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Abstract. With increasing demand for efficient image and video analy-
sis, test-time cost of scene parsing becomes critical for many large-scale
or time-sensitive vision applications. We propose a dynamic hierarchi-
cal model for anytime scene labeling that allows us to achieve flexible
trade-offs between efficiency and accuracy in pixel-level prediction. In
particular, our approach incorporates the cost of feature computation
and model inference, and optimizes the model performance for any given
test-time budget by learning a sequence of image-adaptive hierarchical
models. We formulate this anytime representation learning as a Markov
Decision Process with a discrete-continuous state-action space. A high-
quality policy of feature and model selection is learned based on an ap-
proximate policy iteration method with action proposal mechanism. We
demonstrate the advantages of our dynamic non-myopic anytime scene
parsing on three semantic segmentation datasets, which achieves 90% of
the state-of-the-art performances by using 15% of their overall costs.

1 Introduction

A fundamental and intriguing property of human scene understanding is its
efficiency and flexibility, in which vision systems are capable of interpreting a
scene at multiple levels of details given different time budgets [1, 2]. Despite much
progress in the pixel-level semantic scene parsing [3–6], most efforts are focused
on improving the prediction accuracy with complex structured models [7, 8] and
learned representations [9–11]. Such computation-intensive approaches often lack
the flexibility in trade-off between efficiency and accuracy, making it challenging
to apply them to large-scale data analysis or cost-sensitive applications.

In order to improve the efficiency in scene labeling, a common strategy is
to develop active inference mechanisms for the structured models used in this
task [12, 13]. This allows users to adjust the trade-off between efficiency and
accuracy for a given model, which is learned using a separate procedure with
unconstrained test-time budget. However, this may lead to a sub-optimal per-
formance for the cost-sensitive tasks.

A more appealing approach is to learn a model representation for Anytime
performance, which can stop its inference at any cost budget and achieve an op-
timal prediction performance under the cost constraint [14]. While such learned
representations have shown promising performance in anytime prediction, most
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Fig. 1. Overview of our approach. We propose to incrementally increase model com-
plexity in terms of used image features and model structure. Our approach generates
high-quality prediction at any given cost.

work address the unstructured classification problems and focus on efficient fea-
ture computation [2, 15, 16]. Only recent work of Grubb et al. [17] proposes an
anytime prediction method for scene parsing, which relies on learning a represen-
tation for individual segments. Nevertheless, to achieve coherent scene labeling,
it is important to learn a representation that also encodes the relations between
scene elements (e.g., segments).

In this work, we tackle the anytime scene labeling problem by learning a
family of structured models that captures long-range dependency between im-
age segments. Labeling with structured models, however, involves both feature
computation and inference cost. To enable anytime prediction, we propose to
generate scene parsing from spatially coarse to fine level and with increasing
number of image features. Such a strategy allows us to control both feature
computation cost and the model structure which determines the inference cost.

Specifically, we design a hierarchical model generation process based on grow-
ing a segmentation tree for each image. Starting from the root node, this process
gradually increases the overall model complexity by either splitting a subset of
leaf-node segments or adding new features to label predictors defined on the leaf
nodes. At each step, the resulting model encodes the structural dependency of
labels in the hierarchy. For any cost budget, we can stop the generation process
and produce a scene labeling by collecting the predictions from leaf nodes. An
overview of our coarse-to-fine scene parsing is shown in Figure 1. We note that
a large variety of hierarchical models can be generated with different choices of
node splitting and feature orders.

To achieve aforementioned Anytime performance, we seek a policy of gener-
ating the hierarchical models which produce high-quality or optimal pixel-level
label predictions for any given test budget. We follow the anytime setting in [16,
15], in which the test-time budget is unknown during model learning. Instead
of learning a greedy strategy, we formulate the anytime scene labeling as a se-
quential decision making problem, and define a finite-horizon Markov Decision
Process (MDP). The MDP maximizes the average label accuracy improvement
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per unit cost (or the average ‘speed’ of improvement if the cost is time) over
a range of cost budgets as a surrogate for the anytime objective, and has a
parametrized discrete action space for expanding the hierarchical models.

We solve the MDP to obtain a high-quality policy by developing an approxi-
mate least square policy iteration algorithm [18]. To cope with the parametrized
action space, we propose an action proposal mechanism to sample a pool of
candidate actions, of which the parameters are learned based on several greedy
objectives and on different subsets of images. We note that the key properties
of our learned policy are dynamic, which generates an image-dependent hierar-
chical representation, and non-myopic, which takes into account the potential
future benefits in a sequence of predictions.

We evaluate our dynamic anytime parsing method on three publicly available
semantic segmentation benchmarks, CamVid [19], Stanford Background [20] and
Siftflow [21]. The results show that our approach is favorable in terms of anytime
scene parsing compared to several state-of-the-art representation learning strate-
gies, and in particular we can achieve 90% of the state-of-the-art performances
within 15% of their total costs.

2 Related work

Semantic scene labeling has become a core problem in computer vision re-
search [3]. While early efforts tend to focus on structural models with hand-
crafted features, recent work shift towards deep convolutional neural network
based representation with significant improvement on prediction accuracy [4, 10,
6]. Hierarchical models, such as dynamic trees [22], segmentation hierarchies [23–
26] and And-Or graphs [27], have adopted for semantic parsing. However, in
general, those methods are expensive to deploy due to complex model inference
or costly features.

Most of prior work on efficient semantic parsing focus on the active inference,
which assumes redundancy in pre-learned models and achieves efficiency by al-
locating resource to an informative subset of model components. Roig et al. [12]
use perturb-and-MAP inference model to select informative unary potentials to
compute. Liu and He [28] actively select most-rewarding subgraphs for video
segmentation. In [29], a local classifier is learned to select views for multi-view
semantic labeling. Unlike these methods, we explicitly learn a representation for
achieving strong performance at any test-time budget.

Learning anytime representation has been extensively explored for unstruc-
tured prediction problems (e.g., classification) [15, 16]. Karayev et al. [2] learn
an anytime representation for object and scene recognition, focusing on dynamic
feature selection under a total budget. Weiss and Taskar [13] develop a reinforce-
ment learning framework for feature selection in structured models. In contrast,
we consider both feature computation and model inference cost. More impor-
tantly, we incorporate the cost in an MDP reward which encourages anytime
property. Unlike [2], the test-time budget is explicitly unknown during learning
in our setting. Perhaps the most related work is [17], which learns a segment-



4 Buyu Liu and Xuming He

based anytime representation consisting of a selection function and a boosted
predictor for individual segments. Their policy of segment and feature selection
is trained in a greedy manner based on [16] and a single strategy is applied to all
the images. By contrast, we build a structured hierarchical model on segmenta-
tion trees and learn an image-adaptive policy.

More generally, cost-sensitive learning and inference have been widely studied
in learning and vision literature under various different contexts, including fea-
ture selection [30], learning classifier cascade by empirical risk minimization [31,
32] or Wald’s sequential ratio test [33], model selection [34, 35], prioritized mes-
sage passing inference [36], object detection [37], and activity recognition [38].
However, few approaches have been designed for optimizing the anytime predic-
tion performance [14], or considering both feature and inference costs. We note
that while the MDP framework has been extensively used in those methods, our
formulation of discrete-continuous MDP is tailored for anytime scene parsing.

Unfolding and learning inference in graphical models has been explored in
various inference machines [26, 39]. Nevertheless, such methods usually use a
greedy approach to learn the messages or model predictions. [40] use reinforce-
ment learning to obtain a dynamic deep network model, but they do not address
the structured prediction problem. Lastly, we note that, although some search-
based structured prediction methods [41, 42] are capable of terminating inference
and generating outputs at any time, they usually do not consider feature com-
putation cost and are not optimized for anytime performance.

3 Anytime scene labeling with a hierarchical model

We aim to learn a structured model representation with anytime performance
property for semantic scene labeling. As structured prediction involves both
feature computation and inference, we need a flexible representation that allows
us to control the cost of feature and inference computation. To this end, we first
introduce a family of hierarchical models based on image segmentation trees in
Sec 3.1, which is capable of incrementally increasing its complexity in terms of
used image features and model structure.

We then formulate the anytime scene labeling as a sequential feature and
model selection process in this model family with a cost-sensitive labeling loss
in Sec 3.2 and Sec 3.3. Based on an MDP framework, our goal is to learn an
optimal selection policy to generate a sequence of hierarchical models from a set
of annotated images. In Sec 4, we develop an iterative procedure to solve the
policy learning problem approximately.

3.1 Coarse-to-fine scene parsing with a segmentation hierarchy

We now introduce a flexible hierarchical representation for semantic parsing that
enables us to control the test-time complexity. To achieve effective semantic
labeling, we want to design a model framework capable of incorporating rich
image features, modeling long-range dependency between regions and achieving
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anytime property. To this end, we adopt a coarse-to-fine scene labeling strategy,
and consider a family of hierarchical models built on image segmentation trees,
which has a simplified form of the Hierarchical Inference Machine (HIM) [26].

Specifically, given an image I, we construct a sequence of segmentation trees
by recursively partitioning the image using graph-based algorithms [43, 44]. We
then develop a sequence of hierarchical models that predict label marginal dis-
tributions on the leaf nodes of the segmentation trees. Formally, let the semantic
label space be Y. We start from an initial segmentation tree T 0 with a single
node and a marginal distribution Q0 = {q0} on the node, which can be uniform
or a global label prior. We incrementally grow the tree and update the prediction
of marginal distributions on the leaf nodes by two update operators described
in detail below, which generates a sequence of hierarchical models for labeling,
denoted by M1, · · · ,MT , where T is the total number of steps.

At each step t, the hierarchical model Mt consists of a tree T t and a set of
predicted label distributions on the tree’s leaf nodes, Qt. More concretely, we
denote the leaf nodes of T t as Bt = {b1, · · · , bNt

} where Nt is the number of leaf
nodes. We associate each leaf-node segment bi with a label variable yti indicating
its dominant label assignment. Let the label distributions Qt = {qti}

Nt
i=1, where

qti is the current label marginals at node bi. We generate the next hierarchical
model Mt+1 by applying the following two update operators.
Split-inherit update. We choose a subset of leaf-node segments and split them
into finer scale segments in the segmentation tree. The selection criterion is based
on the entropy of the node marginals H(qti), and all the nodes with H(qti) > θt
will split into their children [17]. θt is a parameter of the operator and θt ∈ R.
The new leaf-node segments inherit the marginal distributions of their parents.

qt+1
i (k) = qtpa(i)(k), k ∈ Y, i ∈ Bt+1 (1)

where Bt+1 is the new leaf node set and pa(i) indicates the parent node of i in
the new tree T t+1. We denote the parameter space of the operator as Θ.
Local belief update. For the newly generated leaf nodes from splitting, we
improve their marginal distributions by adding more image cues or context in-
formation from their parents. Specifically, we extract a set of input features xi
from segment bi, and adopt a boosting-like strategy: Using a weak learner tak-
ing the image feature xi and the marginal of its parent qtpa(i) as input [26], we
update the marginals of leaf nodes as follows,

qt+1
i (k) ∝ qti(k) exp

(
αth

t
k(f ti (j))

)
, k ∈ Y, f ti = [xi,q

t
pa(i)] (2)

where f ti (j) is the j-th feature used in the weak learner; ht = [h1t , ..., h
|Y|
t ] and αt

are the newly added weak learners and their coefficient, respectively. We denote
the weak learner space as H and αtht ∈ H.

By applying a sequence of these update operators to the segmentation tree
from its root node, we can generate a dynamically growing hierarchical models
for scene labeling (see Fig 2 for an illustration). We refer to the resulting struc-
tured models as the Dynamic Hierarchical Model (DHM). We use ‘dynamic’ to
indicate that our model generation process can vary from image to image or
given different choices of the operators, which is not predetermined by greedy
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Fig. 2. Example of operators at step t. We choose either to add weak learners or split
a subset of leaf nodes, which leads to gradually increasing model complexity.

learning as in [26]. Using DHM as our representation for anytime scene labeling
has several advantages. First, a DHM is capable of generating a sequence of
model predictions with incrementally increasing cost as every update operator
can be computed efficiently. In addition, it utilizes multiscale region grouping
to create models from coarse to fine level, leading to gradually increasing model
complexity. Furthermore, it has a flexible structure to select image features by
weak learners and to capture long-range dependency between segments, which
is critical to achieve the state-of-the-art performance for any test-time budget.

3.2 Anytime scene labeling by cost-sensitive DHM generation

Given the dynamic hierarchical scene models defined in Sec 3.1, we now formulate
the anytime scene labeling as a cost-sensitive DHM generation problem. Specif-
ically, we want to find a model generation strategy, which selects an sequence of
image-dependent update operators, such that the incrementally built hierarchi-
cal models achieve good performance (measured by average labeling accuracy)
at all possible test-time cost budgets. To address this sequential selection prob-
lem, we model the cost-sensitive model generation as a Markov Decision Process
(MDP) that encourages good anytime performance with a cost-sensitive reward
function. By solving this MDP, we are able to find a policy of selection that
yields a sequence of hierarchical models with high-quality anytime performance.

Concretely, we first model an episode of coarse-to-fine DHM generation as
an MDP with finite horizon. This MDP consists of a tuple {S,A, T (·), R(·), γ},
which defines its state space, action space, state transition, reward function and
a discounting factor, respectively.

State: At time t, the state st ∈ S represents the current segment set cor-
responding to the leaf nodes of the segmentation tree and the label marginal
distributions on the leaf nodes. As in Sec 3.1, we denote the leaf-node segment
set and the corresponding marginal label distributions as Bt = {bi}Nt

i=1 and

Qt = {qti}
Nt
i=1 respectively. We also introduce an indicator vector Zt ∈ {0, 1}Nt

to describe an active set of leaf-nodes at t, in which Zt(k) = 1 indicates the leaf
node bk is newly generated by splitting. Altogether, we define st = {Bt,Qt, Zt}.

Action: The action set A consists of the two types of update operators de-
fined in Sec 3.1. We denoted them by {us(θ), ub(αh)}. For at = us(θt), we choose
to split a subset of leaf-node segments of which the entropy of predicted marginal
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distributions are greater than θt. For at = αtht, we apply the local belief update
to the active nodes in Zt using the weak learner αtht ∈ H. Note that the action
space A is a discrete-continuous space Θ ∪H due to their parameterization.

State Transition: The state transition T (st+1|st, at) is a deterministic func-
tion in our MDP. For at = θt, it expands the tree and generates a new set of
leaf-node segments Bt+1 with inherited marginals Qt+1 as defined in Eqn (1).
The new active regions are the newly generated leaf-nodes from splitting, de-
noted by Zt+1. The action at = αtht keeps the tree structure and active regions
unchanged, such that Bt+1 = Bt and Zt+1 = Zt; while it only updates the node
marginals Qt+1 according to Eqn (2).

Reward Function and γ: The reward function R defines a mapping from
(st, at) to rewards in R and γ is a discount factor that determines the lookahead
in selection actions. For the anytime learning problem, we design a reward func-
tion that is cost-sensitive and encourages the sequence of generated models can
achieve good labeling accuracies across a range of possible cost budgets. The
details of the reward function and γ will be discussed in the next subsection.

3.3 Defining reward function

We now define a reward function that favors a coarse-to-fine dynamic hierar-
chical model generation with anytime performance. To this end, we first describe
the action costs of the MDP, which compute the overall cost of model prediction.
We then introduce a labeling loss for our hierarchical models, based on which
the cost-sensitive reward and the value function of the MDP are defined.

Action Cost: The action cost represents the cost of scene labeling using a
hierarchical model, which consists of feature extraction cost cft for computing
feature set ft (from the entire image or specific regions), region split cost cr for
pooling features for newly split regions, total weak learner cost cht for applying
the weak learner αtht to predict labels. For each action at, we define the action
cost c(at) as cht

+ cft if at = ub, or cr if at = us. In this work, we use the CPU
time used in at as a surrogate for the computation cost while any other type of
costs can also be applied.

Labeling loss of DHMs: Given a hierarchical model represented by st, we
introduce a loss function measuring the scene labeling performance. Particularly,
we adopted an entropy-based labeling loss function defined as follows,

L(st, Ŷ|I) = −
∑
i∈Bt

wip
T
i log(qti)− α

∑
i∈Bt

wip
T
i log(pi), (3)

where pi is the ground-truth label distribution in region bi ∈ Bt, derived from
the ground-truth labeling Ŷ, and wi denotes its normalized size. The first term is
the cross-entropy between the marginals and the ground-truth while the second
term penalizes the regions with mixed labels. These two terms reflect the label
prediction and image partition quality respectively and we further introduce a
weight α to control their balance. Intuitively, the loss favors a model with a
sensible image segmentation and a good prediction for the segment labels. A
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larger α prefers to learn predictors after reaching fine levels in hierarchy while a
small value may lead to stronger predictors at all levels.

Cost-sensitive reward: To achieve the anytime performance, an ideal model
generation sequence will minimize the labeling loss as fast as possible such that it
can obtain high quality scene labeling for a full range of cost budgets. Following
this intuition, we define the reward for action at as the labeling loss improvement
between st+1 and st normalized by the cost of at [16]. Formally, we define the
reward as,

R(st, at|I) =
1

c(at)

[
L(st, Ŷ|I)− L(st+1, Ŷ|I)

]
(4)

where c(at) summarizes all the computation cost in the action at.
Policy and value function: A policy of the MDP is a function mapping

from a state to an action, π(s) : S → A. The value function of the MDP at state
st under policy π is the total accumulated reward defined as,

Vπ(st) =

T∑
τ=t

γτ−tR(sτ , π(sτ )|I) (5)

where T is the number of actions taken and s0 is the initial state. Our goal is to
find an optimal policy π∗ that maximizes the expected value function over the
image space for any state st. We will discuss how to learn such a policy using
a training set in the following section. We note that our objective describes a
weighted average speed of labeling performance improvement (c.f. (4) (5)), and
γ controls how greedy the policy would be. When γ = 0, the optimal policy
maximizes a myopic objective as in [16]. We choose γ > 0 so that our policy also
considers potential future benefit (i.e., fast improvement in later stages).

4 Learning anytime scene labeling

To learn anytime scene labeling, we want to seek a policy π∗ to maximize the
expected value function for any state st in a MDP framework. Given a training
set D = {I(m), Ŷ(m)}Mm=1 with M images, the learning problem is defined as,

π∗(st) = argmax
π

ED[Vπ(st)] = argmax
π

1

M

M∑
m=1

T∑
τ=t

γτ−tR(sτ , π(sτ )|Im), ∀t (6)

where ED is the empirical expectation on the dataset D. The main challenge
in solving this MDP is to explore the parametrized action space A due to its
discrete-continuous nature and high-dimensionality. In this work, we design an
action generation strategy that proposes a finite set of effective parameters for
the actions. We then use the proposed action pool as our discrete action space
and develop a least square policy learning procedure to find a high quality policy.

4.1 Action proposal generation

To cope with the parameterized actions, we discretize the parameter space Θ ∪
H by generating a finite set of effective and diversified parameter values. Our
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discretization uses a greedy learning criterion to generate a sequence of actions
with instantiated parameters based on the training set D.

Specifically, we start from s0 for all the training images, and generate a
sequence of actions and states (which corresponds to a sequence of hierarchical
models) as follows. At step t, we first discretize Θ by uniformly sample the 1D
space. For the weak learner space H, we generate a set of weak learners by
minimizing the following regression loss as in the Greedy Miser method [45]:

αt,ht = arg min
α,h

∑
i∈Dt

wi‖pi − qt−1i − αh(f ti )‖2 + λ(cht + cft) (7)

where Dt = {i|Ztm(i) = 1,m = 1, . . . ,M} is the set of all active nodes at step t in
all M images, and pi and qt−1i are the ground-truth marginal and the previous
marginal prediction on node i respectively. The second term regularizes the loss
with the cost of applying the weak learner and a weight parameter λ controls its
strength. We obtain several weak learner αtht by varying the value of λ. From
these discretized actions, denoted by Ats, we then select a most effective action
using our reward function, a0t = arg maxat∈At

s
ED[R(st, at|I)]. We continue this

process until step T based on a held-out validation set, and {a0t}Tt=1 is a sampled
action sequence.

To increase the diversity of our discrete action candidates, we also apply
the same action proposal generation method to different subsets of images. The
image subsets are formed by K-means clustering and we refer the reader to the
supplementary for the details. Finally we combine all the generated discrete
action sequences as our action candidates to form a new discrete action space
Ad, which is used for learning our policy.

4.2 Least-square policy iteration for solving MDP

In order to find a high-quality policy π∗d on Ad, we adopt an approximate least-
square policy iteration approach and learn a parametrized Q-function [18, 13],
which can be generalized to the test scenario. Specifically, we use a linear function
to approximate the Q-function, and the approximate Q and corresponding policy
can be written as

Q̂(st, at) = ηTφ(st, at), (8)

πd(st) = arg max
at∈Ad

Q̂(st, at) (9)

where φ(st, at) is the meta-feature of the model computed from the current
state st and action at. η is the linear coefficient to be learned. We will discuss
the details of our meta-feature in Sec 5.1.

Our least-square policy iteration procedure includes the following three steps,
which starts from an initial policy π0

d and iteratively improves the policy.

A. Policy initialization We initialize the policy π0
d by a greedy action selec-

tion that optimizes the average immediate reward on the training set at each time
step. Specifically, at each t, we choose π0

d(st) = arg maxat∈Ad ED[R(st, at|I)].



10 Buyu Liu and Xuming He

B. Policy evaluation. Given a policy πnd at iteration n, we execute the
policy for each training example to generate a trajectory {(smt , amt )}Mm=1. We
then compute the value function of the policy recursively based on Qπ(st, at) =
R(st, at|I) + γQπ(st+1, at+1). As in [13], we only consider the non-negative con-
tribution of Qπ, which allows early stop if the reward is no longer positive,

Qπ(smt , a
m
t ) = R(smt , a

m
t ) + γ[Qπ(smt+1, a

m
t+1)]+ (10)

C. Policy improvement. Given a set of trajectories {(smt , amt )}Mm=1 and
the corresponding Q-function value {Qπ(smt , a

m
t )}Mm=1, we update the linear ap-

proximate Q̂ by solving the following least-square regression problem:

min
η
β‖η‖2 +

1

TM

∑
m

∑
t

(
ηTφ(smt , a

m
t )−Qπ(smt , a

m
t )
)2

(11)

where the iteration index n is omitted here for clarity. Denote the solution as η∗,
we can compute the new updated policy πn+1

d (st) = arg maxat η
∗φ(st, at). We

also add a small amount of uniformly distributed random noise to the updated
policy as in [2]. We perform policy evaluation (Step B) and improvement iteration
(Step C) several times until the segmentation performance does not change in a
held-out validation set.

During the test, we apply the learned policy πd to an test image, which pro-
duces a trajectory {(s0, a0), (s1, a1), . . . , (sT , aT )}. The state sequence defines a
coarse-to-fine scene labeling process based on the generated hierarchical models.
For any given cost budget, we can stop the scene labeling process and use the
leaf-node marginal label distributions (i.e., taking the most likely label) to make
a pixel-wise label prediction for the entire image. More detailed discussion of the
test-time procedure can be found in the supplementary.

5 Experiments

We evaluate our method on three publicly available datasets, including CamVid [19],
Standford Background [20] and Siftflow [21]. We focus on CamVid [19] as it pro-
vides more complex scenes with multiple foreground object classes of various
scales. We refer the reader to supplementary material for the details of datasets.

5.1 Implementation details

Feature set and action proposal: We extract 9 different visual features
(Semantics using Darwin [46], Geometric, Color and Position, Texture, LBP,
HoG, SIFT and hyper-column feature [5, 4]). In action proposal, the weak learner
αtht is learned as in Sec 4.1 using [45]. To propose multiple weak learners with
a variety of costs, we also learn p weak learners sequentially where p is set to
5,10 and 20 empirically and use them as action candidates. As for split action,
we discretize Θ into {0, 0.3, 0.6, 1} and we generate a 8-layer hierarchy using [43]
as in [17]. In our experiment, we use grid search method and choose the set of
hyper-parameters that gives us the optimal pixel-level prediction.
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The cost of each feature type measures the computation time for an entire
image. We note that this cost can be further reduced by efficient implementation
of local features. The segmentation time is taken into account as an initial cost
during the evaluation in order to have a fair comparison with existing methods.
More details on cost computation can be found in the supplementary materials.
Policy learning features: We design three sets of features for φ(st, at). The
first are computed from marginal distributions on all regions, consisting of the
average entropy, the average entropy gap between previous marginal estimation
and current marginals, two binary vectors of length 9 to indicate which feature
set has been used and which unseen feature set will be extracted respectively, and
one vector for the statistics of difference in current marginal probabilities of the
top two predictions. The second are region features on active leaf nodes, includ-
ing the normalized area of active regions in current image, the average entropy
of active regions and the average entropy gap between previous and current pre-
diction in active regions. The third layer features consist of the distribution of all
regions in hierarchies and the distribution of active regions in hierarchies. More
details on policy learning features can be found in the supplementary material.

5.2 Baseline methods

We compare our approach to two types of baselines as below. We also report the
state-of-the-art performances on three datasets.
•Non-anytime CRF-based methods using the full feature set: 1) A fully-connected
CRF (DCRF) model [47] whose data term is learned on finest layer of segmenta-
tion trees; 2) A Hierarchical Inference Machine (HIM) implemented by following
the algorithm in [26]; 3) A pixel-level dense CRF model with superpixel higher-
order terms (H-DCRF) as in [48]. They prove to be strong baselines for scene
labeling tasks.
• Three strong anytime baselines, including a Static-Myopic (S-M), a Random
Selection (RS) and a static-myopic feature selection (F-SM) anytime model. The
static-myopic method (S-M) learns a fixed sequence of actions by maximizing
immediate rewards on training set (cf. {a0t}Tt=1 in Sec 4.1). The random selection
method (RS) uses our action pool and randomly takes an action at each step.
The feature selection method (F-SM) uses the DCRF above as its model and
greedily selects features that maximize the immediate rewards. We note that the
baselines utilize some state-of-the-art feature selection methods such as [45, 16],
and our RS baseline is built on the learned high-quality action pool.

5.3 Results

We report the results of our experiments on anytime scene labeling in three
parts: 1) overall comparison with the baselines and the state-of-the-art methods
on CamVid. 2) detailed analysis of anytime property on CamVid. 3) results on
Stanford Background and Siftflow datasets.

Overall performance on CamVid. We first show the quantitative re-
sults of our method and compare with state-of-the-art methods in Fig 3.(a) and
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Fig. 3. (a) : Average pixel accuracy v.s. cost; (b) : percentage of performance v.s.
percentage of cost; (c) : average per-image accuracy gap v.s. total cost in CamVid. Our
D-NM consistently outperforms S-M in all figures and achieves full performance using
about 50% total cost. Moreover, it outperforms all anytime baselines consistently and
achieves better performance w.r.t. non-anytime state-of-the-art.

CamVid Tighe [49] SIM [17]
Video Detector Video

DCRF
H-

HIM
D-NM

[19] [51] [50] DCRF (ours)

Pixel 83.3 81.5 69.1 83.2 83.8 83.2 83.9 84.5 84.7

Class 51.2 54.8 53.0 59.6 59.2 59.8 60.0 60.5 60.2

IOU NA NA NA 49.3 49.2 46.3 48.4 49.3 48.8

Table 1. Performance comparison on CamVid. D-NM outperforms [49, 17], especially
in average class accuracy. Our results are comparable to [19, 50, 51] that use additional
information. We achieve a performance similar to HIM and DCRF with less cost.

Table 1. We compute the accuracy and Intersection-Over-Union(IOU) score of
semantic segmentation on CamVid. Note that here we report the performance of
anytime methods at the time budget of TDCRF , which is the average prediction
time of DCRF. In Table 1, we can see that our method achieves better perfor-
mance than DCRF in terms of per-pixel accuracy and IOU score, and DCRF is a
strong baseline since it uses the full feature set. Our per-pixel accuracy is compa-
rable to the HIM, which uses the most complex model and full feature set, while
we achieve similar performance with about 50% of its computation cost (See be-
low for details). In addition, we outperform all the rest of state-of-the-art meth-
ods [49, 17], especially in terms of average per-class accuracy (5.4% to 9% abso-
lute gap). Moreover, we achieve similar or slightly better performance w.r.t. the
methods that use additional information such as Structure-from-Motion(SfM) of
video sequence [19, 50] or pre-trained object detectors [51].

We conduct comparisons on the anytime performance of our methods and
baselines in Fig 3.(a) and (b). We introduce a plot (b) showing all the per-
formance and cost values w.r.t the HIM and its prediction cost since it is the
state-of-the-art and most costly. Specifically, Figure 3.(b) shows the percentage
of average pixel-level accuracy v.s. percentage of total cost curves of our methods
and baselines w.r.t the HIM. We note that this illustration is invariant to the
specific values of prediction cost/time, and shows how the accuracy improves
with increasing cost.
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Fig. 4. Average pixel accuracy as a function of cost and the percentage performance
v.s. percentage of cost in SBG (a,b) and Siftflow (c,d), respectively. D-NM achieves
similar performance with less cost. Cost of related work is from [52].

We first show comparison of our method with all the anytime and non-
anytime baselines in Figure 3.(b), which also highlights two sets of intermedi-
ate results. Our dynamic policy D-NM achieves the 90% of performance using
only around 10% cost and outperforms the S-M consistently. Specifically, D-NM
achieves similar performance with around half S-M test-time cost (13% and 21%
v.s. 28% and 55%). Moreover, D-NM achieves the full performance of HIM with
around 50% total cost while S-M saturates at a lower accuracy. We refer the
reader to the supplementary material for examples of our anytime output with
specific actions.

Anytime property analysis on CamVid. We analyze the anytime prop-
erty of our method by comparing to three different baselines. First, we validate
the importance of encoding model complexity in anytime prediction model by
comparing with F-SM (fixed model with feature selection). Second, we evalu-
ate the effectiveness of policy learning by comparing with RS (random search
on the same action space). Results of these two comparisons can be viewed in
Figure 3.(a). Finally, we explore the effectiveness of action space exploration by
generating the oracle results of D-NM on CamVid test set in Figure 3.(c).

Figure 3.(a) shows that the D-NM outperforms all baselines consistently
and generates superior results under the same cost. RS is almost always the
worst and far below D-NM, which shows our policy learning is important and
effective to achieve better trade-offs between accuracy and cost. F-SM is slightly
above S-M at the beginning and always below D-NM. Moreover, due to the
limited representation power of its fixed model, F-SM quickly stabilizes at a
lower performance. This demonstrates the benefits of joint feature and model
selection in our method. We also visualize results of other methods (crossings)
and show that we can achieve better performance more efficiently. These results
evidence that our method can learn a better representation for anytime scene
parsing. Detailed averaged IOU score and labeling loss as a function of cost,
area-under-average-accuracy table can be viewed in supplementary materials.

Figure 3.(c) shows the average per-image accuracy gap w.r.t the S-M method
as a function of total cost. We note that D-NM always achieves superior per-
formance to the S-M. We also visualize the oracle performance of D-NM. D-
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SBG RCPN [53]
Tighe Gould Farabet Pinheiro Sharma H-

S-M
D-NM

[49] [20] [9] [54] [52] DCRF (ours)

Pixel 81.8 77.5 76.4 81.4 80.2 82.3 82.6 81.7 83.0

IOU 61.3 NA NA NA NA 64.5 64.7 61.4 64.7
Table 2. Semantic segmentation results on Stanford background dataset. We can
achieve better performance w.r.t state-of-the-art methods.

Siftflow
RCPN Yang Pinheiro Liu Tighe FCN Farabet Sharma H-

S-M
D-NM

[53] [55] [54] [21] [49] [4] [9] [52] DCRF (ours)

Pixel 79.6 79.8 77.7 76.7 77.0 85.7 78.5 80.8 85.8 85.8 85.8

IOU 26.9 NA NA NA NA 36.7 NA 30.7 36.7 35.8 36.7
Table 3. Semantic segmentation results on Siftflow dataset. We can achieve compara-
ble/better performance w.r.t. state-of-the-art methods.

NM-oracle is always above S-M, which proves the effectiveness of action space
exploration. Also, the early stop of oracles shows that more features or complex
models will not introduce further segmentation improvement. Our D-NM is only
slightly below D-NM-oracle, which shows the effectiveness of policy learning.

Stanford Background. Results on Stanford Background dataset [20] are
shown in Table 2. D-NM outperforms existing work in terms of pixel-level ac-
curacy and IOU score. We visualize the anytime property in Figure 4.(a) and
(b). Figure 4.(a) shows that D-NM achieves the state-of-the-art performance
(crossings) more efficiently while S-M stops at a lower performance. Figure 4.(b)
highlights two sets of intermediate results and shows that D-NM generates sim-
ilar results with about half of the S-M cost (11% and 15% v.s. 25% and 28%).

Siftflow. We report our results on Siftflow dataset [21] in Table 3. Again,
D-NM achieves the state-of-the-art in terms of pixel level accuracy and IOU
score. Figure 4.(c) shows its anytime performance curves and Figure 4.(d) also
highlights two sets of intermediate results. We can see that D-NM achieves the
state-of-the-art performance (crossings) more efficiently, and produces similar
accuracy with much less cost.

6 Conclusion

In this paper, we presented a dynamic hierarchical model for anytime seman-
tic scene segmentation. Our anytime representation is built on a coarse-to-fine
segmentation tree, which enables us to select both discriminative features and
effective model structure for cost-sensitive scene labeling. We developed an MDP
formulation and an approximated policy iteration method with an action pro-
posal mechanism for learning the anytime representation. The results of applying
our method to three semantic segmentation datasets show that our algorithm
consistently outperforms the baseline approaches and the state-of-the-arts.This
suggests that our learned dynamic non-myopic policy generates a more effective
representation for anytime scene labeling.
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1. Hegdé, J.: Time course of visual perception: coarse-to-fine processing and beyond.
Progress in neurobiology (2008)

2. Karayev, S., Fritz, M., Darrell, T.: Anytime recognition of objects and scenes. In:
CVPR. (2014)

3. Gould, S., He, X.: Scene understanding by labeling pixels. CACM (2014)

4. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. CVPR (2015)
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