¼ y1ð Þð Þ:
• Check constraints: for relation r1(A1,…,An) with a condition on attribute A1 so that each value of A1 needs to satisfy a formula φ,
we have
∀x1;…; xn: r x1;…; xnð Þ⇒φð Þ:
• Functional dependencies: for relation r1(A1,…,An) with a functional dependency A1→A2, we have
∀x1;…; xn; y1;…; yn: r x1;…; xnð Þ∧r y1;…; ynð Þ∧x1 ¼ y1ð Þ⇒x2 ¼ y2ð Þ:
A schema S=(T, Σ) consists of a finite, non-empty set T of object types and a finite, possibly empty set Σ of constraints such
that ΣpF(L, T). A model over schema (T, ∅) consists of a finite, non-empty set of objects whose types are in T. We use [[φ]]M

referring to the interpretation of a formula φ in a modelM. A constraint φ∈F(L, T) is said to be satisfied by a modelM over schema
(T,∅), denoted asM⊨φ, if [[φ]]M is true. Amodel over schema (T, Σ) is a model over schema (T,∅), satisfying every constraint in
Σ. For convenience, we use the notations M(S) to denote the set of all models over schema S and M(T) to denote the set of all
models over schema S=(T, ∅). Clearly, M(S)pM(T) for S=(T, Σ), and M(S)=M(T) if Σ=∅.

Example 3. The schema SA as shown in Fig. 2 has the object types TRUCK, VESSEL, TRAIN, SHIPMENT TRANSPORT and INSURANCE, and the
following constraints:
• φ1: the unique constraint on NO of TRUCK:
∀x1; x2; y1; y2⋅ TRUCK x1; x2ð Þ∧TRUCK y1; y2ð Þ∧x2≠y2ð Þ⇒x1≠y1ð Þ;
suitable logic is determined by what kinds of constraints we want to capture. For example, first-order logic can express many integrity constraints but not
lity constraints. However, cardinality constraints can be captured by a more expressive logic such as fixed point logic with counting quantifiers or counting
6,29]. We may also use Monadic second-order logic [14] to define constraints of XML tree structures.
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• φ2: the foreign key constraint on INSURANCE:
∀x1; x2; x3; x4⋅ INSURANCE x1; x2; x3; x4ð Þ⇒∃y1; y2; y3; y4⋅TRANSPORT x2; y1; y2; y3; y4ð Þð Þ:
Hence, SA=({TRUCK, VESSEL, TRAIN, SHIPMENT, TRANSPORT, INSURANCE}, {φ1, φ2}). Every model over SA must satisfy the constraints φ1

and φ2. □

4. Levels of abstraction

Each model is represented at a certain level of abstraction. In this section, we discuss relationships between models at the
same level of abstraction, and connections between model spaces at different levels of abstraction.

4.1. Model space

Analogous to the logic L used for expressing constraints, we can choose a logic for expressing queries. When such a logic L′ is
determined, models at the same level of abstraction can be regarded as being partially ordered. We formalise this by using the
notion of reflecting relation.

Definition 1. Fix a logic L suitable for expressing queries. Let M1 and M2 be two models over the schemata S1=(T1, Σ1) and S2=
(T2, Σ2), respectively. ThenM1 reflects M2 with respect to L, denoted asM2⪯ LM1 (Lmay be omitted when there is no ambiguity), if,
for any query φ2∈F(L, T2) with fr(φ2)={x1,…,xn}, whenever M2⊨∃x1,…,xn.φ2, there exists a formula φ1∈F(L, T1) such that
φ1½ �½ �M1 ¼ φ2½ �½ �M2 holds.

Note that, M1 and M2 in the above definition may associate with different schemata. It is possible that T1≠T2 or Σ1≠Σ2.
Intuitively, ifM2⪯ LM1, then it means that, regardless of whether or notM1 andM2 have the same schema, data captured by using
a logical formula of L over modelM1 can be equally captured by using a logical formula of L over modelM2. However, this does not
generally hold the other way round. The reflecting relation provides us the ability to compare models that may associate with
different schemata in a similar way that relative information capacity was studied for handling semantic heterogeneity [24,25,28].
Since a reflecting relation is defined with respect to a specific logic, given two different logics L1 and L2, M2⪯L1M1 does not
necessarily imply M2⪯L2M1 unless L1 is strictly expressive than L2.

Example 4. Consider the modelsMA andME shown in Figs. 6 and 7. We haveMA⪯ LME when L is chosen to be the first-order logic.
It means that for every first-order query overMA, we can always obtain the same query result by using a first-order query overME.
This can be alternatively illustrated by constructing MA using the following queries over ME.

• QTRUCK(x1, x2)=∃y1, y2·CARRIER(x1, “truck”, y1, x2, y2, “A”)
• QVESSEL(x1, x2, x3)=∃y1·CARRIER(x1, “vessel”, x2, y1, x3, “A”)
• QTRAIN(x1, x2)=∃y1, y2·CARRIER(x1, “train”, y1, y2, x2, “A”)
• QSHIPMENT(x1, x2, x3, x4)=SHIPMENT(x1, x2, x3, x4, “A”)
• QTRANSPORT(x, y, z1, z2, z3)=TRANSPORT(x, y, z1 “truck”)∧TRANSPORT(x, y, z2, “vessel”)∧TRANSPORT(x, y, z3, “train”)
• QINSURANCE(x1, x2, x4, x3)=∃x5· INSURANCE(x1, x2, x3, x4, x5) □

For models at the same level of abstraction, we use the notion of model space to describe their relative data capacity in terms
of a specific logic.

Definition 2. A model space M is a lattice M;⪯;⊥;⊤;⊔;⊓ð Þ consisting of

• a set M of models,
• a reflecting relation ⪯ defined on M with respect to a certain logic,
• a greatest model ⊤ satisfying M⪯⊤ and a smallest model ⊥ satisfying ⊥⪯M for all M∈M,
• a least upper bound operation ⊔ and a greatest lower bound operation ⊓ such that, for any M′pM, there exist Mmeet and
Mjoin∈M satisfying Mmeet⪯⊓M′ and ⊔M′⪯Mjoin.

Thus, given a subset M′pM, a least upper bound for M′ is a model Mjoin that reflects every model in M′. Conversely, a
greatest lower bound for M′ is a model Mmeet that is reflected by every model in M′.

4.2. Abstract and concrete models

Now we consider models that are defined at two different levels of abstraction — abstract models and concrete models. The
notions of “abstract” and “concrete” are relative, depending on which levels are chosen. For example, models at the logical level
can be seen as being “abstract”when compared to models at the physical level, but being “concrete”when compared to models at
the conceptual level.
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Following the framework of abstract interpretation [15,35], we establish the connection between abstract and concrete
models as a Galois connection. Let A ¼ MA;⪯A;⊥;⊤;⊔;⊓ð Þ be an abstract model space, whereMA is a set of abstract models and
⪯A is a reflecting relation with respect to a logic for abstract models. Analogously, let C ¼ MC ;⪯C ;⊥;⊤;⊔′;p′

� �
be a concrete

model space that corresponds to A, where MC is a set of concrete models at a lower level of abstraction and ⪯C is a reflecting
relation defined over MC. Then there is a Galois connection between A and ℂ, denoted as MC α;γh iMA, where

• α: MC→MA is an abstraction function that translates a concrete model in MC to its most precise approximation in MA, and
• γ: MA→MC is a concretization function that translates an abstract model in MA to its most general refinement in MC.

Both α and γ are monotonic; furthermore, M⪯Cγ ∘α(M) and α ∘γ(M′)⪯AM′ are satisfied. In other words, α(x) is the most
precise abstract model inMA whose concretization approximates x, while γ(y) is the concrete model inMC that is represented by
y at the abstract level (Fig. 8).

Alternatively, the abstraction function α and concretization function γ may be defined at the schema level. Let SA and SC be
two sets of schemata associated with the model spaces A and ℂ, respectively. That is, we consider SC as “concrete” schemata and
SA as “abstract” schemata. Then from the schema-mapping point of view, the abstract function α:C→SA translates a concrete
schema to an abstract schema such that α=(SC)=(α(TC), α(ΣC))=(TA, ΣA)SA for SC=(TC, ΣC), while the concretization function
γ:SA→ SC translates an abstract schema to a concrete schema such that γ(SA)=(γ(TA),γ(ΣA))=(TC,ΣC)=SC for SA=(TA, ΣA).
These translations can be further extended to their models, i.e., α:M(SC)→M(SA) and γ:M(SA)→M(SC) in a canonical way.

Note that, a Galois connection between models at two different levels of abstraction can be implemented in various ways. For
example, database reverse and forward engineering approaches (e.g., [20]) may be regarded as translations between conceptual
models and physical models captured by a Galois connection.

5. Migration transformations

In this section we formalise migration transformations occurring between legacy data sources of a legacy system and new data
sources of a target system. In order to have sufficient expressive power for specifying complex transformations in a comprehensive
manner, we adopt abstract state machines (ASMs), a high-level specification language introduced by Gurevich [10]. As ASMs are
distinguished from other computation models by the power of modelling algorithms at arbitrary levels of abstraction, we have the
capability of modelling each migration transformation as a deterministic computation executed at a flexible but fixed level of
abstraction.

Definition 3. A transformation is a tuple M;M0;Mn; δð Þ consisting of a non-empty setM of models together with an initial model
M0∈M and a final model Mn∈M, and a one-step transition function δ over M, i.e., δ : M↦M.

The one-step transition function δ is determined by a transition rule inductively defined by

• update rule: the value of the object τ(t1,…,tn) is updated to t0,
τ t1;…; tnð Þ :¼ t0
• conditional rule: if ϕ is true, then execute the rule R; otherwise do nothing,
if ϕ then R endif

• block rule: the rules R1,…,Rn are executed in parallel,
par R1…Rn endpar

• sequential rule: the rules R1,…,Rn are executed sequentially,
seq R1…Rn endseq
Fig. 8. Galois connection between abstract and concrete models.
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• forall rule: the rule R is executed in parallel for each x1,…,xn satisfying φ,
forall x1,…,xn with φ do R enddo

• call rule: the rule R is called with parameters t1,…,tn.
R t1;…; tnð Þ
A rule declaration is an expression R(x1,…,xn)=R′ for a rule R′ and the free variables of R′ are x1,…,xn. In a rule R(t1,…,tn), the
variables x1,…,xn in R′ are replaced by the parameters t1,…,tn, respectively.

An update is a pair (‘, b), where ‘ is an object and b is called the value of ‘. An update set Δ is a set of updates. An update set Δ is
consistent if it does not contain conflicting updates, i.e., for all (‘, b), (‘, b′)∈Δ we have b=b′.

Applying a transition rule R over a modelM yields a set Δ(R, M) of updates on objects. If Δ(R, M) is consistent, then updates in
Δ(R, M) lead a transformation from the current model M to its successor model δ(M) such that there exists a unique model S′=
S+Δ resulting from updating S with Δ:
valSþΔ ‘ð Þ ¼ b if ‘; bð Þ∈Δ
valS ‘ð Þ else :

�

A run is a finite sequence M0,…,Mn of models with Mi≠Mn for 0b ibn, and δ(Mi)=Mi+1 for all i=0,…,n−1.
In the rest of this section, we will formally present two fundamental subclasses of migration transformations.

5.1. Property-preserving transformations

The first subclass of migration transformations is property-preserving transformations, which transform data and their
description from one model (i.e., an initial model) to another model (i.e., a final model) in a way that preserves data and
constraints of the initial model.

Suppose that a logic L is used for expressing queries over models of property-preserving transformations. If Ψ is a set of
formulae, then Ψ[τ1←φ1,…,τk←φk] is also a set of formulae, which is obtained by substituting each object type τi(x1,…,xk) in Ψ
by a formula φi where fr(φi)={x1,…,xk}.

Definition 4. A property-preserving transformation (PPT) is a transformation Π ¼ M;M0;Mn; δð Þ, where M0∈M S0ð Þ for S0=
(T0,Σ0) and Mn∈M Snð Þ for Sn=(Tn,Σn), satisfying the following conditions:

• ∧
0≤ibj≤n

Mi⪯LMj, and

• there exists a set ΦpF L; Tnð Þ of constraints that is equivalent to Σ0, i.e., Φ=Σ0[τ1←φ1,…,τk←φk], and Mn⊨∧
ϕ∈Φ

ϕ holds.

In the above definition, the first condition ensures that data in a modelMi can always be retrieved from its successor modelMj

even when their schemata are different, i.e., Mj reflects Mi. The second condition requires an equivalent form of constraints
imposed on the initial model M0 to be satisfied by the final model Mn.

Property-preserving transformations in data migration include extracting a legacy kernel, mapping data between models with
different schemata, loading a new kernel, etc.

Example 5. The transformation PA in Example 1 is a PPT that extracts the legacy kernel. If the constraints φ1 and φ2 (over SA) in
Example 3 are imposed on the initial model of PA, then the following constraint φ1′, which is in an equivalent form of φ1 over
Slegacy, needs to be satisfied by the final model of PA.
φ′
1≡∀x1; x3; y1; y3⋅ðð∃x2; x4⋅CARRIER x1; “truck”; x2; x3; x4; “A”ð Þ∧

∃y2; y4⋅CARRIER y1; “truck”; y2; y3; y4; “A”ð Þ∧x3≠y3Þ⇒x1≠y1Þ
:

Note that the constraint corresponding to φ2 of SA becomes trivial in Slegacy after the transformation. □

In general a legacy system may have a number of legacy data sources managed in heterogeneous environments, e.g., Oracle
databases, flat files, XML documents, Excel spreadsheets, and Access databases. Therefore, the first step in the ETL process of data
migration is to extract a legacy kernel that consolidates all legacy data sources. In order to handle heterogeneity of legacy data
sources, such task should be performed at a high level of abstraction. The resulting legacy kernel must preserve data of each
legacy data source without loss of information. Therefore, a legacy kernel is the least upper bound of a set of abstract models
corresponding to legacy data sources in terms of a reflecting relation determined by the specific logic for querying these abstract
models.

Definition 5. Let M′ ¼ M1;…;Mnf g be a set of abstract models from the same model space M;⪯;⊥;⊤;⊔;⊓ð Þ, i.e., M′pM. Then
the legacy kernel MK of M′ is the least upper bound of models in M′ satisfying ⊔M′⪯MK .

Transformations for mapping data between twomodels with different schemata are generally considered as PPTs. According to
Definition 4, a PPT requires that data in the initial model of a PPT must be preserved in its final model without loss of information.
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Note that, although transformations formapping data often operate at the schema level, e.g., specifyingmappings between schema
components of two models, not every transformation for mapping data can be handled as a schema transformation. We allow
transformations formapping data between twomodels to leverage the semantics defined at the data level, so such transformations
are not always generic [4]. For example, depending on data in a model, different mapping functions can be initiated for trans-
forming different types of data.

Loading a new kernel is a PPT that can often be straightforwardly defined. We thus skip the detailed discussion on such
transformations.

5.2. Property-enhancing transformations

The second subclass of migration transformations we capture is property-enhancing transformations, which transformmodels
violating a certain set of properties into models satisfying these properties. During such transformations, data in an initial model
have to be amended so as to ensure that the properties are satisfied by a final model.

For simplicity, we will take a set-theoretic viewpoint to discuss relationships between models defined over the same set of
object types. Given two models M1 and M2∈M(T), we have

• M2pM1 if τ½ �½ �M2p τ½ �½ �M1 holds for each τ∈T;
• M1−M2=M3 if τ½ �½ �M1− τ½ �½ �M2 ¼ τ½ �½ �M3 holds for each τ;
• M1∩M2=M3 if τ½ �½ �M1∩ τ½ �½ �M2 ¼ τ½ �½ �M3 holds for each τ;
• M1∪M2=M3 if τ½ �½ �M1∪ τ½ �½ �M2 ¼ τ½ �½ �M3 holds for each τ.

We say thatM2 is a submodel ofM1 ifM2pM1 holds. When imposing a constraint φ onM1,M2 is said to be the valid submodel of
M1 with respect to φ ifM2 is a submodel ofM1 andM2⊨φ holds, andM2 is said to be the greatest valid submodel ofM1 with respect
to φ if M2 is the valid submodel of M1 satisfying the following two conditions:

• M′⊭φ for every M′ with M′pM1 and M2pM′.

Basically, the above condition defines that M2 is greatest in the sense that there does not exist any other models, which
subsumeM2 but are subsumed by M1. Note that, it is possible to find a number {M2

1,…,M2
k} of greatest valid submodels of M1 with

respect to φ. The intuition behind the notion of greatest valid submodel is, whenever imposing a constraint φ on a model M1, we
consider the modelM1 to be divided into two parts:M1

φ andM
φ
1 such thatM

φ
1 ¼ M1−Mφ

1 . The partMφ
1 ¼ ∩

1≤i≤k
Mi

2 contains objects

from M1 which do not violate the constraint φ in any case, i.e., objects appearing in every greatest valid submodel of M1. The part

M
φ
1 contains all the other objects in M1, relating to the violation of the constraint φ. We call M1

φ the definite part of M1 against φ,
and respectively,M

φ
1 the indefinite part ofM1 against φ. When φ is valid over the whole modelM1,M1

φ=M1 andM
φ
1 ¼ ∅. Given a

set Φ of constraints, we use the notations M1
Φ to represent ∩

φi∈Φ
Mφi

1 and M
Φ
1 to represent M1−M1

Φ.

Example 6. Let us consider the modelMA depicted in Fig. 6. Suppose that we want to add the following constraint φ over SHIPMENT

to validate the model MA:
φ ¼ ∀z; x1; x2; x3; y1; y2; y3⋅ SHIPMENT z; x1; x2; x3ð Þ∧SHIPMENT z; y1; y2; y3ð Þð Þ⇒ ∧
1≤i≤3

xi ¼ yi

� �
:

That is, all shipments should have their own unique shipment numbers except for duplicate orders.
Then we would haveMA

φ andM
φ
A as shown in Figs. 9 and 10, respectively. For simplicity, we omit objects over TRUCK, VESSEL and

TRAIN in MA
φ and M

φ
A as they remain the same as those in MA. □

Definition 6. Let Ψ be a set of constraints. Then a property-enhancing transformation (PET) over Ψ is a transformation
Λ ¼ M;M0;Mn; δð Þ, where MpM Sð Þ for S=(T, Σ), satisfying the following conditions for each run M0, M1,…,Mn of Λ,

• ∧
0≤ibj≤n

MΣ∪Ψ
i pMΣ∪Ψ

j , and

• Mn
Σ∪Ψ=Mn.

In the above definition, the first condition states that for each model in a property-enhancing transformation the objects in its
definite part must be preserved in its successor model, while the second condition implies that Mn must satisfy each constraint
in Ψ.

In datamigration, PETs are widely used for specifying data cleaning tasks in terms of predefined business rules (or constraints).
As an integral part of data cleaning, validation checking must be first performed, which identifies dirty data existing in a model.
Then, for each business rule φ, an appropriate data cleansing strategy is chosen to eliminate dirty data (i.e., the indefinite part of a
model against φ).



Shipment

No Shipper Receiver Goods

sh2 Mitsubishi Motors Automoto Ltd, Wellington Cars

Transport

No ShipNo TNo VName TNum

ts2 sh2 tr2 null t88

Insurance

No TranNo Company Category

in2 ts2 AA Basic Risk

in3 ts2 P.A.F. All Risk Coverage

Fig. 9. The definite part MA
φ.
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Example 7. The transformations PB and PB⁎ in Example 2 are both a PET. For each constraintφi, there is a corresponding validation
condition that specifies dirty data w.r.t. φi (i.e., x that satisfies the corresponding validation condition is to be cleaned up).
Constraint
 Validation condition
ϕ1
 INSURANCE(x)∧ INSURANCECOMPANIES(x)

ϕ2
 INSURANCE(x)∧ INSURANCECOMPANIES(x)∧ MATCH(x)

ϕ3
 TRANSPORT(x)∧ INSURANCED(x)

ϕ4
 TRANSPORT(x)∧MULTIPLEINSURANCES(x)
□
6. Migration strategies

In the process of migrating legacy data sources to new data sources, a migration transformation is the composition of a finite
sequence of PPTs and PETs.

Definition 7. Let P1 ¼ M1;M0;Mm; δ1ð Þ and P2 ¼ M2;Mm;Mn; δ2ð Þ be two transformations. Then the composition of P1 and P2 is a
transformation P1∘P2 ¼ M1∪M2;M0;Mn; δð Þ where δ : M1∪M2→M1∪M2 such that, if M∈M1, then δ(M)=δ1(M); if M∈M2,
then δ(M)=δ2(M).

Both PPTs and PETs are closed under composition, which means that a combination of several PPTs (resp. PETs) is another PPT
(resp. PET). In the following we discuss migration transformations under different migration strategies [11,8,27].

6.1. Big bang

The strategy of big bang transforms all data from a legacy system into a new data source and takes over all operational data at
one time. There are two different approaches to implement this strategy in data migration projects. Fig. 11.a illustrates one
approach in which a migration transformation Λ1 ∘Π1 starts with Λ1 to clean up data in the legacy system and then continue with
Π1 to map data into the new data source. Alternatively, a transformation Π2 ∘Λ2 can achieve the same effect by swapping the
order of data cleansing and mapping. Nevertheless, the latter approach often faces high risk of system failure due to the existence
of “dirty” data caused by the long data cleansing process.

6.2. Chicken little

The strategy of chicken little divides a legacy system (including its legacy data) into modules. As few as possible dependencies
between modules are retained, and migration takes place by migrating modules step by step. Fig. 11.b shows a two-step data
migration process consisting of a transformationP1 ¼ Λ 1;1ð Þ∘Π′

1;1ð Þ and a transformationP2 ¼ Π′
2;2ð Þ∘Λ 2;2ð Þ. Thewhole datamigration

process is the composition of P1 and P2. Fig. 11.c shows a three-step data migration in which each step is a transformation that first
cleans up the data in a legacy data source and then maps the data into a targeted data source.

6.3. Butterfly

The strategy of butterfly freezes the legacy data sources then uses a crystalliser to transform data from the legacy system to the
new system in steps: first transforming data of the read-only legacy data source and then successive temporary data stores. Thus,



Shipment

No Shipper Receiver Goods

sh1 BY Trading Co. J&J Warehouse, Dunedin household

sh1 BY Trading Co. Warehouse Dunedin household

Transport

No ShipNo TNo VName TNum

ts1 sh1 tr1 v200 null

Insurance

No TranNo Company Category

in1 ts1 State Total Loss Coverage

Fig. 10. The indefinite part M
φ
A .
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transformations of data migration in butterfly are similar to the ones in chicken little, with the only difference in separating data
sources involved in each step of data migration processes. Fig. 11.d describes a transformation P of butterfly that transforms the
read-only legacy data source by Λ1 ∘Π(1,1), and two temporary data stores by Π(1,2) and Π(1,3) during the data migration process,
i.e., P=(Λ1 ∘Π(1,1)) ∘Π(1,2) ∘Π(1,3). For simplicity, the two temporary data stores are assumed to be clean without violating any
constraints in the new system.

7. Refinement, abstraction and verification

Generally speaking, a refining process is to refine an abstract transformation over abstract models into a concrete transformation
over concrete models. In this section, we first introduce the notions of refinement correctness for PPTs and PETs, then discuss an
approach of verifying a transformation by simplifying abstraction of the transformation but preserving the refinement correctness in
terms of properties of interest.

7.1. Refinement of PPTs

We use the notion of path to describe a sequence of models of interest in a run of transformations. Let M;M0;Mn; δð Þ be a
transformation and δk be the k-fold composition of δ for k≥1. Then a path of the run M0, M1,…,Mn is a sequence Mk1 ;…;Mkm

� �
of

models satisfying the conditions:Mk1 ¼ M0,Mkm ¼ Mn andδk Mki

� � ¼ Mkiþ1
for ki+1=ki+k. The length of a path Mk1 ;…;Mkm

� �
is the

number (i.e., m) of models in the path. The shortest path of a run is the pair 〈M0,Mn〉 of initial and final models with the length 2.
LetM andM⁎ be twomodels respectively defined over the schemataSA∈SA and SC∈SC . A location invariant betweenM andM⁎,

denoted as M≈ (γ)M∗, describes that the modelM is similar to M⁎ because objects in M are translated into M⁎ by a concretization
function γ between abstract and concrete models, i.e.,
a

M≈ γð ÞM�≡M∈M Sð Þ∧M�∈M γ Sð Þð Þ
∧M� ¼ γ Mð Þ:
Definition 8. LetΠ be a PPT. ThenΠ⁎ is a correct refinement ofΠ, denoted asΠ↪Π⁎, iffΠ⁎ is a PPT and for any run ofΠ⁎with a
path M�

i1 ;…;M�
im

D E
of interest, there exists a run of Π with a path Mj1 ;…;Mjn

� �
of the same length n such that, for k=1,…,n,

• Mjk≈ γð ÞM�
ik
:

b c d

Fig. 11. Refinement of transformations under different migration strategies.
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Definition 8 states that for any model of interest in the run of a refined PPTΠ⁎ there is a corresponding model in the run of the
abstract PPT Π. A general description of the refinement of PPTs is illustrated in Fig. 12(a). Π transforms a model over schema (T0,
Σ0) to another model over schema (Tn, Σn), and correspondingly, Π⁎ transforms a model over schema (T0⁎, Σ0⁎) to another model
over schema (Tn⁎, Σn

⁎). If we describe the mapping from (T0, Σ0) to (Tn, Σn) as f and the mapping from (T0⁎, Σ0⁎) to (Tn⁎, Σn
⁎) as f⁎,

then we have γ(f(T0))= f∗(γ(T0)) and γ(f(Σ0))⇔ f∗(γ(Σ0)).

Example 8. Consider PA and PA⁎ in Example 1 again. Suppose that the path of our interest in PA is 〈M0,M1,M2,M3,M4,M5,M6〉where
M0 is the initial model, andMi(i>0) represents the model obtained after sequentially executing the ith forall rule in the run of PA,
and the corresponding path of our interest in PA⁎ is 〈M0

∗,M1
∗,M2

∗,M3
∗,M4

∗,M5
∗,M6

∗〉 where M0⁎ is the initial model, and Mi
⁎(i>0)

represents the model obtained after sequentially executing the ith forall rule in the run of PA⁎.

Because PA and PA⁎ are both a PPT, and for any run of PA⁎with a path 〈M0
∗,…,M6

∗〉 of interest, there exists a run of PA with a path
〈M0,…,M6〉, PA⁎ is thus a correct refinement of PA in terms of the path 〈M0

∗,M1
∗,M2

∗,M3
∗,M4

∗,M5
∗,M6

∗〉. □

7.2. Refinement of PETs

For the refinement of PETs we need the notion of constraint invariant to capture the invariant of constraints between
corresponding models. Let T be a set of object types and Ψ be a set of constraints defined over T. Then a coupling constraint
invariant between two corresponding models M and M⁎ with respect to Ψ (denoted as M≈ (γ,Ψ)M∗) describes that models M and
M⁎ are semantically similar in the sense that both models satisfy constraints in Ψ or corresponding constraints in an appropriate
form. Formally speaking, it is defined as
M≈ γ;Ψð ÞM�≡M∈M Sð Þ∧M� ∈M γ Sð Þð Þ
∧M� ¼ γ Mð Þ
∧M ⊨ ∧

φ ∈ Ψ
φ∧M�⊨ ∧

φ ∈ γ Ψð Þ
φ:
Definition 9. Let Ψ be a set of constraints and Λ be a PET over Ψ. Then Λ⁎ is a correct refinement of Λ, denoted as Λ↪Λ⁎, iff Λ⁎ is a
PET and for any run of Λ⁎with a path M�

i0 ;…;M�
im

D E
of interest, there exists a run of Λwith a path Mj0 ;…;Mjn

� �
of the same length

n such that, for k=1,…,n, ∧
0≤pbq≤n

ΨppΨq, Ψ0=∅ and Ψn=Ψ,

• M�
ik
≈ Ψk ;γð ÞMjk :

The above definition states that each pair of corresponding models is equivalent with respect to a subsetΨkpΨ of constraints
and a concretization translation γ. The subset of constraints satisfied by a pair of models of interest should also be satisfied by the
pair of successor models of interest. Eventually, the final models of both transformations satisfy all the constraints in Ψ or γ(Ψ).
According to the definition of PET, both Λ⁎ and Λ remain the valid parts of each model, in terms of a subset of constraints for its
successor model, in the successor model. Fig. 12(b) illustrates this refinement process in which Λ transforms a model over schema
(T, Σ) to another model over schema (T, Σ∪Ψ), and correspondingly, Λ⁎ transforms a model over schema (T⁎, Σ⁎) to another
model over schema (T⁎, Σ⁎∪Ψ⁎) where T⁎=γ(T), Σ⁎=γ(Σ) and Ψ⁎=γ(Ψ).

Example 9. Consider PB and PB⁎ for data cleaning in Example 2, the path 〈M0,M1,M2,M3,M4〉 of PBwhereM0 is the initial model andMi

represents themodel obtained after applying the 1st forall rule, and similarly the path 〈M0
∗,M1

∗,M2
∗,M3

∗,M4
∗〉 of PB⁎. Then PB⁎ is a correct

refinement of PB in terms of the path 〈M0
∗,M1

∗,M2
∗,M3

∗,M4
∗〉 because PB and PB⁎ are both a PET, and the following conditions hold:

• M0
∗≈ (,γ)M0;

• M�
1≈ ϕ1 ;γð ÞM1;

• M�
2≈ ϕ1∧ϕ2 ;γð ÞM2;

• M�
3≈ ϕ1∧ϕ2∧ϕ3 ;γð ÞM3;

• M�
4≈ ϕ1∧ϕ2∧ϕ3∧ϕ4;γð ÞM4.
a b

Fig. 12. (a) Refinement of PPTs and (b) refinement of PETs.
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However, if the 3rd and 4th forall rules in PB are swapped and the resulting transformation is called PC for the convenience of
expression, then the refined transformation PC⁎, that is obtained by replacing CLEANUPINSURANCEi(x) (1≤ i≤4) of PC with the same
rules defined in Example 2, is not a correct refinement of PC. This is because CLEANUPINSURANCE3(x) will insert data that violate the
constraint φ4 and thus M�

4≈ ϕ1∧ϕ2∧ϕ3∧ϕ4 ;γð ÞM4 does not hold between PC and PC⁎. □

7.3. Simplified abstraction

Now we discuss the converse case of refinement, i.e., abstraction. In order to control complexity of data migration tasks by
improving efficiency of static analysis, it is important to investigate how to simplify an abstract transformation under the preservation
of certain properties of interest. The intuition behind obtaining a simplified abstract transformation is to approximate an abstract
transformation by neglecting computation segments that are irrelevant to properties of interest, for example, computation segments
that have no effect on objects relating to the properties of interest.

LetMA be an abstract model over a schema SA=(TA, ΣA) andΦ be a set of properties ofMA. Then we say that an abstract model
MA′ over a schema SA′=(TA′, ΣA′) keeps the same set Φ of properties of MA if MA′ satisfies the corresponding set Φ′ of properties,
where Φ′ is defined by applying the abstraction function α′ : M SAð Þ→M S′A

	 

over Φ as appropriate. Then MA′ is said to be a

simpler abstraction ofMA with respect toΦ, denoted asM′
A≈ α;Φð ÞMA, ifMA′ keeps the same setΦ of properties ofMA. Every simpler

abstraction ofMA contains equal or less information thanMA. In fact, all simpler abstractions of an abstract modelMA with respect
to a set Φ of properties can be viewed as being partially equivalent with respect to Φ.

Let PA ¼ M;M0;Mn; δð Þ be an abstract transformation and Ψ be a set of properties of PA. We use F(Ψ) to denote the set of all
subformulae of Ψ. Then an abstract transformation PA′ is a simpler abstraction of PA with respect to Ψ iff for any run of PA with a
path Mi1 ;…;Mim

� �
of interest, there exists a run of PA′ with a path M′

j1 ;…;M′
jn

D E
of the same length n such that, for k=1,…,n,

• each model Mjk′ of PA′ is a simpler abstraction of the corresponding model Mik of PA with respect to the set ΨA of properties,
where ΨA ¼ φ∈F Ψð Þ Mik⊨φ

�� �

.

Fig. 13 shows that the simplification of an abstraction consists of (m,n)-refinements [9] (mbn), i.e.,m steps ofM corresponds to
n steps of M⁎, where M� ¼ M�;M�

0;M
�
n; ; δ

�� �
for M0⁎ over schema (T0⁎, Σ0⁎) and Mn

⁎ over schema (Tn⁎, Σn
⁎) is an abstract

transformation, andM ¼ M;M0;Mn; δð Þ forM0 over schema (T0,Σ0) andMn over schema (Tn,Σn) is another abstract transformation
simpler than M⁎. Ideally, given a set of properties for an abstract transformation, we want to find the simplest abstraction of such
an abstract transformation. However, solutions for finding the simplest abstraction can be potentially complicated (if it exists).We
do not further address this issue in this paper.

7.4. Generic proof method

Given two refinements P1↪P1⁎ and P2↪P2⁎. If P1 and P2 can be composed and respectively P1⁎ and P2⁎ can be composed, then
P2⁎ ∘P1⁎ is a refinement of P2 ∘P1. Fig. 14 presents a general refinement scheme for migration transformations. The transformation
Λ1 ∘Π1 (resp. Π2 ∘Λ2) can be refined to Λ1⁎∘Π1⁎ (resp. Π2⁎ ∘Λ2⁎), where Λ1↪Λ1⁎ and Π1↪Π1⁎ (resp. Λ2↪Λ2⁎ and Π2↪Π2⁎).

In [32] Schellhorn presented a generic proof method for the correctness of refinements of ASMs, in which invariants are
established based on the notion of commuting diagrams. Here we can extend this generic proof method to verify the refinement
correctness of transformations in data migration. As it has been well studied [9,10] that the ASM refinement is a practically useful
method for proving properties in system design, the theory we developed here thus provides a general scheme for proving the
properties of a migration transformation from a legacy system that may have a number of heterogeneous data sources to a unified
new system. More specifically, to prove that a migration transformation P⁎ at the implementation level has certain property φ, we
take the following steps:

• specify the abstract transformation P that migrates data from the legacy system to an abstract model of the new system, which
is the composition of a number of PPTs and PETs;

• simplify the abstract transformation P into a simpler abstraction P′ with respect to the property φ;
• prove that an appropriate abstract form of the property in question holds on the simplified abstract transformation P′;
Fig. 13. Simplification of an abstraction.



Fig. 14. A refinement scheme for migration transformations.
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• prove the transformation P⁎ in question to be a correct refinement of P′, i.e., each PPT Π⁎ or PET Λ⁎ included in P⁎ is a correct
refinement of the corresponding PPT Π or PET Λ included in P′.

Example 10. Suppose that we want to verify the following property φ of the transformation PA⁎ in Example 1:
∀x1; x2: TRUCKSlegacy x1; x2ð Þ⇒∃x3; x4:CARRIERSnew x1; “truck”; x3; x2; x4; “A”ð Þ
	 


TRUCKSlegacy denotes TRUCK in Slegacy and CARRIERSnew denotes CARRIER in Snew. The property φ states that all objects in TRUCKSlegacy
where
should be extracted as objects of CARRIERSnew with CODE=TRUCKSlegacy·NO, TYPE=“truck”, PRODYEAR=TRUCKSlegacy·PRODYEAR and
SOURCE=“A”.

We observe that objects relevant to this property are in TRUCKSlegacy and CARRIERSnew. Moreover, those objects in CARRIERSnew

whose TYPE is not “truck” are also not relevant. Therefore, the following simpler abstract transformation PA
∘ with respect to φ can

be obtained, which are simplified by removing irrelevant computation segments and objects. We use λ to indicate a value whose
content is trivial in an abstract transformation.

forall x with x∈TRUCK do
EXTRACTEDTOCARRIER∘(x, “truck”, “A”)

enddo
where EXTRACTEDTOCARRIER∘(x, y, z) =

if y=“truck” then
INSERTINTOCARRIER(x.NO, “truck”, λ, x.PRODYEAR, “NZ Trans”, z)

endif

We can prove that the property φ holds on the above transformation PA
∘. Since PA⁎ is a correct refinement of PA∘, the property φ

also holds on PA⁎. □

Remark. Designing data migration transformations is challenging and their implementation can be very complicated. Formal
methods like ASMs and B provide us a mathematically solid approach for managing the complexity of the data migration process.
Nevertheless, it is well-known that the state explosion problem may occur in model checking when verifying complex systems.
Therefore, abstraction techniques become particularly useful for controlling the complexity since they remove irrelevant details of
the original design with respect to the property under consideration, and we thus only need to verify a simplified transformation
which is more efficient than verifying the original transformation.

8. Related work

Data migration is an important but often overlooked aspect of system modernization. In contrast to numerous industry
interests (e.g., [1,2,23]), very little research attention has been given to the theoretical foundations of this subject in its own right.
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Previous studies [13,31,36] on system modernization mostly consider only the legacy interface to data by using wrapping — a
“black-box” reengineering technique, which hides the unwanted complexity by ignoring the internals of data migration. In [3],
the formal method B is used for specifying and verifying changes made on a model, which can generate a data migration
transformation between the old and the new data representations. There have also been several research efforts [5,16,21] in
investigating algorithms for the data migration problem within a network environment by using techniques from a graph theory,
whichmerely focus onmoving data stored on devices in a network. In these cases,many important issues of datamigration, such as
data quality control, have been disregarded.

In this paper we use abstract state machines (ASMs) to express various migration transformations. ASMs are a practical and
scientifically well-founded systems engineermethod invented by [17], extensively discussed in [10] and applied in solving various
database-related problems in [34,37].

One of the two subclasses of migration transformations – property-preserving transformations – captures schema and data
translations in general, and is thus related to various approaches for schemamapping or model translations, e.g., model-independent
translations [6], and schema transformations [18,19,22]. Moreover, our notion of reflecting a relation between two models has links
with the notion of relative information capacity (i.e., information-capacity dominance and equivalence) studied in the area of
semantic heterogeneity [24,25,28]. The main difference between them is that we consider not only schema transformations but also
translations that take into account concrete data with implicit semantics.

There are several migration strategies proposed to manage data migration projects [7,8,11,39], including the big bang, chicken
little and butterfly approaches. In [27], advantages and disadvantages of each migration strategy are discussed in detail, and
factors that affect decision making on which strategy is best suited for a specific data migration project have been analysed.

The ASM refinement method and its connection with other refinement approaches have been well studied in [9]. Schellhorn
[32,33] proposes a generic proof method for the correctness of refinements of ASMs. We extend his work by simplifying
abstractions relative to the properties of interests in this paper.

9. Conclusion

Data migration hardly exists in isolation. Nevertheless, it has severe impacts on an overall project such as system migration and
system evolution projects. Our work here is the first step towards the formal development for system modernization. We first
established the links between abstract and concrete models by extending Galois connections in abstract interpretation. Two model
spaces at different levels of abstraction are connected by a pair of abstraction and concretization functions that translate concrete
models into abstract models and vice versa. Then we discussed the ETL process in the setting of data migration, in which two
fundamental subclasses of migration transformations are identified. In order to link a high-level specification of migration trans-
formations into the ones at an implementation level, we developed a general refinement theory for data migration. In particular, our
refinement theory can be further extended to systematically and efficiently prove properties of migration transformations.

In the future we plan to investigate how our theory can be extended to support system evolution and system migration in a
broader sense. Taking functionality transformations, wrapping of old applications, etc. into consideration will certainly bring in
additional complexity into the refinement scheme. We will investigate these problems in the future.
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