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ABSTRACT
Vertex classi�cation is a critical task in graph analysis, where both
contents and linkage of vertices are incorporated during classi�-
cation. Recently, researchers proposed using deep neural network
to build an end-to-end framework, which can capture both local
content and structure information. These approaches were proved
e�ective in incorporating semantic meanings of neighbouring ver-
tices, while the usefulness of this information was not properly
considered. In this paper, we propose an Attentive Graph-based
Recursive Neural Network (AGRNN), which exerts attention on
neural network to make our model focus on vertices with more
relevant semantic information. We evaluated our approach on three
real-world datasets and also datasets with synthetic noise. Our ex-
perimental results show that AGRNN achieves the state-of-the-art
performance, in terms of e�ectiveness and robustness. We have
also illustrated some attention weight samples to demonstrate the
rationality of our model.
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1 INTRODUCTION
Nowadays, more and more information is organized as graphs. Min-
ing useful knowledge from graphs and studying their properties
have been gaining popularity in recent years. How to exploit ma-
chine learning technologies, such as deep learning, on datasets with
graph structures is one of the challenge problems [6].

Recently, there has been a series of work on learning graph rep-
resentations [1, 10, 15]. They �rst embedded graph structure into
vertex representations in a low-dimensional space, and then ana-
lyzed graphs based on their vertex representations. For example,
DeepWalk [10] transformed a graph into a collection of linear se-
quences using uniform sampling and learned representations from
such sequences through skip-gram model. GraphRep [1] treated
k-step-away vertices separately and factorized the implicit vertex
co-occurrence matrices. Text-Associated DeepWalk [15] can gener-
ate representations both from structural and vertex features in a
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Figure 1: The importance of semantic relevance between tar-
get vertex and neighbouring vertices.

graph, using inductive matrix factorisation. However, separating
representation learning from later analysis, such as vertex classi�-
cation, may lead to suboptimal representations of vertices, as the
label information is not exploited in unsupervised representation
learning [5].

Collective inference is another way to incorporate topological
structures into vertex classi�cation. Label Propagation (LP) [13]
and Iterative Classi�cation Approach (ICA) [7] were proposed to ex-
ploit correlations between labels of neighbouring vertices to assist
with inference. Although these approaches utilize the label infor-
mation of neighbouring vertices, it is far from enough to provide
the essential semantic meanings of those vertices. Later on, deep
learning models were introduced to encode the semantic meanings
of neighbouring vertices for collective inference [9, 14]. Deep Col-
lective Inference [9] transformed a vertex and its neighbours into an
ordered sequence, then used Recurrent Neural Network to classify
the vertex. However, this approach only considers the informa-
tion of one-step neighbouring vertices and the order for processing
these neighbouring vertices can a�ect the results. Graph-based
Recurrent Neural Network (GRNN) [14] constructed recursive neu-
ral networks based on locally searched subgraphs. This approach
exploited the semantic meanings of k-step neighbouring vertices
and achieved success in social network analysis [5].

In real-world situations, graphs are often noisy. Not all neigh-
bouring vertices necessarily contribute to the classi�cation of target
vertices. Suppose that we have a knowledge graph composed of
concepts as vertices and relationships as edges, as depicted in Fig-
ure 1. For a certain task, two vertices of di�erent colours represent
two irrelevant concepts. The involvement of irrelevant neighbour-
ing vertices during inference certainly does more harm than good.
Intuitively, the neighbouring vertices that have similar semantics
as the vertex to classify, target vertex, may provide more useful
information. Thus, we may focus on the blue neighbouring vertices
in Figure 1a. In Figure 1b, targeting on a red vertex, we may focus
on the red neighbouring vertices. To address the above issue, our
work aims to build a model which can capture the relevance of
neighbouring vertices. We propose Attentive Graph-based Recur-
sive Neural Network (AGRNN) for collective vertex classi�cation.



We utilize the attention model to estimate the relatedness of the
information provided by neighbouring vertices of a target vertex.

Another property of our approach is its interpretability. It will
be helpful to provide some insights of the inference process, e.g.
which neighbouring vertices provide signi�cant contributions to
the label assignment of a target vertex. Although GRNN [14] is
able to pick relevant information from neighbouring vertices, the
results fall short of interpretability. In Section 5.3, we illustrate
some locally searched trees with attention weights to show which
neighbouring vertices contribute more to the inference.

2 PROBLEM STATEMENT
Suppose we have a graph G = 〈V ,E〉 consisting of a set of vertices
V = {vi |i = 1, 2, · · · ,N } indicating objects and a set of edges E ⊆
V ×V indicating the relationships between two objects. Let X =
{xi |i = 1, 2, · · · ,N } be a set of feature vectors, where each xi ∈ X
is the feature vertex of vi ∈ V , L be a set of labels, and vt ∈ V be
a distinguished vertex to classify, called target vertex. Then, the
vertex classi�cation problem is to predict the label yt ∈ L of vt ,
given G and X.

3 ATTENTIVE GRAPH-BASED RECURSIVE
NEURAL NETWORK

Recursive Neural Network (RNN) is a deep learning model that can
recursively generate the representation of a parent vertex from its
input features and representations of child vertices over a topolog-
ical order [11]. In this section, we brie�y recall the Graph-based
Recursive Neural Network (GRNN) [14], which constructs RNN on
locally searched trees.

Given a target vertex, we construct a locally searched tree from
the original graph G. Speci�cally, we construct a tree Tt = 〈Vt ,Et 〉
of depth d , rooted at the target vertex vt using a breadth �rst search
algorithm, where Vt ⊆ V and Et ⊆ E are vertex set and edge
set of the tree Tt , respectively. We build Recursive Neural Unit
(RNU) on each vertex vk ∈ Tt . Given the feature vector xk of the
parent vertex, hidden states hr and memory cell states cr of its
child verticesvr ∈ C (vk ), hidden state hk and memory cell state ck
of the parent vertex are generated using a transition function F .

ck ,hk = F (xk , {cr }, {hr }) (1)
Long-short Term Memory Unit (LSTMU) was a representative

transition unit proposed to capture long-range dependencies by
incorporating gated memory cells, which was proved to be e�ective
on both sequential structure and tree structure [12]. The transition
equations are de�ned as follow:

h̃k = max
vr ∈C (vk )

{hr } (2)

ik = σ (W
(i )xk +U

(i )h̃k + b
(i ) ) (3)

fkr = σ (W
(f )xk +U

(f )hr + b
(f ) ) (4)

ok = σ (W
(o)xk +U

(o)h̃k + b
(o) ) (5)

uk = tanh(W (u )xk +U
(u )h̃k + b

(u ) ) (6)
ck = ik � uk +

∑
vr ∈C (vk )

fkr � cr (7)

hk = ok � tanh(ck ) (8)

LSTMU takes xk , {hr } and {cr } as input and calculates input
gates ik , forget gates fk and output gates ok , respectively. Then
memory cell states ck and hidden states hk are produced.

In LSTMU, child vertices are treated equally and max-pooling
layers are used to consolidate their representations. Actually, di�er-
ent vertices may make di�erent contributions to the classi�cation of
target vertex, as discussed in Section 1. We thus propose Attentive
Long-short Term Memory Unit (ALSTMU), which integrates the
attention mechanism to detect the neighbouring vertices we need
to focus on. Given a parent vertex vk , the hidden states of child
vertices hr and an external vector x . The soft attention weight αr
for each child vertex is:

αr = So f tmax (xTW (a)hr ) (9)

Then, the aggregated hidden representation of its child vertices is

h̃k =
∑

vr ∈C (vk )

αrhr (10)

We use a parameter matrixW (a) , learned by gradient descent, to
measure the relatedness of x and hr . Softmax function makes
sure that the sum of attention weights is 1. The choice of feature
vector x describes the criteria of our attention model. If we use xt ,
features of target vertices, the model will pay more attention on
the child vertices that are more related to the target vertices. If we
use features of parent vertices xp , the model will focus on the child
vertices that are similar to their parents. In this work, we propose
to use xt , as we aim to incorporate the information that is related
to the classi�cation of the target vertex.1

Finally, we use a softmax classi�er to predict labelyt of the target
vertex vt using its hidden state ht , see Eq 11.

Pθ (yt |vt ,G,X) = so f tmax (W (s )ht + b
(s ) ) (11)

ŷt = arg max
yt ∈L

Pθ (yt |vt ,G,X) (12)

Cross-entropy J (θ ) = − 1
N
∑N
t=1 log Pθ (yt |vt ,G,X) is used as the

cost function, where N is the number of vertices in the training
set2.

4 EXPERIMENTAL SETUP
4.1 Datasets
We have tested our approach on three real-world datasets.
-Cora [8] is a citation dataset which consists of 2708 vertices (scien-
ti�c publications), and 5429 edges (citations). All publications are
classi�ed as Rule Learning (RU), Genetic Algorithms (GE), Reinforce-
ment Learning (RE), Neural Networks (NE), Probabilistic Methods
(PR), Case Based (CA), and Theory (TH).
-Citeseer [3] is another citation dataset which consists of 3312
vertices (scienti�c publications) and 4723 edges (citations). All
publications are classi�ed as, Agents, AI, DB, IR, ML, and HCI.
-WebKB [2] is a website dataset collected from four computer sci-
ence departments in di�erent universities which contains 877 ver-
tices (web pages) and 1608 edges (hyper-links). All websites are
classi�ed as, faculty, students, project, course, and other.

1According to our preliminary experiments, the models using xt outperforms those
models using xp .
2Download source code here: https://github.com/xuqiongkai/GraphBasedRNN/
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Figure 2: Comparison of classi�cation results of AGRNN, with several baseline methods, on Cora, Citeseer and WebKB

In real-world situations, graphs may contain noise links, or some
valuable links are missing. To verify the robustness of our model
under such circumstances, we construct two types of graphs: (1)
Noise Link (NoiseL) graphs: we randomly add 5% and 10% edges
to the original graphs; (2) Missing Link (MissL) graphs: we ran-
domly remove 5% and 10% edges from the original graphs 3.

4.2 Baselines
We compare our Attentive Graph-based Recursive Neural Network
(AGRNN) with �ve baseline methods:
-Logistic Regression (LR) [4] predicts the label of a vertex using
its attributes through a logistic regression model.
-Iterative Classi�cation Approach (ICA) [7] utilizes the combi-
nation of link structure and vertex features as input of a statistical
machine learning model. 4

-Label Propagation (LP) [13] uses a machine learning model to
give a label probability for each vertex, then propagates these prob-
abilities to its neighbours, until all label probabilities are converged.
-Text-Associated DeepWalk (TADW) [15] is an unsupervised
vertex representation learning model. Representations of vertices
are generated from vertex features and neighbouring vertex distri-
butions using inductive matrix factorization.
-Graph-based Recursive Neural Network (GRNN) [5, 14] is the
GRNN approach using LSTMU.

4.3 Experimental Settings
In our experiments, we split each dataset into, training and testing
sets, with di�erent proportions (70% to 95% for training). For each
proportion setting, we randomly generate 5 pairs of training and
testing sets. For each experiment on a pair of training and testing
sets, we run 10 epochs on the training set and record the highest
Micro-F1 score on the testing set. Then we report the averaged
results from the experiments with the same proportion setting.
According to preliminary experiments, we set the learning rate 0.1
for LR, ICA, LP, AGRNN and 0.01 for GRNN models. We set number
of hidden states to 200 for both GRNN and AGRNN. Adagrad is
used as the optimization method in our experiments.

3Download dataset here: https://github.com/xuqiongkai/NoiseGraphDataset.
4We use the frequency of the labels of neighbouring vertices as link structure features.

Dataset Method OriginL MissL NoiseL
5% 10% 5% 10%

LP 83.47 83.25 83.25 80.37 78.89
ICA 81.92 81.70 81.48 81.62 82.07

Cora TADW 79.04 80.00 79.34 79.11 78.30
GRNN_d2 84.50 83.99 85.54 82.66 81.33

AGRNN_d1 84.35 85.24 84.43 82.58 82.80
AGRNN_d2 85.24 84.13 85.46 83.39 82.29

LP 75.12 74.88 75.60 72.95 70.66
ICA 73.37 73.31 72.41 73.31 73.13

Citeseer TADW 74.16 73.61 73.43 73.67 73.55
GRNN_d2 76.81 76.57 76.51 75.54 75.48

AGRNN_d1 77.95 78.31 76.93 77.95 76.69
AGRNN_d2 78.13 78.37 78.49 76.93 77.35

LP 65.68 65.91 67.50 65.23 63.86
ICA 87.05 86.59 86.82 87.05 86.59

WebKB TADW 73.64 73.18 73.18 75.00 74.77
GRNN_d2 86.82 86.36 85.45 85.23 85.45

AGRNN_d1 88.18 87.27 88.18 88.86 86.59
AGRNN_d2 88.18 87.95 86.36 87.27 86.36

Table 1: Experimental results on Cora, Citeseer andWebKB,
with di�erent noise settings.

5 RESULTS AND ANALYSIS
5.1 Baseline Comparison
We compare AGRNN with the baseline methods on three real-world
datasets. As demonstrated in Figure 2, GRNN and AGRNN out-
perform other baseline methods. AGRNN achieves considerable
performance improvement against GRNN for both models with
tree depth d = 1 and d = 2, on Cora and Citeseer. More speci�-
cally, AGRNN_d2 outperforms GRNN_d2 with 0.34% on Cora and
1.83% on Citeseer, respectively. For WebKb, AGRNN is competi-
tive against GRNN, when training proportion is relatively small,
less than 85%. AGRNN achieves the best performance among all
baseline methods, given more training data, i.e. more than 85% for
training. We attribute this to less training samples in WebKB than
those in Cora or Citeseer. Comparing with di�erent options of tree
depth, d2 generally outperforms d1, which shows that including
information from neighbouring vertices of more steps may improve
the results.

5.2 Noise Sensitivity
We also conduct experiments on datasets with Original Link (OriginL)
and datasets with synthetic noise, Missing Link (MissL) and Noise

https://github.com/xuqiongkai/NoiseGraphDataset


Dataset Samples Labels
(a) (b) (c) (d) (e)

Cora

Citeseer

WebKB

Table 2: Samples of locally searched trees with attention weights.
Link (NoiseL)5. The results of our experiments on these datasets
are illustrated in Table 16. AGRNN achieves the best results on
almost all of the datasets with di�erent noise settings. AGRNN_d2
outperforms AGRNN_d1 in most cases, which indicates the robust-
ness of our approach. MissL results in the performance reduction
for ICA, while other approaches still keep competitive results. This
is probably because ICA depends on the su�cient statistics of the
labels of neighbouring vertices. NoiseL results in performance re-
duction for most of the models, where LP is the most a�ected. This
is probably because introducing noise links changes the distribu-
tion of neighbouring vertices, while LP exploits this distribution to
modify the vertex labels.

5.3 Case Study
To understand the e�ectiveness of the attention mechanism, we
illustrate some trees, with attention weights. For each dataset, we
use 80% samples for training and the rest for testing. We select �ve
trees from the testing sets with the following criteria: (1) The tree
depth is 2, (2) The tree contains more than two types of vertices.
(3) The tree size is suitable for demonstration, namely less than 20
vertices. In Table 2, we illustrate the samples of di�erent datasets.
The label of each vertex is given in di�erent colors and the attention
weights of vertices are demonstrated as the thickness of the paths to
their parent vertices. In most cases, the child vertices that have same
label as target vertices obtain higher attention weights than the
others. This means that AGRNN can detect vertices that are closely
related to the target vertex, thus our model pays more attention on
those vertices. For the �rst vertex of the �rst layer of Citeseer(d),
in Table 2, it acquires a higher attention score than its siblings.
This is probably because Agent is a sub-area of AI and this AI
paper is under the topic of Agent. For WebKB(d) two sta� vertices
achieve the highest attention, with student as their target vertex.
For WebKB(e) two faculty vertices achieve the highest attention,
with student as target vertex. These cases indicate that our model
learns the semantic relatedness between vertices that represent
people.
5In our noise sensitivity experiments, we use the proportion of 90% for training.
6As GRNN_d2 outperforms GRNN_d1 in [14], we use GRNN_d2 as baseline model in
the noise sensitivity experiments.

6 CONCLUSION
In this paper, we have proposed a novel deep neural network ap-
proach for the vertex classi�cation problem. We have exploited an
attention model to capture the neighbouring vertices with similar
semantic meanings to a target vertex. Our experimental results
showed the e�ectiveness and robustness of our approach. Finally,
we have provided samples with attention weights to illustrate the
rationality of our models.
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