
Evolving Concurrent Systems – Behavioural Theory and
Logic∗

Klaus-Dieter Schewe
Software Competence Center
Hagenberg, Softwarepark 21,

4232 Hagenberg, Austria
kd.schewe@scch.at

Flavio Ferrarotti
Software Competence Center
Hagenberg, Softwarepark 21,

4232 Hagenberg, Austria
flavio.ferrarotti@scch.at

Loredana Tec
Software Competence Center
Hagenberg, Softwarepark 21,

4232 Hagenberg, Austria
loredana.tec@scch.at

Qing Wang
Research School of Computer

Science, The National
University of Australia,

Canberra, ACT, Australia
qing.wang@anu.edu.au

Wenya An
Software Competence Center
Hagenberg, Softwarepark 21,

4232 Hagenberg, Austria
wenya.an@scch.at

ABSTRACT
A concurrent system can be characterised by autonomously
acting agents, where each agent executes its own program,
uses shared resources and communicates with the others,
but otherwise is totally oblivious to the behaviour of the
other agents. In an evolving concurrent system agents may
change their programs, enter or leave the collection at any
time thereby changing the behaviour of the overall system.
In this paper we present a behavioural theory of evolving
concurrent systems, i.e. we provide (1) a small set of pos-
tulates that characterise evolving concurrent systems in a
precise conceptual way without any reference to a particu-
lar language, (2) an abstract machine model together with
a plausibility proof that the abstract machines satisfy the
postulates, and (3) a characterisation proof that any sys-
tem stipulated by the postulates can be step-by-step sim-
ulated by an abstract machine. The theory integrates the
behavioural theories for unbounded (synchronous) parallel
algorithms, asynchronous concurrent systems, and reflective
algorithms, respectively. However, in the latter two theories
only sequential agents and sequential reflective algorithms
were considered. Furthermore, linguistic reflection has not
been integrated with parallelism. We will show how these
research gaps can be closed.

∗The research reported in this paper results from the project
Behavioural Theory and Logics for Distributed Adaptive Sys-
tems supported by the Austrian Science Fund (FWF:
[P26452-N15]). The research has further been supported
by the Austrian Ministry for Transport, Innovation and
Technology, the Federal Ministry of Science, Research and
Economy, and the Province of Upper Austria in the frame
of the COMET center SCCH (FFG: [844597]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSW’17 January 31–February 03, 2017, Geelong, Australia
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4768-6/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3014812.3017446

The behavioural theory implies that concurrent reflective
Abstract State Machines (crASMs) can be used as a speci-
fication and development language for evolving concurrent
systems. We therefore investigate a logic for crASMs. Based
on the simple observation that concurrent ASMs can be
mimicked by non-deterministic parallel ASMs we exploit the
complete one-step logic for non-deterministic ASMs for the
definition of a logic capturing concurrency. By making the
extra-logical rules in the logic subject to being interpreted
in a state we extend the logic to capture also reflection.

1. INTRODUCTION
A concurrent system can be characterised by autonomous

agents, where each agent executes its own program, uses
shared resources and communicates with the other agents,
but otherwise is totally oblivious to the behaviour of oth-
ers. There are numerous models of concurrency in the lit-
erature or implemented in current hardware/software sys-
tems and underlying distributed algorithms, specification
and programming languages: distributed algorithms [23],
process algebras [19, 32, 27, 28], actor models [18], trace
theory [24, 25, 43], Petri nets [30, 29, 40], etc.

Abstract State Machines (ASMs) have been used since
their introduction to model sequential and concurrent sys-
tems (see [8, Ch.6,9] for references), but only recently the
theory counterpart of the celebrated sequential ASM thesis
[16] has been discovered [7]. This concurrent ASM thesis
formulates a postulate characterising concurrency based on
the intuitive understanding of computations of multiple au-
tonomous agents, which execute each a sequential process,
run asynchronously, each with its own clock, and interact
with (and know of) each other only via reading/writing val-
ues of designated locations. It has been proven that concur-
rent algorithms are captured by concurrent Abstract State
Machines, i.e. families of agents each equipped with a se-
quential ASM, the semantics of which is defined by concur-
rent ASM runs, which overcome the problems of Gurevich’s
distributed ASM runs [15] and generalize Lamport’s sequen-
tially consistent runs [21]. This consitutes a behavioural
theory that provides a foundation for concurrent sequential
algorithms and their rigorous specification, refinement and

verification.
However, the theory in [7] still restricts the agents to par-

allelism that is a priori bounded by the specification. It
is known that unbounded parallelism is captured by (syn-
chronous) parallel ASMs [4, 5, 12], and it has been con-
jectured that the restriction to sequential agents can thus
be easily dropped in the concurrent ASM thesis. In this pa-
per we formally integrate the (simplified) behavioural theory
of parallel algorithms [12] into the concurrent ASM thesis,
which will give us a foundation for concurrent algorithms
in general and enable rigorous specification, refinement and
verification for this extended class of concurrent systems.
Examples for using concurrent (parallel) ASMs for the spec-
ification and generalisation of distributed algorithms [23]
have been studied in [3].

Recently, (self-)adaptive systems have attracted a lot of
interest in research, in particular in connection with sys-
tems of (cyber-physical) systems [31], biologically-inspired
systems [39] or observer/controller architectures [36, 38] (aka
monitoring and adaption). Adaptivity refers to the ability
of a system to change its own behaviour. As state-based
rigorous methods for software systems development such as
B [1], Event-B [2], Abstract State Machines (ASMs) [8],
TLA+ [22] and others are coupled with a genericity promise,
i.e. they can be applied universally to a large class of sys-
tems, it appears to be desirable to further extend the theory
to capture evolving concurrent systems, i.e. to permit the
agents in a concurrent system to be also adaptive. In [13] a
behavioural theory for reflective, sequential algorithms was
conjectured, which could be proven in [9], i.e. reflective, se-
quential algrithms can be captured by sequential reflective
ASMs, which covers adaptivity in the most general sense.
Thus, in order to obtain a general foundation for evolving
concurrent systems we further integrate the theories of par-
allel algorithms and reflective algorithms, and then extend
the theory to capture also reflection.

Besides rigorous design and stepwise refinement-based de-
velopment verification is a key concern for rigorous systems
development. All rigorous methods are supported by ap-
propriate logics such as the logic for Event-B [35], the logic
for ASMs [37], and the logic for TLA+ [26]. These logics
support primarily the verification of properties for a single
machine step exploiting also concepts from dynamic logic
[17], though extensions in temporal logic (see e.g. [33] for
ASMs and [20] for TLA+) have also been investigated to en-
able the reasoning about complete runs. In order to reason
about evolving concurrent systems we investigate an exten-
sion of the one-step logic for ASMs to capture concurrency
and reflection. This logic has been extended in [41] to deal
with non-deterministic database transformations, for which
the unsolved problem of non-determinism and the handling
of multi-set functions for synchronisation had to be solved.
This was further streamlined, partly corrected and extended
in [42] and taken out of the database context in [10]. It
can then be easily observed that concurrent ASMs could be
mimicked by non-deterministic ASMs working on multiple
local copies of the states, thus the logic can be exploited
to capture concurrency in general. However, the obtain full
reasoning power, we will show how to move from a one-step
logic to a multiple-step logic, as a single step of an agent
in a concurrent system may correspond to multiple steps of
the whole concurrent system. Furthermore, we will substi-
tute the extra-logical rules that are used in the ASM logic

by variables that are to be interpreted in a state, but yield
rules, by means of which we can capture reflection.

In Section 2 we will investigate the behavioural theory
of general reflective algorithms. First this requires an in-
tegration of the set of postulates for parallel and reflective
algorithms with a particular emphasis on bounded explo-
ration. This will be followed by a brief description, why
parallel, reflective ASMs satisfy the postulates, and finally
by a sketch of the proof that any parallel, reflective algo-
rithm as stipulated by the postulates will be captured by
a behaviourally equivalent reflective ASM. In Section 3 we
will then investigate evolving concurrent systems by adding
the concurrency postulate. This will again be followed by
a brief outline of concurrent reflective ASMs and a sketch
of the proof that these capture evolving concurrent systems.
Section 4 is then dedicated to the development of a logic
for concurrent reflective ASMs, where we first consider con-
currency and reflection in isolation, and then integrate the
necessary extensions to the logic. We conclude with a brief
summary and outlook in Section 5.

2. REFLECTIVE PARALLEL ALGORITHMS
The celebrated sequential ASM thesis needs only three

simple, intuitive postulates to characterise sequential algo-
rithms:

Sequential time: Each sequential computation proceeds
by means of a transition function S → S, which maps
a state S ∈ S to its successor state τ(S).

Abstract state: Each state S ∈ S is a Tarski structure de-
fined over a signature Σ, i.e. a set of function symbols,
by means of interpretation in a base set BS . States,
initial states and transitions are closed under isomor-
phisms.

Bounded exploration: There is a fixed, finite set of ground
terms W called bounded exploration witness such that
whenever two states coincide on W , the update sets
that determine the changes in the transition to the
respective successor states are equal.

Actually, bounded exploration is grounded in the simple
observation that whatever is needed to determine the update
set in some state must be contained in the finite representa-
tion of the algorithm. In a nutshell, we can always imagine
W to be the set of terms that are “read” by the sequential
algorithm in a state in order to determine the updates.

Note that the sequential time and abstract state postu-
lates are also used in the parallel ASM thesis, whereas the
main difference lies in bounded exploration and a necessary
background postulate.

2.1 Sequential Time
Clearly, when extending the notion of sequential or paral-

lel algorithm to include reflection we think of pairs (Si, Pj)
comprising a state Si (as in the sequential thesis), and a
sequential algorithm Pj . Thus, we can consider transition
functions τj : (Si, Pj) 7→ (Si+1, Pj) without changing the
algorithm Pj . Likewise we may consider transition func-
tions σi : (Si, Pj) 7→ (Si, Pj+1) changing only the algorithm.
Then a run of a reflective algorithm corresponds to the se-
quence of pairs (Si, Pi), where in each step both the state Si
and the algorithm Pi are updated. As observed in [9] we can

capture the state-algorithm pairs in a RSA by an extension
Σext of the signature Σ using additional function symbols to
represent the sequential algorithm, e.g. capturing the sig-
nature and some syntactic description. For the former we
must further permit new function symbols to be created,
which can be done by exploiting the concept of “reserve”.
We also conclude that the representation of algorithms in a
state requires terms that are used by the algorithms to ap-
pear as values. So we have to allow terms over Σ (including
the dormant function symbols in the reserve) to be at the
same time values in an extended base set.

Thus, our first postulate states that every reflective algo-
rithm works in sequential time, the key difference being that
they work over extended states Ŝi that correspond to pairs
(Si, Pi). Transitions from one extended state to the next can
involve both: updates to the state and updates to the algo-
rithm. Let P be a sequential algorithm of some signature Σ
and let Σ′ ⊆ Σ. We use P |Σ′ to denote the restriction of P
to the (sub)signature Σ′.

Postulate 1. (Reflective Sequential Time Postu-
late). A reflective algorithm A consists of the following:

• A non-empty set SA of extended states.

• A non-empty subset IA ⊆ SA of initial extended states
such that for all (S, P), (S′, P ′) ∈ IA, it holds that S
and S′ are first-order structures of a same signature Σ
and P |Σ and P ′|Σ have exactly the same runs.

• A one-step transformation function τA : SA → SA
such that τA((S, P)) = (S′, P ′) iff τP ((S, P)) = (S′, P ′)
for the one-step transformation function τP of the se-
quential algorithm P .

The concept of run remains the same as in the ASM thesis
for sequential algorithms, except that in the case of reflection
we consider extended states instead of arbitrary states. That
is, a run or computation of A is a sequence of states (S0, P0),
(S1, P1), (S2, P2), . . . , where (S0, P0) is an initial state in IA
and (Si+1, Pi+1) = τA((Si, Pi)) holds for every i ≥ 0.

On these grounds the concept of behavioural equivalence
used for sequential algorithms cannot be generalised in a
straightforward way. While behavioural equivalent sequen-
tial algorithms have exactly the same runs, this is not nec-
essarily the case for reflection. Let r1 = (S0, P0), (S1, P1),
(S2, P2), . . . , and r2 = (S′0, P

′
0), (S′1, P

′
1), (S′2, P

′
2), . . . , be

runs of reflective algorithms. We consider that r1 and r2 are
essentially equivalent runs if for every i ≥ 0 the following
holds:

1. Si = S′i.

2. Si and S′i are first-order structures of a same signature
Σi and Pi|Σi and P ′i |Σi have exactly the same runs.

Definition 1 (Behavioural Equivalence). Two re-
flective algorithms A and A′ are behaviourally equivalent
iff A and A′ have essentially equivalent classes of essentially
equivalent runs, i.e. there is a bijection ζ between runs of
A and A′, respectively, such that r and ζ(r) are essentially
equivalent for all run r.

2.2 Abstract States
As in the sequential ASM thesis, states are first-order

structures. However, they are not arbitrary first-order struc-
tures, since each state must also include (an encoding of) a
sequential algorithm given by a finite text. Also similar to
the sequential ASM thesis, we need the sequential algorithms
encoded in the states to work at a fixed level of abstraction.
This cannot be achieved by simply requiring the set of states
and the one step transformation function to be closed under
isomorphisms, since that would interfere with our concept
of behavioural equivalence.

We say that two states (S, P) and (S′, P ′) are essentially
isomorphic if S and S′ are isomorphic first-order structures
of some vocabulary Σ and P |Σ and P ′|Σ have exactly the
same runs. If ζ is an isomorphism form S to S′, then we say
that (S, P) and (S′, P ′) are essentially isomorphic via ζ.

Postulate 2. (Reflective Abstract State Postu-
late). Let A be a reflective algorithm. Fix a signature
Σ and an extension Σext of the signature Σ with additional
function names.

• States of A are first-order structures of signature Σext .

• Every state (S, P) of A is formed by the disjoint union
of an arbitrary first-order structure S of some finite
signature Σst ⊆ Σ and a first-order structure SP of
signature Σwt = Σext \ Σ which contains an encoding
of the sequential algorithm P .

• The one-step transformation τA of a RSA A does not
change the base set of any state of A.

• The sets SA and IA of, respectively, states and initial
states of A, are closed under essentially isomorphic
states.

• If two states (S, P) and (S′, P ′) of A are essentially
isomorphic via an isomorphism ζ from S to S′, then
τA((S1, A1)) and τA((S2, A2)) are also essentially iso-
morphic via ζ.

2.3 Background
Each computation uses some background [12]. When deal-

ing with sequential algorithms the background is usually left
implicit, as it contains the reserve of values not used in a
current state, but available to be added to the active domain
in any state transition, truth values and their connectives,
and the value undef. When dealing with parallel algorithms
we have to add at least a pairing constructor and a multi-
set constructor together with necessary operators on tuples
and multisets. Also reflection requires some background, as
it must be possible to refer to tuples to capture terms that
represent a specification, e.g. ASM signatures and rules. It
must further comprise extra-logical constant such as key-
words that are used in the specification.

Most important, reflection requires the presence of a raise
function that takes values in the extended domain that are
terms and removes all extra-logical elements, so that raise(t)
can be interpreted as a “normal term” yielding a value in
the domain. For brevity we dispense with a more detailed
discussion of the background (for details see [12, Sect. 3]).

Postulate 3. (Reflective Background Postulate).
Let A be a reflective algorithm of vocabulary Σext with back-
ground class K. The vocabulary ΣK of K includes (at least)

a binary tuple constructor and a multiset constructor of un-
bounded arity; and the vocabulary ΣB of the background of
the computation states of A includes (at least) the following
obligatory function symbols:

• Nullary function symbols true, false, undef and �.

• Unary function symbols reserve, atomic, Boole, ¬,
first, second, {{·}},

⊎
and AsSet.

• Binary function symbols =, ∧, ∨, →, ↔,] and (,).

• raise mapping terms over Σext to terms over Σ.

All function symbols in ΣB, with the sole exception of
reserve, are static.

2.4 Bounded Exploration
Regarding bounded exploration the problem is that in

general we must expect that each algorithm Pi represented
in state (Si, Pi) has its own bounded exploration witness Wi.
For parallel algorithms Pi such a bounded exploration wit-
ness is a set of multiset comprehension terms, where each el-
ement in such a multiset corresponds to a branch (or proclet)
of the parallel computation. However, due to the construc-
tion of Wi in [12] we know that Wi is somehow contained
in the finite representation of Pi. For instance, the ASM
rule constructed in the proof of the parallel ASM thesis only
contains terms derived from the terms in Wi, and this holds
analogously for any other representation of Pi. This implies
that the terms in Wi result by interpretation from terms
that appear in the representation of any algorithm. So there
must exist a finite set of terms W , which we will continue
to call bounded exploration witness, such that its interpreta-
tion in an extended state yields both values and terms, and
the latter represent Wi. Consequently, the interpretation of
W and of its interpretation in an extended state suffice to
determine the update set in that state. The main difference
to the thesis for reflective sequential algorithms is that the
terms may be multiset comprehension terms corresponding
to extra-logical constructs for unbounded parallelism. This
will lead to our bounded exploration postulate for reflective
algorithms. Thus, we first need an extension of the notion
of strong coincidence over a set of multiset comprehension
terms.

Definition 2. (Strong Coincidence). Let (S, P) and
(S′, P ′) be states of signature Σext . Let Wst be a set of mul-
tiset comprehension terms over signature Σ and Wwt be a
set of multiset comprehension terms over signature Σext \Σ.
(S, P) and (S′, P ′) strongly coincide over Wst ∪Wwt iff the
following holds:

• For every t ∈Wst, val (S,P)(t) = val (S′,P ′)(t).

• For every t ∈Wwt,

1. val (S,P)(t) = val (S′,P ′)(t).

2. val (S,P)(raise(t)) = val (S′,P ′)(raise(t)),
where raise(t) denotes the interpretation of t as a
term of signature Σ.

As usual, we use ∆(P, S) to denote the unique set of up-
dates produced by the sequential algorithm P in state S.
The unique set of updates produced by a RSA A in a state
(S, P) is defined as ∆(A, (S, P)) = ∆(P, (S, P)).

We can now formulate our fourth and last postulate for re-
flective algorithms. It generalises the bounded exploration
postulate for parallel algorithms in [12] to reflective algo-
rithms. The central difference with the analogous postulate
in the parallel ASM thesis is the use of the stronger notion
of coincidence. The idea is that, for every state (Si, Pi), the
multiset comprehension terms obtained by the interpreta-
tion in (Si, Pi) of the terms in Wwt together with the “stan-
dard” terms in Wst form a bounded exploration witness for
the sequential algorithm Pi.

Postulate 4. (Reflective Bounded Exploration
Postulate). For every reflective A of signature Σext there
is a finite set Wst of multiset comprehension terms over
signature Σ and a finite set Wwt of multiset comprehen-
sion terms over signature Σext \Σ such that ∆(A, (S, P)) =
∆(A, (S′, P ′)) holds, whenever states (S, P) and (S′, P ′) of
A strongly coincide on Wst ∪Wwt.

If a set of multiset comprehension terms Wst ∪Wwt satis-
fies the reflective bounded exploration postulate, we call it
a reflective bounded exploration witness (R-witness) for A.

Definition 3. A reflective algorithm (RA) is characte-
rised by the Reflective Sequential Time, Reflective Abstract
State, Reflective Background and Reflective Bounded Explo-
ration Postulates.

2.5 Reflective Parallel ASMs
Let us now define a model of reflective ASMs (rASMs)

for short) and show that every rASM is a RA in the precise
sense of Definition 3. The set of ASM rules of the rASM, as
well as the interpretation of these rules in terms of update
sets, coincide with those of the parallel ASMs as defined in
[8].

We assume that the signature Σext of an rASM always in-
cludes a sub-signature Σ with an infinite reserve of function
names of arity r for each r ≥ 0. Let M be an rASM of
signature Σext , the sates of M are extended states (Si, ri)
formed by an arbitrary first-order structure Si of some finite
signature Σst ⊆ Σ and a first-order structure Sri of (also fi-
nite) signature Σwt = Σext \ Σ which contains an encoding
of the sequential ASM rule ri as a “program” term.

Let (S, r) be an extended state of a rASMM. We assume
that the sub-structure S includes:

• An infinite reserve of values.

• All ordered pairs of elements in the base set.

• The usual Boolean functions and usual constants true,
false and undef.

• The “program” functions update, forall and if .

The “program” functions are static and defined as follows:

• update(f(t1, . . . , tn), t0) = (t0, t1, . . . , tn)

• forall(t1, t2) = {{valS(t2) | valS(t1)}}

• if (t1, t2) = {{(t1, t) | t ∈ valS(t2)}}

Note that each ASM rule can be represented by a “pro-
gram” term. For instance, if the ASM rule r has the form
if ϕ then f(t1, . . . , tn) := t0 endif then the “program” term
of the form if (ϕ, update(f(t1, . . . , tn), t0)) represents r.

The sub-structure Sr of (S, r) which contains the encoding
of the parallel ASM r includes:

• The set of all ground terms of vocabulary Σ.

• A distinguished location self which stores a “program”
term which represents the ASM rule r.

• A finite alphabet A and the set A∗ of all strings over
A.

• A total injective function TermToString from the set
of all terms of vocabulary Σ to A∗.

• A partial function StringToTerm defined as the inverse
of TermToString .

• A constant si for each symbol si ∈ A and a constant
λ for the empty string.

• A string concatenation function “·”.

• A function argumentNo such that argumentNo(t, n) is
the n-th argument of the term t or undef if t does not
have n-th argument or is not a term.

• A function insertArgument , which assigns to (s, n, t)
the term t with its n-th argument replaced by s.

Notice that the functions available in Sr permit us to ex-
amine and modify the “program” term stored in self. For
instance, assume that the current value stored in self is
the term update(f(t), s) and that we want to change it to
update(f(t), s + 1). Assuming the alphabet A includes the
symbols “+” and “1”. The following sequential ASM rule
updates self to the desired “program” term:

self := insertArgument(stringToTerm(TermToString

(argumentNo(self , 2)) ·+ · 1), 2, self)

Of course, it is quite cumbersome to update the rule in
self by using the small set of background functions provided
here. Nevertheless, this is enough to show that our approach
works. In practice, we can use more convenient representa-
tions, for instance by means of complex values such as syntax
trees, as well as more sophisticated functions to inspect and
modify the ASM rules. An rASM M is then formed by:

• A non-empty set SM of extended states, closed under
essential isomorphisms.

• A non-empty subset IM ⊆ SM of initial states such
that for all (S, r), (S′, r′) ∈ IM, it holds that S and S′

are first-order structures of a same signature Σst and
r|Σst and r′|Σst have exactly the same runs.

• A transition function τM over SM such that τM((S, r))
= (S, r) + ∆(r, (S, r)) for every (S, r) ∈ SM.

A run of a reflective sequential ASM is a finite or infi-
nite sequence of extended states (S0, r0), (S1, r1), . . ., where
(S0, r0) is an state in IM and (Si+1, ri+1) = τM((Si, ri))
holds for every i ≥ 0.

Theorem 1. Every reflective ASM M is a RA.

The proof is analogous to the plausibility proof in [9]. The
major difficulty is the construction of the bounded explo-
ration witness, for which {self} will be sufficient. However,
it is crucial that the raise function turns the representation
of forall-rules into multiset comprehension terms, which is
captured by the “program functions”.

2.6 The Reflective Parallel ASM Thesis
Our key result in this section is the characterisation the-

orem constituting the converse of Theorem 1. In order to
prove it we can follow the argumentation in the correspond-
ing proof in [9] taking in also the very sophisticated argu-
ments in [12]. In a nutshell, we start with the update set
∆(A, (S, P)) in an arbitrary extended state (S, P). It is
rather straightforward (Lemma 1) to show that every value
occurring in an update is critical, i.e. results from the in-
terpretation of the bounded exploration witness terms. The
main difference here is that according to [12] we have to
adopt the definition of critical value of being the elements
of the resulting multisets, not the multisets as such.

In the case of reflective sequential algorithms a straight-
forward corollary gives us the existence of an ASM rule that
yields the update set ∆(A, (S, P)) in the extended state
(S, P). This is no longer the case for RAs. We have to
go through the tedious construction in [12] that will show
that any tuple with the same logical type as the tuple defined
by an update in ∆(A, (S, P)) also gives rise to an update,
from which we can conclude again the existence of an ASM
rule (relying heavily on the forall-construct) that yields
the update set at hand.

From this result the extensions required to obtain a be-
haviourally equivalent reflective ASM are largely the same
as for the sequential case, i.e. the proof follows again the one
in [9]. In the following we give a brief sketch of the proof
without being able to go into details.

Let A be a RA of signature Σext = Σ ∪ Σwt. Each state
(S, P) is composed of two “sub-states” S and Swt of sig-
natures Σst and Σwt, respectively. Σst ⊆ Σ is finite and
contains only the “standard” function names which are not
in the reserve. Again we use P |Σst to denote the restriction
of P to Σst.

Let Wst ∪Wwt be a R-witness for A and let (S, P) be a
state of A. We define the set of terms generated by Wwt in
(S, P) as follows:

G
(S,P)
Wwt

= {raise(t′) | val (S,P)(t) = t′ for some t ∈Wwt}.

We assume that Wst ∪G(S,P)
Wwt

is closed under sub-terms and

call it the set of critical terms of (S, P). As raise(t′) is
a multiset comprehension term, its interpretation in state
(S, P) will be a multiset of values. We call each element of
such a multiset a critical value of (S, P).

Lemma 1. Let A be a RA. If (f, (v1, . . . vn), v0) is an up-
date in ∆(A, (S, P)), then v0, v1, . . . , vn are critical values
of (S, P).

Using the key fact that by the reflective abstract state
postulate the set of states of A is closed under essentially
isomorphic states, this lemma can still be proven by con-
tradiction using the same argument as in the proof of the
analogous Lemma 6.2 in the sequential ASM thesis [16].

As in [12, Cor. 7.8] we now obtain for every extended state
(S, P) a rule r(S,P) such that:

1. r(S,P) uses only critical terms, i.e., terms in Wst ∪
G

(S,P)
Wwt

.

2. ∆(r(S,P), (S, P)) = ∆(A, (S, P)).

The lengthy proof exploits the construction of critical struc-
tures, on grounds of which types are defined that correspond

to “indistinguishable” updates, which are used to show that
these always appear in the same update sets. Then the ex-
istence of isolating formulae for types is shown extending
corresponding results from finite model theory, and finally
uses the isolating formulae to construct the rule. The coura-
geous reader will find the proof details in [12, pp.44–52].

We proceed as in [9] by lifting the rules r(S,P) to obtain a
reflective ASM that is behaviourally equivalent to A.

Lemma 2. If two states (S, P) and (S′, P ′) of A strongly
coincide over Wst ∪Wwt, then

∆(r(S,P), (S
′, P ′)) = ∆(A, (S′, P ′)).

Let (S, P) and (S′, P ′) be states ofA. We say that (S′, P ′)

is relative W [(S, P)]-equivalent to (S, P) ifG
(S′,P ′)
Wwt

= G
(S,P)
Wwt

.

We further define that (S, P) and (S′, P ′) coincide over
W [(S, P)], if val(S,P)(t) = val(S′,P ′)(t) for all t ∈ Wst ∪
G

(S,P)
Wwt

.
The following is a straightforward corollary of Lemma 2

obtained by restricting the sets of updates to the locations
in the “standard” sub-structure of the states. ∆st denotes
the subset of updates with function names in Σst.

Corollary 1. If two states (S, P) and (S′, P ′) of A are
relative W [(S, P)]-equivalent and coincide over W [(S, P)],
then it follows that ∆st(r(S,P), (S

′, P ′)) = ∆st(A, (S′, P ′)).

Consider the class C[(S, P)] of relativeW [(S, P)]-equivalent
states of A. Two states (S1, P1) and (S2, P2) of A are W -
equivalent relative to C[(S, P)] iff (S1, P1), (S2, P2) ∈ C[(S, P)]
and E(S1,P1) = E(S2,P2), where (for i = 1, 2) E(Si,Pi)(t1, t2) ≡
val (Si,Pi)(t1) = val (Si,Pi)(t2) is an equivalence relation in the
set of critical terms of (S, P).

Lemma 3. If two states (S1, P1) and (S2, P2) of A are W -
equivalent relative to C[(S, P)], then ∆st(r(S1,P1), (S2, P2)) =
∆st(A, (S2, P2)).

Using terms ϕ(S,P) that evaluate to true exactly for states
that are W -equivalent relative to C[(S, P)] it is straightfor-
ward to show the following lemma, which follows from the
previous lemmata.

Lemma 4. ∆st(r[(S,P)], (Si, Pi)) = ∆st(A, (Si, Pi)) for ev-
ery state (Si, Pi) ∈ C[(S, P)], i.e., for every state that is
relative W [(S, P)]-equivalent to (S, P).

Thus, for every class C([Si, Pi]) of states of A, we have a
corresponding rule r[(Si,Pi)] such that Lemma 4 holds. Now,
we need to extend this result to all states which belong to
some run of A, not just for the states in the class C([Si, Pi]).
Here is when the power of reflection becomes apparent.

Fix an arbitrary initial state (S, P) of A. We defineM as
the reflective ASM machine with:

SM = {(Si, P ′i) | (Si, Pi) ∈ SA and

P ′i is the “self” representation of r[(Si,Pi)]}
IM = {(Si, P ′i) | (Si, P ′i) ∈ SM and

P ′i is the “self” representation of r[(S,P)]}

Lemma 5. For every run (S0, P0), (S1, P1), . . . of A and
corresponding run (S′0, P

′
0), (S′1, P

′
1), . . . of M with S0 = S′0,

it holds that

∆st(r[(Si,P
′
i)], (S

′
i, P
′
i)) = ∆st(A, (Si, Pi)).

Using the previous key lemma, it is not difficult to show
that every run of A of the form (S0, P0), (S1, P1), . . . is es-
sentially equivalent to the corresponding run of M of the
form (S′0, P

′
0), (S′1, P

′
1), . . . with S0 = S′0, i.e., that Si = S′i

and that Pi|Σi and P ′i |Σi have exactly the same runs. This
implies our main result.

Theorem 2. For every RA A there is a behaviourally
equivalent reflective ASM M.

3. EVOLVING CONCURRENT SYSTEMS
An asynchronous concurrent systems can be seen as a col-

lection of agents, each equipped with an algorithm to ex-
ecute. In the behavioural theory of concurrent sequential
algorithms developed in [7] it was assumed that the algo-
rithm associated with an agent is a sequential algorithm,
but a hint was given that this might be generalisable to par-
allel algorithms exploiting the behavioural theory from [12]
for parallel algorithms. We claim that it can be generalised
to systems of reflective parallel algorithms.

3.1 A Concurrency Postulate
Abstracting from details of how the agents interact we

may assume that there are certain shared locations that can
be updated by several agents. When an agent starts one of
its steps, it interacts with other agents in a given state Sj by
evaluating the current values of all its input or shared loca-
tions in this state. This means that the interaction is with
those agents that can write and may have written in some
previous state the current values of these locations. When
an agent completes its current step, it interacts again with
other agents in a given state Sn, this time by writing back
values to its output or shared locations, thus contributing to
form the next concurrent run state Sn+1. It means that the
interaction is with those agents that also contribute to form
the next state Sn+1 by their own simultaneous write backs
in state Sn. This interpretation of the notion of “interac-
tion” assumes that the reads and writes a process performs
in a step on shared locations are executed atomically at the
beginning respectively at the end of the step. This leads to
the following postulate, in which the algorithms associated
with the agents are characterised by the postulates for RAs.

Postulate 5. (Concurrency Postulate). An evolv-
ing concurrent system (ECS) is given by a set A of pairs
(a, alg(a)) of agents a, each equipped with a reflective algo-
rithm alg(a). In a concurrent A-run started in some ini-
tial state S0, each interaction state Sn (n ≥ 0) where some
agents (those of some finite set An of agents) interact with
each other yields a next state Sn+1 by the moves of all agents
a ∈ An that happen to simultaneously complete the execu-
tion of their current alg(a)-step they had started in some
preceding state Sj (j ≤ n depending on a).

With respect to reflection and concurrency in Abstract
State Machines a reflective concurrent ASM (rcASM) can
be characterised by a family {Ma}a∈Ag of reflective parallel
ASMs indexed by a set of agents Ag. The semantics of
a rcASM is then easily defined by concurrent ASM runs as
defined in [7]. These runs are based on runs of the individual
ASMs Ma without taking care how these (local) runs are
defined. The extension to agents with reflective ASMs is
thus straightforward.

Definition 4. Let A = {Ma}a∈Ag be a rcASM. A con-
current run of A is a sequence S0, S1, . . . of states together
with a sequence A0, A1, . . . of subsets of Ag such that each
state Sn+1 is obtained from Sn by applying to it the updates
computed by the agents a ∈ An each of which started its cur-
rent (internal) step by reading its input and shared locations
in some preceding state Sj depending on a. The run termi-
nates in state Sn if the updates computed by the agents in
An are inconsistent.

The defining condition can be expressed by the following
formula where SlastRead(a,n) denotes the state in which a
performed its reads of all monitored and shared locations it
uses for the current step (so that lastRead(a, n) ≤ n):

Sn+1 = Sn +
⋃
a∈An

∆(Ma, SlastRead(a,n))

We say that a starts its j-th step in state Sj with j =
lastRead(a, n) and completes it in state Sn. Remember that
S + U is not defined if U is an inconsistent update set.

On these grounds it is straightforward to show again the
plausibility of the concurrency postulate.

Theorem 3. Every rcASM A = {Ma}a∈Ag is an ECS
satisfying the postulates for RA and the concurrency postu-
late.

3.2 Characterisation Theorem for Evolving
Concurrent Systems

To complete the development of the behavioural theory
for ECS let us look at the converse of Theorem 3. Given an
ECS {(a, alg(a)) | a ∈ Ag} we have to construct reflective
ASMs Ma for each agent a ∈ Ag. So, let S0, S1, . . . be
the state sequence and Ag0, Ag1, . . . the sequence of sets of
agents of any concurrent A-run. Consider any state Si+1 in
this run. Then (by the Concurrency Postulate) we have for
some index lastRead(a, i) ≤ i for each a ∈ Agi:

Si+1 = Si +
⋃

a∈Agi

∆(alg(a), SlastRead(a,i) ↓ Σalg(a))

That is, the update set defining the change from state
Si to its successor state Si+1 in the concurrent run is a fi-
nite union of update sets ∆(alg(aj), Sij ↓ Σalg(aj)) where
ij = lastRead(a, i). For each agent aj ∈ Agi participat-
ing with a non-empty update set there exists a well-defined
previous state Sij whose (possibly including monitored and
shared) location values alg(aj) determine its update set.
The restriction of this state to the signature Σj of alg(aj)
is a valid state for the reflective algorithm alg(aj), and the
determined update set is the unique update set defining the
transition from this state Sij ↓ Σj to its next state via τa.

Let Ra be the set of all pairs (Sa,∆(Sa)) of states with
their computed update sets where a makes a move in a con-
current A-run, i.e. such that

• Sa is a state of alg(a) and ∆(Sa) is the unique, consis-
tent update set computed by alg(a) for the transition
from Sa to τa(Sa),

• Sa = Sij ↓ Σalg(a) for some state Sij in some non-
terminated run of A, in which alg(a) computes an up-
date set that contributes to the definition of a later
state in the same run.

The following lemma has actually been proven in the char-
acterisation proof for reflective parallel algorithms.

Lemma 6. For each agent a ∈ A there exists a reflective
ASM rule Ma such that for all (Sa,∆(Sa)) ∈ Ra we get
∆(Sa) = ∆(Ma, Sa), i.e. the updates the ASM Ma yields
in state Sa are exactly the updates in ∆(Sa) determined by
alg(a).

So any given concurrent A-run S0, S1, . . . together with
Ag0, Ag1, . . . is indeed a concurrent M-run of the crASM
M = {(a,Ma) | a ∈ Ag}. This proves Theorem 4.

Theorem 4. Each concurrent algorithm denoted as A =
{(a, alg(a)) | a ∈ Ag} as stipulated by the Concurrency Pos-
tulate can be simulated step-by-step by a concurrent reflec-
tive ASM M = {(a,Ma) | a ∈ Ag}.

4. REASONING ABOUT EVOLVING
CONCURRENT SYSTEMS

In the previous two sections we have seen that rcASMs
capture ECSs. Therefore, in order to support rigorous log-
ical inferences to prove desirable properties of rcASMs it
suffices to develop a logic for rcASMs, which is what this
section will address.

4.1 A Logic for Non-Deterministic ASMs
In [42] we developed a complete logic for so-called DB-

ASMs based on previous work in [41]. With respect to the
logic for ASMs developed by Stärk and Nachen [37] the logic
makes explicit use of meta-finite states, solves the problem
of non-determinism, which was considered as a hard open
problem, and added multiset-based synchronisation terms.
We then observed in [12] that meta-finite states were also
present in parallel ASMs, so the logic actually captures non-
deterministic parallel ASMs.

Thus, states of a non-deterministic, parallel ASM are meta-
finite structures [14]. Each state consists of a finite part and
a possibly infinite algorithmic part linked via bridge func-
tions, in which actual entries in the finite part are treated
merely as surrogates for the real values. A signature Υ of
states comprises a sub-signature Υf for the finite part, a
sub-signature Υa for the algorithmic part and a finite set
Fb of bridge function names. The base set of a state S is
a nonempty set of values B = Bf ∪ Ba, where Bf is finite.
Function symbols f in Υf and Υa, respectively, are inter-
preted as functions fS over Bf and Ba, and the interpreta-
tion of a k-ary function symbol f ∈ Fb defines a function fS

from Bkf to Ba. For every state over Υ the restriction to Υf

results in a finite structure.
As in ASMs we distinguish between updatable dynamic

functions and static functions which cannot be updated. Let
S be a state over Υ, f ∈ Υ be a dynamic function symbol
of arity n and a1, ..., an be elements in Bf or Ba depend-
ing on whether f ∈ Υf ∪ Fb or f ∈ Υa, respectively. Then
(f, (a1, ..., an)) is called a location of S. An update of S is
a pair (`, b), where ` is a location and b ∈ Bf or b ∈ Ba
depending on whether f ∈ Υf or f ∈ Υa ∪ Fb, respec-
tively, is the update value of `. To simplify notation we
write (f, (a1, . . . , an), b) for the update (`, b) with the loca-
tion ` = (f, (a1, . . . , an)). The interpretation of ` in S is
called the content of ` in S, denoted by valS(`). An update

set ∆ is a set of updates; an update multiset ∆̈ is a multiset

of updates. A location operator ρ is a multiset function that
returns a single value from a multiset of values.

Let Υ = Υf∪Υa∪Fb be a signature of states. Fix a count-
able set Xf of first-order variables, denoted with standard
lowercase letters x, y, z, . . ., that range over the primary fi-
nite part of the states (i.e., the finite set Bf). The set of
first-order terms TΥ,Xf of vocabulary Υ is defined in a simi-
lar way than in meta-finite model theory [14]. That is, TΥ,Xf

is constituted by the set Tdb of database terms and the set
Ta of algorithmic terms. The set of terms Tf is the closure
of the set Xf of variables under the application of function
symbols in Υf . The set of algorithmic terms Ta is defined
inductively: If t1, . . . , tn are terms in Tf and f is an n-ary
bridge function symbol in Fb, then f(t1, . . . , tn) is an algo-
rithmic term in Ta; if t1, . . . , tn are algorithmic terms in Ta
and f is an n-ary function symbol in Υa, then f(t1, . . . , tn)
is an algorithmic term in Ta; nothing else is an algorithmic
term in Ta.

Let S be a meta-finite state of signature Υ. A valuation or
variable assignment ζ is a function that assigns to every vari-
able in Xf a value in the base set of the finite part Bf of S.
The value valS,ζ(t) of a term t ∈ TΥ,Xf in the state S under
the valuation ζ is defined as usual in first-order logic. The
first-order logic of meta-finite states is defined as the first-
order logic with equality which is built up from equations
between terms in TΥ,Xf by using the standard connectives
and first-order quantifiers. Its semantics is defined in the
standard way. The truth value of a first-order formula of
meta-finite states ϕ in S under the valuation ζ is denoted as
[[ϕ]]S,ζ .

Without loss of generality, a variable assignment ζ as pre-
viously defined for first-order variables that range over Bdb,
can be extended to first-order variables that range over Ba
as well as to second-order variables that range over finite
sets. We use fr(t) to denote the set of (both first-order and
second-order) free variables occurring in t.

Definition 5. The set of terms in the logic for non-
deterministic ASMs is constituted by the set Tf and the set
Ta of algorithmic terms expressed as follows:

• x ∈ Tf for x ∈ Xf and fr(x) = {x};

• x ∈ Ta for x ∈ Xa and fr(x) = {x};

• f(t) ∈ Tf for f ∈ Υf , t ∈ Tf and fr(f(t)) = fr(t);

• f(t) ∈ Ta for f ∈ Fb, t ∈ Tf and fr(f(t)) = fr(t);

• f(t) ∈ Ta for f ∈ Υa, t ∈ Ta and fr(f(t)) = fr(t);

• ρx(t | ϕ(x, ȳ)) ∈ Ta for a location operator ρ ∈ Λ, a
formula ϕ(x, ȳ) of the logic (see Definition 6 below), x
a variable in Xf , ȳ a tuple of arbitrary variables, and
t ∈ Ta.

In the last line we require fr(t) ⊆ fr(ϕ(x, ȳ)) = {xi | xi =
x orxi appears in ȳ} and fr(ρx(t|ϕ(x, ȳ))) = fr(ϕ(x, ȳ)) −
{x}.

We use the notion ρ-term for a term ρx(t|ϕ(x, ȳ)) and
pure term for a term that does not contain ρ-terms, i.e., a
term that does not contain any formulae. ρ-terms are built
upon formulae; on the other hand they can also be used for
constructing formulae.

Definition 6. The formulae of the logic for non-deter-
ministic ASMs are those generated by the following gram-
mar:

ϕ,ψ ::= s = t | sa = ta | ¬ϕ | ϕ ∧ ψ | ∀x(ϕ) | ∀x(ϕ) | ∀M(ϕ)

| ∀X(ϕ) | ∀X (ϕ) | ∀Ẍ(ϕ) | ∀Ẍ (ϕ) | ∀F (ϕ) | ∀G(ϕ)

| upd(r,X) | upm(r, Ẍ) |M(s, ta) | X(f, t, t0)

| X (f, t, t0, s) | Ẍ(f, t, t0, ta) | Ẍ (f, t, t0, ta, s)

| F (f, t, t0, ta, t
′, t′0, t

′
a, s)

| G(f, t, t0, ta, t
′, t′0, t

′
a, sa) | [X]ϕ

where s, t and t′ denote terms in Tf , sa, ta and t′a denote
terms in Ta, x ∈ Xf and x ∈ Xa denote first-order variables,

M , X, X , Ẍ, Ẍ , F and G denote second-order variables, r
is an ASM rule, f is a dynamic function symbol in Υf ∪Fb,
and t0 and t′0 denote terms in Tf or Ta depending on whether
f is in Υf or Fb, respectively.

In the logic, disjunction ∨, implication →, and existential
quantification ∃ are defined as abbreviations in the usual
way. ∀M(ϕ), ∀X(ϕ), ∀X (ϕ), ∀Ẍ(ϕ), ∀Ẍ (ϕ), ∀F (ϕ) and

∀G(ϕ) are second-order formulae in which M , X, X , Ẍ, Ẍ ,
F and G range over finite relations.

When applying forall and parallel rules, updates yielded
by parallel computations may be identical. Thus, we need
the multiset semantics for describing a collection of possible
identical updates. This leads to the inclusion of upm(r, Ẍ)

and Ẍ(f, t, t0, ta) in the logic. upd(r,X) and upm(r, Ẍ) re-
spectively state that a finite update set represented by X
and a finite update multiset represented by Ẍ are generated
by a rule r. X(f, t, t0) describes that an update (f, t, t0) be-

longs to the update set represented by X, while Ẍ(f, t, t0, ta)
describes that an update (f, t, t0) occurs at least once in the

update multiset represented by Ẍ. If (f, t, t0) occurs n-times

in the update multiset represented by Ẍ, then there are n
distinct a1, . . . , an ∈ Ba such that (f, t, t0, ai) ∈ Ẍ for ev-

ery 1 ≤ i ≤ n and (f, t, t0, aj) 6∈ Ẍ for every aj other than
a1, . . . , an. We use [X]ϕ to express the evaluation of ϕ over
a state after executing the update set represented by X on
the current state. The second-order variables X and Ẍ are
used to keep track of the parallel branches that produce the
update sets and multisets, respectively, in a way which be-
comes clear later on. Finally, we use M to denote binary
second-order variables which are used to represent the finite
multisets in the semantic interpretation of ρ-terms, and F
and G to denote second-order variables which encode bijec-
tions between update multisets. Again, the need for these
types of variables becomes clear later in the paper.

A formula of the logic is pure if it does not contain any
ρ-term and is generated by the following restricted grammar:

ϕ,ψ ::= s = t | sa = ta | ¬ϕ | ϕ ∧ ψ | ∀x(ϕ) | ∀x(ϕ)

As defined before the formulae occurring in conditional,
forall and choice rules are pure formulae of this logic. A
formula or a term is static, if it does not contain any dynamic
function symbol.

In [42] a proof system for this logic was developed, for
which soundness and completeness could be proven.

4.2 Reasoning about Reflection
With the logics for ASMs [37] and non-deterministic ASMs

[42] in mind, what has to be changed to handle reflection.

The answer to this question is rather simple, as it only con-
cerns rules r in the logic, which only appear in formulae of
the form upd(r,X) and upm(r, Ẍ).

In a non-reflective ASM the main rule is given as part
of the specification and treated as extra-logical constant.
However, in a reflective ASM the main rule is the value in
a location such as self . Consequently, we have valS(self) =
rS , i.e. the interpretation of the term self in a state S yields
the rule that is to be applied in S.

However, for a single machine step this change is rather
irrelevant, as in a reflective ASM the main rule does not
change within a single step. Thus, we have to take multiple
steps into account. For these introduce two additional pred-
icates r-upd and r-upm with the following informal meaning:

• r-upd(n,X) means that n steps of the reflective ASM
yield the update set X, where in each step the actual
value of self is used.

• r-upm(n,X) means that n steps of the reflective ASM
yield the update multiset X.

In the light of the axioms U6 and UM6 in [42], which ac-

tually define upd(r,X) and upm(r, Ẍ) for sequence rules, we
can inductively define axioms for r-upd and r-upm. Clearly,
we have r-upd(1, X) ↔ upd(self , X). Analogously, define

r-upm(1, X)↔ upm(self , Ẍ).
Then we further define
r-upd(n+ 1, X)↔

(
r-upd(1, X) ∧ ¬conUSet(X)

)
∨(

∃Y1Y2(r-upd(1, Y1) ∧ conUSet(Y1) ∧ [Y1]r-upd(n, Y2)∧∧
f∈Fdyn

∀xy(X(f, x, y)↔ ((Y1(f, x, y)∧

∀z(¬Y2(f, x, z))) ∨ Y2(f, x, y))))
)

as well as

upm(n+ 1, Ẍ)↔
(

r-upm(1, Ẍ)∧

∀X
(∧
f∈Fdyn

∀x1x2(X(f, x1, x2)↔ ∃x3(Ẍ(f, x1, x2, x3)))∧

¬conUSet(X)
))
∨
(
∃Ÿ1Ÿ2

(
r-upm(1, Ÿ1)∧

∀Y1

(∧
f∈Fdyn

∀x1x2(Y1(f, x1, x2)↔ ∃x3(Ÿ1(f, x1, x2, x3)))∧

conUSet(Y1) ∧ [Y1]r-upm(n, Ÿ2)
)
∧∧

f∈Fdyn

∀x1x2x3

(
Ẍ(f, x1, x2, x3)↔ (Ÿ2(f, x1, x2, x3)∨

(Ÿ1(f, x1, x2, x3) ∧ ∀y2y3(¬Ÿ2(f, x1, y2, y3))))
))

4.3 A Logic for Concurrent Reflective ASMs
Finally, in order to capture also concurrency we make a

very simple, but also powerful observation that a concurrent
ASM can always be mimicked by a non-deterministic ASM.
For each agent a replace its rule r by

IF ctl = idle THEN CHOOSE r
OR local(r) ‖ ctl := active ENDIF

IF ctl = active THEN CHOOSE skip
OR final(r) ‖ ctl := idle ENDIF

In an initial state the “control-state” location ctl is set to
idle. If this is the case the agent executes either immediately
its rule or executes a local version of it, i.e. all updates will

be written to a local copy. In the second case the control-
state becomes active. If the control-state is active, the agent
may either do nothing or finalise the execution by copying
all updates to the shared locations and returning to an idle
control state.

In doing so, the multi-steplogic sketched above for reflec-
tive, non-deterministic ASMs can be used to reason about
concurrent, reflective ASMs. Details concerning this are
subject to ongoing research.

5. CONCLUDING REMARKS
In this paper we first presented a behavioural theory for

evolving concurrent systems (ECSs), which integrates the
corresponding theories of (synchronous) parallel algorithms
[12], reflective algorithms [9] and concurrent algorithms [7].
With this behavioural theory we lay the foundations for rig-
orous development of general adaptive concurrent systems.
Due to the similarities of ASMs with other rigorous methods
the theory is not restricted to the context of ASMs.

As ECSs are captured by reflective, concurrent ASMs
(rcASMs) a second part of the paper was dedicated to the
presentation of a logic for rcASMs that is based on a one-
step logic for non-deterministic ASMs [42]. Concurrency
can be mimicked by non-determinism, and reflection can be
added by considering a multi-step extension, in which the
so-far extra-logical rules can be replaced by rule terms that
are subject to interpretation. This logic enables to formally
reason about ECSs and to rigorously verify desirabe prop-
erties.

We envision that in general concurrent systems it will be
desirable to capture also non-determinism or preferably ran-
domised behaviour (see [34] for first steps in this direction).
Furthermore, for rigorous development extensions to the re-
finement method for ASMs [6] will be necessary. These prob-
lems are addressed in ongoing research.

6. REFERENCES
[1] Abrial, J.-R. The B-book - Assigning programs to

meanings. Cambridge University Press, 2005.

[2] Abrial, J.-R. Modeling in Event-B - System and
Software Engineering. Cambridge University Press,
2010.

[3] An, W. Formal specification and analysis of
asynchronous mutual exclusion algorithms. Master’s
thesis, JKU Linz, Austria, 2016.

[4] Blass, A., and Gurevich, Y. Abstract State
Machines capture parallel algorithms. ACM Trans.
Computational Logic 4(4) (2003), 578–651.

[5] Blass, A., and Gurevich, Y. Abstract State
Machines capture parallel algorithms: Correction and
extension. ACM Transactions on Computation Logic
9, 3 (2008).

[6] Börger, E. The ASM refinement method. Formal
Aspects of Computing 15, 2-3 (2003), 237–257.

[7] Börger, E., and Schewe, K.-D. Concurrent
Abstract State Machines. Acta Informatica 53, 5
(2016), 469–492.

[8] Börger, E., and Stärk, R. F. Abstract State
Machines. A Method for High-Level System Design
and Analysis. Springer, 2003.

[9] Ferrarotti, F., Schewe, K.-D., and Tec, L. A
behavioural theory for reflective sequential algorithms,

2016. submitted for publication.

[10] Ferrarotti, F., Schewe, K.-D., and Tec, L. A
complete logic for non-deterministic parallel ASMs,
2016. submitted for publication.

[11] Ferrarotti, F., Schewe, K.-D., Tec, L., and
Wang, Q. A new thesis concerning synchronised
parallel computing – simplified parallel ASM thesis.
CoRR abs/1504.06203 (2015). see
http://arxiv.org/abs/1504.06203.

[12] Ferrarotti, F., Schewe, K.-D., Tec, L., and
Wang, Q. A new thesis concerning synchronised
parallel computing – simplified parallel ASM thesis.
Theoretical Computer Science 649 (2016), 25–53.
extended version in [11].

[13] Ferrarotti, F., Tec, L., and Turull Torres,
J. M. Towards an ASM thesis for reflective sequential
algorithms. In Abstract State Machines, Alloy, B,
TLA, VDM and Z (ABZ 2016) (2016), M. Butler
et al., Eds., vol. 9675 of LNCS, Springer, pp. 239–244.

[14] Grädel, E., and Gurevich, Y. Metafinite model
theory. Information and Computation 140, 1 (1998),
26–81.

[15] Gurevich, Y. Evolving algebras 1993: Lipari Guide.
In Specification and Validation Methods. Oxford
University Press, 1995, pp. 9–36.

[16] Gurevich, Y. Sequential Abstract State Machines
capture sequential algorithms. ACM Trans.
Computational Logic 1, 1 (July 2000), 77–111.

[17] Harel, D., Kozen, D., and Tiuryn, J. Dynamic
Logic. MIT Press, 2000.

[18] Hewitt, C. What is computation? Actor model
versus Turing’s model. In A Computable Universe:
Understanding Computation and Exploring Nature as
Computation, H. Zenil, Ed. World Scientific
Publishing, 2012.

[19] Hoare, C. A. R. Communicating Sequential
Processes. Prentice-Hall, 1985.

[20] Kröger, F., and Merz, S. Temporal Logic and State
Systems. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2008.

[21] Lamport, L. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Trans. Computers 28, 9 (1979), 690–691.

[22] Lamport, L. Specifying Systems, The TLA+

Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

[23] Lynch, N. Distributed Algorithms. Morgan
Kaufmann, 1996. ISBN 978-1-55860-348-6.

[24] Mazurkiewicz, A. Trace theory. vol. 255 of LNCS,
Springer, pp. 279–324.

[25] Mazurkiewicz, A. Introduction to trace theory. In
The Book of Traces, V. Diekert and G. Rozenberg,
Eds. World Scientific, Singapore, 1995, pp. 3–67.

[26] Merz, S. On the logic of TLA+. Computers and
Artificial Intelligence 22, 3-4 (2003), 351–379.

[27] Milner, R. A Calculus of Communicating Systems.
Springer, 1982. ISBN 0-387-10235-3.

[28] Milner, R. Communicating and Mobile Systems: The
Pi-Calculus. Springer, 1999. ISBN 9780521658690.

[29] Peterson, J. Petri net theory and the modeling of
systems. Prentice-Hall, 1981.

[30] Petri, C. A. Kommunikation mit Automaten. PhD
thesis, Institut für Instrumentelle Mathematik der
Universität Bonn, 1962. Schriften des IIM Nr. 2.

[31] Riccobene, E., and Scandurra, P. Towards
asm-based formal specification of self-adaptive
systems. In Abstract State Machines, Alloy, B, TLA,
VDM, and Z - 4th International Conference (ABZ
2014) (2014), Y. A. Ameur and K.-D. Schewe, Eds.,
vol. 8477 of Lecture Notes in Computer Science,
Springer, pp. 204–209.

[32] Roscoe, A. The Theory and Practice of Concurrency.
Prentice-Hall, 1997.

[33] Schellhorn, G., Tofan, B., Ernst, G., Pfähler,
J., and Reif, W. RGITL: A temporal logic
framework for compositional reasoning about
interleaved programs. Annals af Mathematics and
Artificial Intelligence 71 (2014), 1–44.

[34] Schewe, K.-D., Ferrarotti, F., Tec, L., and
Wang, Q. Towards a behavioural theory for random
parallel computing. In Computational Models of
Rationality – Essays Dedicated to Gabriele
Kern-Isberner on the Occasion of Her 60th Birthday,
C. Beierle, G. Brewka, and M. Thimm, Eds., vol. 29 of
Tributes. College Publications, 2016, pp. 365–373.

[35] Schmalz, M. Formalizing the Logic of Event-B. PhD
thesis, ETH Zürich, 2012.

[36] Seebach, H., Nafz, F., Steghöfer, J.-P., and
Reif, W. How to design and implement
self-organising resource-flow systems. In Organic
Computing - A Paradigm Shift for Complex Systems,
C. Müller-Schloer, H. Schmeck, and T. Ungerer, Eds.
Springer, 2011, pp. 145–161.

[37] Stärk, R. F., and Nanchen, S. A logic for abstract
state machines. Journal of Universal Computer
Science 7, 11 (2001), 980–1005.

[38] Steghöfer, J.-P. Large-Scale Open Self-Organising
Systems: Managing Complexity with Hierarchies,
Monitoring, Adaptation, and Principled Design. PhD
thesis, University of Augsburg, 2014.

[39] Steghöfer, J.-P., Seebach, H., Eberhardinger,
B., Huebschmann, M., and Reif, W. Combining
PosoMAS method content with Scrum: Agile software
engineering for open self-organising systems. Scalable
Computing: Practice and Experience 16, 4 (2015),
333–354.

[40] The Petri nets bibliography, University of Hamburg.
http://www.informatik.uni-
hamburg.de/TGI/pnbib/index.html.

[41] Wang, Q. Logical Foundations of Database
Transformations for Complex-Value Databases. Berlin,
Germany: Logos-Verlag, 2010.

[42] Wang, Q., Ferrarotti, F., Schewe, K.-D., and
Tec, L. A complete logic for non-deterministic
database transformations. CoRR abs/1602.07486
(2016). http://arxiv.org/abs/1602.07486.

[43] Winskel, G., and Nielsen, M. Models for
concurrency. In Handbook of Logic and the
Foundations of Computer Science: Semantic
Modelling, S. Abramsky, D. Gabbay, and T. S. E.
Maibaum, Eds., vol. 4. Oxford University Press, 1995,
pp. 1–148.

