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Abstract In recent years the machine learning community has witnessed a tremendous
growth in the development of kernel-based learning algorithms. However, the performance
of this class of algorithms greatly depends on the choice of the kernel function. Kernel func-
tion implicitly represents the inner product between a pairof points of a dataset in a higher
dimensional space. This inner product amounts to the similarity between points and pro-
vide a solid foundation for nonlinear analysis in kernel-based learning algorithms. The most
important challenge in kernel-based learning is the selection of an appropriate kernel for a
given dataset. To remedy this problem, algorithms to learn the kernel have recently been
proposed. These methods formulate a learning algorithm that finds an optimal kernel for a
given dataset. In this paper, we present an overview of thesealgorithms and provide a com-
parison of various approaches to find an optimal kernel. Furthermore, a list of pivotal issues
that lead to efficient design of such algorithms will be presented.

Keywords Machine Learning, Kernel methods, Learning the kernels

1 Introduction

Kernel-based algorithms (Scholkopf and Smola, 2001; Shawe-Taylor and Cristianini,
2004; Smola et al, 2007) (also known as kernel methods or kernel machines) have recently
gained a significant attention in machine learning community. Supervised algorithms such as
support vector machine (SVM) (Vapnik, 1999) and kernel discriminant analysis (Mika et al,
1999) as well as unsupervised algorithms like kernel principle component analysis (kernel-
PCA) (Scholkopf et al, 1998) and support vector clustering (Ben-Hur et al, 2002) have been
successfully applied to various real-world problems. Due to lower error rate compared to
other learning methods, relatively fast training time and elegant compatibility with high
dimensional data these algorithms are the potential solutions to many problems.

The theoretical origins of the kernel methods may be traced to the work of Aronszajn
(Aronszajn, 1950) where the reproducing kernels were developed based on the foundation
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laid by the Mercer’s theorem (Mercer, 1909). In later years,with the paradigm shift in ma-
chine learning towards nonlinear techniques, kernel methods have attracted more attention.
This is because of their sound mathematical justification and better performance compared
to their counterparts such as artificial neural network (ANN) and decision trees particularly
in tackling nonlinear problems.

Kernel methods have revolutionized nonlinear learning algorithms bynonlinear map-
ping of data points to a higher, or possibly infinite, dimensionalspace (known asfeature
space) such that building a model (hypothesis) for a problem is easier. These approaches
are called the kernel methods due to their dependency on the concept ofkernel functions. A
kernel function represents the inner product of the implicitly mapped points in a high dimen-
sional space. This implicit mapping eliminates the need forcostly feature transformations
and leads to an efficient computation.

In kernel methods, the problem is modeled as a pairwise relation between data points
which is captured in kernels. Thus kernel functions (or simply kernels) have a profound
impact on the performance of these learning algorithms. However, selection of the appropri-
ate kernel function, and possibly its parameters known ashyper-parameters, are extremely
challenging. It is mostly due to the difficulty of explicitlyaccessing the high dimensional
space. To remedy this problem, a new trend in machine learning known aslearning the ker-
nel, (or kernel learning or kernel selection (Herbster et al, 2005; Kulis et al, 2009; Lanckriet
et al, 2004b; Shaw and Jebara, 2009; Williams et al, 2007; Zhengdong Lu and Dhillon,
2009)), is becoming popular. Learning the kernel aims to select an optimal kernel, or its
hyper-parameters, to best define the nature of the underlying data. In simple terms one can
describe this area of learning the kernel, as an attempt to find a kernel by either constructing
a new kernel or fine-tuning the parameters of a given kernel for a specific dataset to achieve
better performance.

In spite of all the recent advances in this area, there has notbeen any authoritative review
of current methods in this relatively new and active area of research. In this paper we hope to
provide an extensive review of the state of the art that helpsresearchers to further address the
problem of learning the kernel. Moreover, to the best of our knowledge these algorithms have
not been classified so that they can be easily compared. The contributions of this paper are
twofold: first, to provide a review and comparison of the current approaches and investigate
their merits; second, to present the challenging aspects ofthis problem and the approaches
to address them.

This paper is organized as follows: in the subsequent section the kernel function is in-
troduced in more details. Later in Section 3, various aspects of the problem of learning the
kernels are presented. Each of these aspects may be considered for further improvements. In
Section 3.6, the algorithms in the area, categorized based on their optimality conditions, are
detailed. The conclusion and the remarks for future developments are presented in Section
4.

2 Kernel functions

Kernel functions represent the inner product of the data points which amounts to the
angle between their vectors. Consequently, it may be interpreted as thesimilarity between
data points. Therefore, any learning algorithm that needs ameasure of similarity can use a
kernel function for that purpose. Furthermore, through what is known askernel trick a large
body of well-established linear algorithms may be easily converted to nonlinear methods.
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Formally, a kernel functionk for a datasetX = {x1, x2, . . . , xn} is defined as:

k(xi, xj) = 〈φ(xi), φ(xj)〉, k : X × X → R (1)

whereφ denotesfeature map which maps the points nonlinearly to Hilbert spaceH, i.e.
φ : Rd → H. The kernel functionk can be further used to build kernel matrixK as:

K = (k(xi, xj))ij ∀i, j = 1, 2, . . . , n (2)

Examples of popular kernel functions arek(x, x′) = x⊤x′ (Linear kernel),k(x, x′) =

exp( −‖x− x′‖2 /2σ2) (Gaussian kernel with bandwidthσ) andk(x, x′) = (x⊤x′ + 1)d

(Polynomial kernel with degreed) wherex andx′ represent any two points in the data space.
The bandwidthσ and degreed are examples of kernel hyper-parameters. It can be shown
that each of these functions amounts to an inner product of points inH. In fact, as Mercer’s
theorem states, the only necessary condition for a functionto represent inner product of two
points in a higher dimensional space is its positive definiteness. It is a remarkable theorem
that lays the foundation for constructing kernel functionswithout any need for direct defini-
tion of the mapping functions. Therefore, as long as one can prove that the matrix (function)
is positive definite, it surely defines an inner product in a higher dimensional space and may
be used in any kernel-based learning algorithm.

3 The challenges of learning the kernel

Learning the kernel is a challenging problem. It is because the implicit mapping of the
points to the feature space deters direct analysis. Furthermore, any changes to the kernel
have to be performed with respect to the constraint on its positive definiteness which is
practically complicated to be applied for the given dataset. Additionally, the mapping func-
tion that projects data to the feature space cannot be directly defined or accessed for analysis.
By learning the kernel, we hope to tackle these issues to achieve improved performance. The
improved performance of a kernel implies the effectivenessof a kernel in defining similar-
ities, capturing distinctions between data points and representing an optimal inner product
that leads to a better generalization to the unseen examplesin the kernel methods.

The crucial question to be answered in this area is how well a kernel performs for a
given dataset. This question is closely related to other learning algorithms where the learning
criteria assess the efficiency of the algorithm (e.g. maximum margin in SVM). In the area of
learning the kernels, similar criteria have to be defined to guarantee the performance of the
algorithm. These criteria manifest the principles that will lead to an optimal kernel. As these
criteria assess the optimality of a kernel and provide the conditions for improvement of the
kernel for the given dataset, we shall call themoptimality conditions1. These conditions lay
the foundation of learning the kernel and justify the optimization of the kernel.

Optimality conditions in kernel selection, similar to any other learning method, lead to
specifying particular objective or formulation of an idealcase whose fulfillment is sought.
For example, assessment of the performance of the model based on minimization of the error
rates using labeled data is a widely used optimality condition. In definition of the optimality
conditions usually nature of the problem like the availability of labeled data, dimensions of
the data, etc. is taken into account. The classification of current optimality conditions is as

1 In most of the current approaches, these conditions are imposed on the problem as optimization con-
straints, as such we may use these terms interchangeably.
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Fig. 1 The common process in learning the kernels.

follows: prior knowledge for optimality, statistical approaches to learn the kernel, adaptation
to another kernel, bounds on error rates of the learner and intrinsic structure of the dataset.

Optimality conditions are incorporated into learning the kernels similar to learning cri-
teria in learning algorithms. Any learning algorithm starts by investigating the data and
subsequently hypothesizing an appropriate model that bestdescribes the underlying pattern
of the problem. In the kernel methods, this model depends on the kernel. As shown in Fig. 1,
the kernel may be learnt prior to hypothesizing the model in kernel machines. In each stage
the appropriate conditions have to be considered in respective learning problem to ensure
the optimality of the solution.

In addition to optimality conditions, other aspects that lead to distinction in learning
the kernels may also be considered: optimization, kernel learning model, kernel selection
phase, learning type and the optimal kernel obtained. Further discussion on these aspects is
crucial for understanding the nature of these algorithms and their advantages or drawbacks
compared to others. On the other hand, such distinctions lead to a systematic classification
of algorithms in this area, as shown in Fig. 2, that has not been investigated so far due to the
contemporary rise of interest. These aspects shall be detailed below.

3.1 Optimization

Optimization and machine learning are two very closely related fields of research. As
typical to most of the learning algorithms, learning the kernels may also be formulated as an
optimization problem. There is a wide range of optimizationtechniques, each of which ex-
hibits different properties. As such, formulation of the objective in a learning problem with
superior performance of the optimization is sought. In learning the kernels in particular, vari-
ations of convex optimization (Boyd and Vandenberghe, 2004) has been very popular (Fung
et al, 2008; Hoi et al, 2006; Lanckriet et al, 2004b). A reasonfor this popularity is the guar-
antee on the uniqueness of the solution in convex problems. However, the implementation
of such techniques and analysis of their performance is not generally straightforward. Nev-
ertheless, there are publicly available toolboxes likeCVX(Grant and Boyd, 2008, 2009) that
can solve these problems efficiently. On the other hand, gradient-based approaches (Cortes
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Fig. 2 The most important aspects of the algorithms for learning a kernel is summarized in this classification.

et al, 2009; Szafranski et al, 2008) are easy to implement, efficient and simple to under-
stand. However, gradient-descent requires the objective function to be differentiable which
is usually challenging to formulate.

3.2 Kernel learning model

In order to learn the kernel one can develop a procedure to either improve base kernels
or construct a new one from scratch based on the information obtained from data. In partic-
ular, we consider three families of models: data-dependent, nonparametric and parametric.
First family is the kernels created from available data and referred to asdata-dependent
kernels. These kernels, such as Fisher (Jaakkola and Haussler, 1999) and marginalization
kernel (Herbster et al, 2005), have simple formulation similar to that of a Gaussian kernel.
However, the difference is that they have parameters to be determined based on the dataset
while the parameter of Gaussian kernel is not dependent on the dataset and may be man-
ually selected. In addition, the positive definiteness of these kernels has to be theoretically
justified. However, a remarkable point is that their optimization step is limited to estimating
the parameters of the data-dependent model through relatively simple approaches.

Second family of models isnonparametric approaches such as Hoi and Jin (2008); Hoi
et al (2007); Raina et al (2007). In these approaches, there is no prior model assumed for the
kernel. The objective function of the algorithm is formulated as a set of user-defined criteria
whose satisfaction is sought to find an optimal kernel. The drawback of these methods is
that during testing, the optimal kernel has to be built from the training and test examples.
That is because there is no model to be further used for testing.

The third family of models isparametric which consists of most of the available ap-
proaches in the literature. The methods in this family generally seek to form an optimization
that satisfies user-defined criteria to find the parameters ofa predefined model. There are
usually two categories of parametric methods:

1. Single base kernel:Given a single base kernel, the objective is to find its refinement to
an optimal kernel such that it performs better for a given dataset (Adankon and Cheriet,
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2007; Amari and Wu, 1999; Chen et al, 2008). In this case, the goal is to either find
the appropriate hyper-parameters for the base kernel or itstransformation to the optimal
kernel. In this category of methods, selection of the base kernel is also important and
the objective of learning may be interpreted as optimization of an initial kernel for a
particular dataset.

2. Multiple base kernels: In these approaches, usually a set of base kernels are available
and the objective is to find a weighting of them which results in improved performance
on a given dataset (Argyriou et al, 2006; Bach et al, 2004; Kristin P. Bennett, 2002).
The combination of the base kernels could vary from linear tononlinear approaches.
However, most of the current methods are formulated as a linear combination of base
kernels,i.e.

κ(x, x′) =

m
∑

i=1

µiki(x, x
′) (3)

wherem is the number of base kernels andki denotes each base kernel. Here,µi is the
value that defines the weight of each kernel and has to be ultimately determined by the
learning algorithm. Furthermore, each of these kernels canbe assigned to a particular
set of features (or source of information) where learning the kernel may be interpreted
as a means of fusion.

3.3 Kernel selection phase

The phase in which a kernel is optimized may be classified intothree categories. First
category consists of the methods that tend to select the kernel prior to its usage in the de-
sired learning algorithm (Argyriou et al, 2006; Chen et al, 2008; Kristin P. Bennett, 2002). In
this category, the kernel selection is completely independent of the learning algorithm itself,
which makes it generic. In the second category, a wrapper algorithm to the kernel method is
designed which iteratively alternates between two procedures: typically, in an outer proce-
dure the best kernel for that iteration is determined and in the inner one the model is learnt
(Adankon and Cheriet, 2007; Amari and Wu, 1999). The performance of the learning algo-
rithm is evaluated at each step to further improve the kernel. At the end of this procedure, an
optimal kernel and its corresponding model are obtained. These methods are more tightly
bound to the inner learning algorithm which means in most of the cases the modification
of the method is required upon any changes to the inner learning algorithm. The third cat-
egory of methods are embedded into a particular kernel machine such as SVM (Kim et al,
2008; Szafranski et al, 2008). A popular example of this category is multi-kernel learning
algorithm (Bach et al, 2004) which led to introduction of a variation of SVM that uses mul-
tiple kernels and determines their weighting during learning. As the learning algorithm’s
objective is achieved jointly with the kernel selection, these embedded methods have bet-
ter overall performance. However, these methods are solelyuseful for a particular learning
algorithm and ultimately suitable for only a special class of problems.

3.4 Learning type

Selection of the kernel, similar to any learning algorithm,is performed based on the
labeled, unlabeled or mixture of labeled and unlabeled data. This corresponds to supervised
(Adankon and Cheriet, 2007; Amari and Wu, 1999; Argyriou et al, 2006; Bach et al, 2004),
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Fig. 3 The various aspects of learning the kernel in a common scenario

unsupervised (Herbster et al, 2005; Jebara et al, 2004) and semi-supervised learning (Cris-
tianini et al, 2002; Hertz et al, 2006; Hoi and Jin, 2008) methods. In addition to this, data
from previous examples of same task or similar ones may betransferred to be used to learn
a more robust kernel (Abbasnejad et al, 2009; Rückert and Kramer, 2008). In any case, due
to the popularity and applicability of supervised learning, most of the existing body of work
on the subject has concentrated on learning from labeled datasets.

3.5 Optimal kernel obtained

Generally, learning a kernel leads to either a matrix (Cristianini et al, 2002; Davis et al,
2007; Herbster et al, 2005) or a function (Adankon and Cheriet, 2007; Amari and Wu, 1999;
Argyriou et al, 2006). Although kernel-based algorithms work with both, the drawback of
obtaining a kernel matrix rather than a function is that the matrix is learnt in an inductive
setting. This implies, prior to using the trained model, an extra stage of building the kernel
matrix is inevitable. In these methods, the optimization ofthe kernel matrix is performed on
both test and training data. As such, it is not possible to learn a kernel from a set of training
data alone and use it for testing purposes. However, this maybe justified if we consider
that one hopes to achieve better accuracy by learning from training and test examples even
though it leads to having an extra step of kernel optimization for each test examples and
sluggish prediction.

A summary of what has been discussed in this section is demonstrated in Fig. 3. As
is illustrated, the data, the base kernel (if there exists any) and the kernel learning model
are generally considered in designing the optimality conditions. Consequently, an algorithm
is modeled as an optimization which leads to a kernel function or matrix. This kernel is
consequently used in kernel machines. The kernel selectionphase determines the quality of
relation between optimization and the kernel machine. The detailed discussion on examples
of these kernel learning algorithms is presented in the subsequent sections.

It is worth mentioning that learning the kernel is very closely related to the problem of
distance metric learning (Yang and Jin, 2006) where the objective is to find an appropriate
metric for a specific dataset. However, learning a kernel fora dataset is a more generic
problem because finding a kernel entails a distance metric. It may be noted that several
kernel functions amount to same distance metric (Burges, 1999). Although this advantage is
comes with the price of a relatively complex criteria on the kernel functions to be positive
definite.

In the subsequent section, state of the art in the area of learning the kernels categorized
based on their optimality conditions is detailed.
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3.6 Optimality conditions in learning the kernels

In this section current approaches to learn the kernel are elaborated. In each of these
methods, it is assumed that a set ofn instances is given asX = {x1, x2, . . . , xn}. If the
dataset is labeled, a vector of labels y (typically in binarycaseyi = ±1) is also available.
The objective is to find the kernel functionκ or matrixK. Furthermore,tr is the trace of the
matrix and‖.‖ is the Euclidean norm.

3.6.1 Prior knowledge for optimality

Prior knowledge of the user is commonly used in learning algorithms. This knowledge
may be used in learning the kernels too. For example, the relation between instances in terms
of a comparative value that specifies samplea is more similar to sampleb rather thanc is
useful in learning. In this case, Fung et al (2008) showed that a linear programming (LP)
approach can be formulated to learn an appropriate kernel that satisfies this prior knowledge
as a set of constraints. These constraints are used to find theparameterized kernel as in Eqn.
(3). The key to an efficient computation of the optimal kernelis the diagonal dominance
theorem which states if

Mii ≥
∑

j 6=i

|Mij | (4)

holds for a symmetric matrixM , then it is positive semidefinite.
Examples of other methods developed based on the prior knowledge of the user are those

of Hoi et al (2007) and Tsuda and Noble (2004) which we will discuss later.

3.6.2 Statistical approaches to learn the kernel

The statistical information in terms of probability distribution of data can be used to
learn a kernel. The probability distribution in some cases is assumed to be known beforehand
or selected based on the user’s knowledge of the problem. Theprobability distribution can
also be determined using density estimation techniques like Parzen windows. In any case, a
relatively simple phase of either estimating the probability distribution itself or parameters of
the user-defined probability distribution is required before using the kernel. It is additionally
worth noting that in case the probability distribution is used in a generative approach,i.e.
p(x|θ), the kernel obtained provides a way to combine the generative and discriminative
approaches, e.g. SVM, in machine learning. In the followingsubsections, related approaches
that utilized the probabilistic methods to determine the optimal kernel are presented.

Probabilistic kernels

One of the data-dependent kernels that falls in the family ofstatistical models isnatu-
ral kernels proposed by Jaakkola and Haussler (1999). If data is generated with probabil-
ity distribution p(x|θ) in which θ denotes the parameters of this distribution andl(x, θ) =

ln p(x|θ), then the natural kernel is defined as

k(x, x′) = ∇θl(x, θ)⊤M−1∇θl(x′, θ) (5)

In caseM = I (identity matrix) the resultant kernel is known asFisher kernel and ifM =

11
⊤ (where1 denotes the column vector with all values set to one) the kernel is called the

plain kernel. It is obvious that the value of∇θl(x, θ) has to be estimated before kernel’s
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usage. If a known probability distribution is used, the parameters can be estimated from
data.

It can be proved that the Fisher kernel is a special case ofmarginalization kernel (Tsuda
et al, 2002). Marginalization kernel is inspired by the hidden Markov model (HMM) and
consequently may be specifically useful in cases where data is generated in a sequence, for
example a set of strings of characters or more generally in graphs. In marginalized kernels,
the data is supposedly generated with a set of hidden parametersh ∈ H. Additionally, it is
assumed that data generation is independent,i.e. p(x, x′|h) = p(x|h)p(x′|h). The marginal-
ized kernel is defined as

k(x, x′) =
∑

h∈H

p(x|h)p(x′|h)kz(z, z′) (6)

wherekz is the joint kernel between two combined variablesz = (x, h) andz′ = (x′, h′).
Probability product kernel proposed in Jebara et al (2004) defines a kernel between two

distributions as:
k(x, x′) = kP (pρ

θ̂
(x), pρ

θ̂
(x′)) (7)

In this expression,ρ > 0 is a constant andpρ is not infinity. Additionally,kP provides a
generic form of inner product between kernels. In caseρ = 1

2
the popularBhattacharyya

kernel is obtained ask(x, x′) =
∫ √

p
θ̂
(x)

√

p
θ̂
(x′))dx.

In a particular case of probability product kernel, the Kullback-Leibler (KL) divergence
is used to measure the similarity of two distributions in a kernel (Moreno et al, 2003). This
kernel is defined as

k(x, y) = kP (p(x), p(y)) = exp(−αD̃(p(x)‖p(y)) + β) (8)

In this definition,D̃(p(x)‖p(y)) = D(p(x)‖p(y)) + D(p(y)‖p(x)) is the symmetric ver-
sion of KL-divergence andα, β are constant values representing scale and shift. This kernel
function is particularly useful in cases where the input features represent a probability distri-
bution. For example in computer vision, the image histograms representing the distribution
of density values can be compared using this kernel function.

These data-dependent methods are interesting because theybring out the statistical as-
pects of data into building a kernel function. However, determining the appropriate distribu-
tion and their possible parameters may not always be feasible. Additionally, it is not possible
to incorporate any preselected kernel in these methods in case user has a prior knowledge
about the dataset. In the subsequent section the probabilistic information is used to further
improve the base kernel’s performance in a dataset.

Improving kernels with probabilistic information

Apart from kernels obtained directly from distribution of data, it is possible to devise
approaches that utilize statistical information to improve the given base kernels. Bayesian
inference gives rise to the Gaussian processes (MacKay, 1997; Rasmussen, 2003) where the
kernel matrix is employed as the covariance matrix in the normal distribution. This Bayesian
inference in the Gaussian process may be used to estimate theparameterθ of the kernelKθ
(Williams and Barber, 1998). The likelihood of this distribution is written as:

log p(X|θ) = −1

2
log(det(Kθ))−

1

2
y⊤K−1

θ y − n

2
log(2π). (9)
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With respect to the base kernel matrixKθ and the derivative of Eqn. (9), it is possible to
develop an optimization that finds a local optimum for the problem.

Other than Gaussian process, a semi-supervised Bayesian method to select appropriate
hyper-parameters is proposed in Kapoor et al (2005). Since it is a semi-supervised method
then the cluster-assumption is made which means the labeleddata is clouded with the un-
labeled ones. Thus, the labely are related to the unlabeled data through hidden layerh as
p(y|D) =

∫

h
p(y|h)p(h|D) whereD is the set of all labeled and unlabeled data. It is assumed

that the kernel and model parameters are captured in parameterΘ. Using the Bayesian rule,
the following EM algorithm is proposed to model the problem asmaxΘ log[p(y|X ,Θ)] and
obtainΘ:

1. E-Stepgiven the currentΘi, approximateN (h̄, Σh)

2. M-Step updateΘi+1 = argmaxΘ
∫

hN (h̄, Σh) log
p(h|X , Θ)p(y|h,Θ)

N (h̄, Σh)

Other examples that construct the kernel matrix using the Bayesian inference include
Zhang et al (2004, 2006, 2007).

3.6.3 Adaptation to another kernel

One can define learning as the adaptation of the initial hypothesis to an ideal case such
that the ultimate kernel obtained generalizes well to unseen examples. The ideal case pro-
vides a representation of the ultimate kernel suitable for adataset. Consequently, adaptation
procedure enables the kernel to preserve its initial characteristics while improving its per-
formance by taking the ideal case into account. It is obviousthat in the adaptation the notion
of ”ideal case“ and the way it is compared to the initial kernel plays an important role. In
the subsequent sections, the concept and examples of ideal case and adaptation will be more
thoroughly presented.

Kernel alignment measure

Kernel alignment measure proposed in Cristianini et al (2002) is one of the most com-
monly used measures that compare two positive semidefinite kernel matrices. Here, the con-
cept ofideal kernel plays an important role that refers to the best possible choice of kernel
for the dataset at hand. In case of classification, the ideal kernel is matrixyy⊤ built from
the labeled data. Then, for a given dataset one can optimize the given kernel with respect to
the ideal kernel. Furthermore, using the eigendecomposition of the kernel matrix given as
K =

∑

i λiviv
⊤
i , the kernel alignment measure is defined as

A(y) =
〈K, yy⊤〉

√

〈K,K〉〈yy⊤, yy⊤〉

=
〈K, yy⊤〉

n
√

∑

ij λiλj〈viv⊤i , vjv⊤j 〉

=

∑

i λi〈vi, y〉2
√

〈yy⊤, yy⊤〉
√

∑

i λ
2
i

(10)

With α denoting the Lagrange multiplier, the objective function for the optimization can be
formulated as follows:

max
∑

i

λi〈vi, y〉2 − α(
∑

i

λ2i − 1) (11)
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Setting the derivative of the objective function to zero yieldsαi ∝ 〈vi, y〉2. Replacing value
of λ in Eqn. (10), we have

A(y) =

√
∑

i〈vi, y〉4
n

(12)

Finally, the optimal kernel is obtained from an iterative approach that modifies a kernel
matrix by combiningviv

⊤
i with coefficientλ. In each iteration, the coefficientλ is updated

by measuring the alignment betweenvi and y. It is worth noting that the kernel alignment
measure can also be formulated using SDP as (Lanckriet et al,2004b):

maximize
A,K

〈K, yy⊤〉

subject to tr(A) ≤ 1
(

A K⊤

K I

)

� 0

(13)

While the kernel alignment measure has been used by numerousresearchers (Cristianini
et al, 2003; Hoi et al, 2006; Jaz Kandola, 2002a,b; Xu et al, 2007; Zhu et al, 2005), this
technique remains to be ineffective in cases where there is no or limited availability of
labeled examples in the dataset. This is because the formulation of the ideal kernel often
requires a large set of labeled examples. Furthermore, it has been shown in Nguyen and
Ho (2008) that it is possible for a kernel function to have a low alignment measure for
a particular dataset and still run well for that dataset. Therefore, a new measure of kernel
alignment is devised in Nguyen and Ho (2008) based on the distribution of data in the feature
space. This distribution is assessed by Fisher discriminant analysis.

Divergence measures

The information-theoretic notion of divergence can be employed to measure the simi-
larity between two matrices. In a method proposed by Davis etal (2007), the notation of
LogDet divergence is used to measure the similarity of two matricesA andA0:

Dℓd(A,A0) = tr(AA−1
0 )− log det(AA−1

0 )− n (14)

This problem is optimized using the method proposed by Kuliset al (2006). The kernel then
may be modeled asK = X⊤AX . We can alternatively replacex in all computations with
φ(x) to produce a simple kernel based solution. In this case, the obtained kernel is in the
form of

κ(x, y) = k(x, y) +

n
∑

i=1

n
∑

j=1

σijk(x, xi)k(y, xj) (15)

where the parameterσ should be updated in each iteration to obtain the optimal kernel κ
from base kernelk.

Bregman divergence is another measure that may be used in a similar manner. The Breg-
man divergence for a strictly convex functionψ over a convex set is defined as

Dψ(x, y) = ψ(x)− ψ(y)− (x− y)⊤∇ψ(y) (16)

This definition is extended to the Bregman matrix divergenceas

Dψ(X,Y ) = ψ(X)− ψ(Y )− tr((∇ψ(Y ))⊤(X − Y )) (17)
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The Bregman divergence is used in Kulis et al (2006, 2009) to find a low-rank kernel ma-
trix. A low rank matrix is sought as it would allow smaller eigenvalues to be omitted and
therefore facilitates dimensionality reduction. The importance of this technique is that, if
the matrix rank is not constrained, it is possible to derive amatrix with respect to an initial
kernel such that they exhibit high similarity. Moreover, the optimization technique used to
obtain the kernel allows users to incorporate their prior knowledge as additional constraints
on the kernel matrix. The results obtained from this approach are used in a similar method
proposed in Zhengdong Lu and Dhillon (2009) with more emphasis on preserving the struc-
tural representation of the dataset. The structural representation refers to the geometrical
aspects of the data captured in the kernel.

3.6.4 Bounds on error rates of the learner

A class of techniques that have been extensively studied to learn the kernels evaluates
the bounds of the learner to decide the optimal kernel. Thesetechniques are in line with
the general paradigm of learning where the ultimate goal is to have a minimal number of
errors in prediction. Consequently, there are methods thatseek to either minimize the error
bounds directly by assessing the performance of the learneror embed them into the learning
algorithm itself to jointly find the optimal values. Those which are embedded into a learning
algorithm usually lead to introduction of a new formulationof the kernel-based learning
algorithms.

Direct evaluation of error rates

Cross-validation has traditionally been the solution to determine parameters in model se-
lection for most of the well-known machine learning algorithms. Not surprisingly, it found
application in kernel methods and specifically SVM (Duan et al, 2003). There are vari-
ations of cross-validation, e.g.k-fold cross-validation and leave-one-out. Ink-fold cross-
validation, dataset is split intok subsets (folds) and the SVM decision rule is obtained from
the k − 1 folds leaving one fold out for test. This procedure is repeated k times until all
subsets are tested. In the leave-one-out method, the numberof k in k-fold is set to be the
number of examples. Hence, leave-one-out method requires training and testing equal to the
number of training examples.

It is obvious that cross-validation only provides a way to select the hyper-parameters
in a range defined by the user. Additionally, it is not efficient especially when the number
of examples is large, thus more efficient methods are needed to be developed. In a method
proposed by Adankon and Cheriet (2007) the concept of empirical error criterion (Ayat et al,
2005) is used to determine the performance of the learner. This method is solely developed
for SVM and uses its decision function. Letti = (yi + 1)/2, then empirical error is defined
asEi = |ti − p̂i| wherep̂i is the posterior probability corresponding to data pointxi. This
posterior probability is the sigmoid function used in Platt’s probabilistic SVM as (Platt,
1999b):

p̂i =
1

1 + exp(A.fi +B)
(18)

whereA andB are parameters to be determined during training phase. Assuming the kernel
function is parameterized byθ, the objective of the algorithm is formulated in terms of
a gradient descent for minimizing the empirical error. Therefore, an iterative approach is
employed that takes a subset of the dataset in initial stage and attempts to incrementally
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increase its size such that the remaining points in the set atthe end of each iteration are as
close as possible to the margin.

The variation of this method can be formulated in a well-known boosting scenario.
Boosting seeks to formulate a strong hypothesis about a problem based on several weak
learners. In each iteration, a weighing of the weak learnersis decided based on the error
rate of the resulting strong hypothesis. AdaBoost (Collinset al, 2002; Schapire and Singer,
1999) as a popular type of boosting has been used in Hertz et al(2006) to learn a kernel
function. This method is semi-supervised with particular focus on the cases where the num-
ber of training examples is limited. In this approach, a combination of base kernel functions
that minimizes the loss function is used. The weak learner, on the other hand, is based on the
probabilistic method of Gaussian mixture model (GMM). The GMM model learned from
data is used to create a new kernel which is actually the product of the probability of each
pair of points belonging to the same Gaussian component. Theadvantages of this boosting
approach are its relatively simple implementation and the ability to run with limited training
examples. However, the number of parameters that has to be determined by the user such as
the number of iterations in the boosting and the number of Gaussian mixtures make it in-
tractable. Another variation of this approach is proposed by Joseph et al (2002). The use of
multiple base kernels to learn the kernel using boosting hasalso been considered in Kristin
P. Bennett (2002).

Implicit bounds on the error rates

Instead of assessing the performance of the learning algorithm directly, one can use
the objective function of the learning algorithm as an optimality condition. Specifically in
case of supervised learning, variations of SVM are desirable choices. The objective function
of SVM exhibits some favorable aspects: sound geometrical interpretation, relatively simple
formulation as a convex optimization which results in a globally optimal value and extensive
body of literature in various related issues. As such, the optimal kernel is one that performs
well in compliance with SVM objective.

One of the most remarkable and influencing methods in this class is proposed by Lanck-
riet et al (2004b) in which the process of learning the kernelis formulated in two settings of
convex optimizations. The kernel is formulated as a combination of training and test dataset.

The parametric optimal kernel is formulated using a linear combination of base kernels
as in Eqn. (3). The parameters of the optimal kernel matrix are obtained from the objective
of the dual of the hard and soft margin classifiers while the trace of kernel matrix is limited to
a constant value. The algorithm is designed in two settings with respect to the coefficients of
the base kernels: if all the coefficients are positive the resulting optimization is quadratically
constrained quadratic program (QCQP) and otherwise it can be solved using SDP. In these
two formulation the kernel selection is embedded into the kernel machine (SVM) itself
which leads to a new formulation of the learning algorithm.

The Lanckriet’s work is one of the groundbreaking methods inthe literature that de-
fines a parametric kernel function which can be optimized with respect to a specific dataset.
Furthermore, the use of established criteria of maximum margin classifiers to obtain con-
vex optimization is another significant aspect because firstly maximizing the margin is a
well-established condition and secondly the objective of learning the kernel and learning
algorithm comply. Additionally, unlike many other methodsthat seek to find an optimal ker-
nel matrix using only labeled examples, this approach used labeled and unlabeled data in a
semi-supervised setting. In spite of all these advantages,this approach is suitable for cases
where abundant number of training examples is available. The value of the parameter that
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limits the trace of the kernel matrix is also left to the user to be decided which may not be
straightforward and have a great impact on the obtained kernel. One example of using such
a method for data fusion is discussed in Lanckriet et al (2004a).

The use of combination of kernels considered by Lanckriet etal (2004b) has been re-
visited in Bach et al (2004) where authors have considered solving the problem in a tech-
nique similar to sequential minimization optimization (SMO) (Platt, 1999a). The developed
method became to be known asmultiple kernel learning (MKL) in which the use of multiple
base kernels for decision making is considered. In MKL, eachkernel may be assigned to a
specific data source and the result is a variation of SVM formulation. The remarkable aspect
of this model is that, the resulting optimization problem issparse on two levels: data and
kernel. While the former is shared with normal SVM, the latter indicates the sparsity in the
kernel functions. In other words, there may be a kernel that is not suitable for the dataset or,
on the other hand, the set of features assigned to a specific kernel do not play a significant
role in decision making.

MKL is a new formulation similar to SVM that needs to be further implemented in
programming languages and tested accordingly. However, a variation of MKL is devised in
Rakotomamonjy et al (2007) that is able to use existing implementations of SVM by de-
composing the problem into two stages: in the first stage, theappropriate combination of
base kernels is updated and in the subsequent step the parameters of SVM are estimated
accordingly. These two stage alternating approaches have attracted other researchers as well
Rakotomamonjy2008,ZenglinXu2010. In particular in Xu et al (2010) the connection be-
tween MKL and group lasso (Yuan et al, 2006) is used to formulate a simple algorithm
where the combination coefficients of kernels are easily calculable. This simplicity leads to
an efficient and applicable algorithm.

Another variation of MKL is proposed in Szafranski et al (2008) that improves the learn-
ing by introducing the concept of grouping in the kernels. This means, kernels correspond-
ing to similar evaluation of the feature sets can be related.Additionally, the case of large or
possibly infinite set of base kernels in MKL is considered in Gehler and Nowozin (2008).

The use of multiple base kernels has extended in Cortes et al (2009) to the case of non-
linear case in which the kernel matrix of the following form is designed

K =
∑

s1+...+sq=q

µs11 . . . µsmm Ks1
1 . . .Ksm

m (19)

This formulation of the kernel matrix is in fact a polynomialof degreeq that hasm base ker-
nels. Consequently, the objective of the algorithm is to findthe vectorµ = (µ1, . . . , µm)⊤.
The algorithm is specially designed for the min-max formulation of the regression in Saun-
ders et al (1998). The solution to the problem is developed astwo stage optimization that
consists of solving the regression and subsequently using its solution in a gradient decent to
find the kernel. However, the empirical results do not show any consistent performance im-
provement. Additionally, the setting of the proposed approach is restricted to one particular
learning algorithm which cannot be extended to other problems. One can further question
if the nonlinear parameterization of the ultimate kernel functions is necessary or efficient.
In any case, the proposed approach set the stage for further development in the field and
possible improvements in the empirical evaluations.

In another approach, Wang et al (2007) devised an algorithm to find the optimal hyper-
parameter for a given dataset by modeling the changes in the hyper-parameter as a function
that seeks to ultimately minimize the hinge loss in SVM.
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Regularization for learning the kernel

Regularization minimizer, as a well-developed condition on the bounds of hypothesis
function, provides a robust foundation for kernel construction as considered in Argyriou
et al (2005); Kim et al (2008); Micchelli and Pontil (2005). It is showed that a convex
problem can be formulated from the problem with an appropriate continuous loss function
which leads to an interior-point method (Florian A. Potra, 2000; Freund and Mizuno, 1996).
Considering the regularization problem with weight vectorw as:

minimize
w

1

n

n
∑

i=1

q(yi, w
⊤φ(xi) + ν) + λ〈w,w〉 (20)

Then, Kim et al (2008) showed that the optimal kernel matrix for the loss functionq can be
obtained from the following convex optimization

minimize

n
∑

i=1

q(yihi + yiν) + λh⊤K†h (21)

whereh = Kα ∈ R
n, ν ∈ R andK† is the pseudo-invers of the matrixK. This approach

towards minimization of the regularization method is further extended by Argyriou et al
(2006) where DC (difference of convex) programming (Horst and Thoai, 1999) is used for
optimization. This supervised method works based on the regularization functional:

Q(f) =
∑

j

q(yi, f(xi)) + λ‖f‖2K (22)

In this method, a class of continuously parameterized set ofbase kernels is considered as

K =

{
∫

Ω

G(ω)dp(ω) : p ∈ P(Ω)

}

(23)

whereω is the set of parameters andP(Ω) is a set of probability measures onΩ and
G(.)(x, x′) is the continuous base kernel with parameterω for x, x′ ∈ X . As an example
Gaussian kernel can be considered,i.e. ,G(ω)(x, x′) = exp(−ω‖x−x′‖2). The remarkable
point of consideration about this formulation is that it potentially enables usage of infinite
number of base kernels. The objective of the algorithm, on the other hand, is formulated as
the minimization of the regularization error similar to Micchelli and Pontil (2005):

E(K) = min{Q(f) : f ∈ HK} (24)

The regularization framework has been also studied in an intersection with Bregman diver-
gence in Li et al (2009) where the ultimate solution is obtained from a Newton method.
Further justification of these methods can be found in Micchelli and Pontil (2007).

Transferred setting

In a different trend of learning, one can use multiple sources of data to strengthen the
trained model as intransfer learning andmulti-task learning (Caruana, 1997). These sources
of data can be either labeled or unlabeled and exhibit some level of conceptual relation with
the test dataset that the algorithm is designed to work on. Byusing multiple datasets one
may hope to learn a model that eventually generalizes betteron the test dataset. As such,
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Rückert and Kramer (2008) considered a case where the problem is to use multiple datasets
in a regularization framework to find the optimal kernel. These multiple datasets may refer to
the same problem obtained from different time periods or similar problems. This algorithm
works by alternating between learning the appropriate model and optimal kernel. Since this
algorithm is specifically designed to work with SVM, the model is also learnt by training
SVM. The minimization of the error bounds of the model will lead to finding the linear
combination of base kernels.

In case the additional datasets are unlabeled, the task of learning the kernel is tackled
in an unsupervised transfer learning approach as in Raina etal (2007). The algorithm is
designed in a two stage process: in the first phase, the important features from which final
decision may be made are selected using sparse coding as an unsupervised feature selection
technique. Once these impactful features are known, the second phase reuses this informa-
tion about features to find their transformation in the labeled set. Finally, the transformed
features are used in a learning algorithm such as SVM to find anappropriate model.

This is an interesting approach as it shows the ability to learn a kernel from labeled
and unlabeled data while the unlabeled data is collected from a similar problem. However,
a drawback of such method is that the features found in the unlabeled dataset may not
necessarily reflect the most important features in the labeled training set. In this case, the
parameters learnt in the first phase may even misguide the learning. Similar approaches
of using transfer learning to construct a kernel are considered in Abbasnejad et al (2009);
Argyriou et al (2007); Evgeniou et al (2005); Jebara (2004).

3.6.5 Intrinsic structure of the dataset

There is recently an increasing interest in the use of intrinsic structural aspect of the
dataset for finding the optimal kernels. This is mostly because the kernel function of the
choice should be able to preserve and reflect the relational information of a pair of points.
Moreover, by using the characteristics of the dataset the need for prior knowledge of the
algorithm designer or the label of each example may be exempted. In this section, several of
these methods will be further discussed.

Input space conditions

Optimality of the selected kernel can be based on some aspectof the dataset inferred
from investigating the representation of the dataset in itsinput space. The inferred informa-
tion will be used in the construction of the feature space. That is, the kernel or the mapping
function is enforced to have strongest compliance with these inferred constraints. As an ex-
ample,heat or diffusion kernel (Kondor and Lafferty, 2002) is a well-known data-dependent
kernel function defined over the statistical manifold of data with a strong physical interpre-
tation. The name along with the justification of the formulation derived from the physical
interpretation of the diffusion of heat through continuousmedia which is obtained from
equation: ∂∂tψ = µ∆ψ. The kernel is also obtained from a similar equation:

∂

∂β
Kβ = HKβ (25)

In Eqn. (25), the matrixH indicates the geometrical representation of the dataset. For ex-
ample,H may be obtained from a graph Laplacian thatHij = 1 if vertices i and j are
connected,Hii = −di wheredi counts the number of edges emanating from pointi in a
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graphical representation of data andHij = 0 otherwise. The remarkable point about the
heat kernel is that the intrinsic structure of the dataset interms of a graph captured inH is
used to create a new kernel function.

The solution to Eqn. (25) in continuous case may be obtained from

kx(x
′) =

1√
4πβ

exp(
−|x− x′|

4β
) (26)

which reduces to Gaussian kernel with selection ofβ = σ2/2. One drawback of the heat
kernel is that the parameterβ itself should be decided beforehand. Additionally, in process
of generating the matrixH, the proximity between points should be examined and decided
by the user which may not be easy.

Another data-dependent kernel function isgraph Laplacian kernel (Herbster et al, 2005;
Zhu et al, 2005) which has been used extensively to find the structural representation of
a dataset. In addition, the kernel function construction iscentered on the notion of graph
Laplacian which is built from the adjacency matrixW where each entrywij denotes the
distance between pointsi andj. The graph LaplacianL is defined asL = D −W , where
D is a diagonal matrix such thatDii =

∑n
i=1

wij and the normalized graph Laplacian is
defined as̃L = I − D−1/2LD−1/2. It can be shown that the pseudo-inverse of the graph
Laplacian is always positive semidefinite and can be used as the kernel matrix,i.e.

K = L† =

n
∑

i=r+1

λ−1uiu
⊤
i (27)

whereλ, u denote the eigenvalues sorted in ascending order and eigenvectors respectively.
Additionally, r indicate the index of the first positive eigenvalue. Finally, it is worth noting
that the diffusion kernel can be related to the graph Laplacian by

Kheat= exp(−βL) (28)

Graph Laplacian has been one of the basic methods to extract the information about
the structure of the dataset. It has a simple formula that is easily implementable in various
programming languages. In the rest of this section, severalexamples of the algorithms that
used graph Laplacian for kernel construction will be presented.

The prior knowledge of the user about the problem may be jointly used with the notion
of graph Laplacian to formulate a new kernel. Such a problem is tackled by Hoi et al (2007)
(similar to Kulis et al (2006) discussed earlier) where the objective is to use graph Laplacian
as the kernel with structural information in addition to a set of predefined constraints given
by the user as relative similarity between pairs of examplesto formulate the optimal kernel.
This algorithm aims at minimizing the inconsistency between optimal kernel and the graph
Laplacian kernel matrix while satisfying the predefined constraints. The ultimate optimiza-
tion is SDP, however, authors argued that it can be further simplified to a conjugate gradient
method.

This approach (Hoi et al, 2007) has been further extended using active learning in Hoi
and Jin (2008). Active learning is a class of learning algorithms that aims at improving
the model by taking the most informative examples into account. It has been very popular in
semi-supervised approaches where labeled data are more informative. In Hoi and Jin (2008),
authors considered using active learning to find the most informative pair of examples to the
optimal kernel. The most important justification of using active learning is the appropriate
utilization of the limited labeled examples. The proposed active learning is a nonparametric
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approach and the main improvement made compared to its ancestor is that the assumption
of the existence of the relative similarity between points is voided. Additionally, the opti-
mization obtained in this method is slightly complicated. However, an improvement of Hoi
et al (2007) proposed in Zhuang et al (2009) attempts to find a simpler optimization. The use
of graph Laplacian inherited from Hoi et al (2007), brings the ability to capture the structure
of the dataset. The loss function and the graph Laplacian arejointly used as the criteria to
evaluate the performance of the kernel function obtained. One major drawback is that, this is
a nonparametric method in which there is always the possibility of over-fitting. It makes the
kernel matrix over-trained for a special dataset while it does not truly represent the correct
level of similarity between points.

In another interesting semi-supervised approach proposedin Sindhwani et al (2005) a
small number of labeled examples are used as the initial points for kernel construction.
The feature space construction is started with the labeled examples and led by the unlabeled
ones. In this method the cluster assumption plays a crucial role because it is assumed that the
labeled examples are surrounded by a ”cloud“ of unlabeled examples. The kernel function
is constructed based on the notion of reproducing kernel Hilbert space (RKHS) and the
assumption that the evaluation functional is bounded at each point. RKHS provides the
necessary framework to build a function in the feature spacebased on a given dataset and
kernel function. In order to obtain the new kernel, the linear combination of predefined
kernels inH is considered as

κ∗(x, .) = k(x, .) +
∑

j

βj(x)k(xj , .) (29)

In this equation,β is a data-dependent function ofx. By defining the inner product over
k(xi, .) atx the ultimate kernel is obtained as:

κ∗(x, x′) = k(x, x′)− k⊤x (I +MK)−1MKx′ (30)

wherekx is the column vector of the kernel matrix. The value of the matrix M = Lp,
wherep is an integer value andL is the Laplacian graph defining the geometry of the points.
This work, in addition to defining a family of kernel functions that favors the geometrical
structure of the dataset, sets the stage for future development of techniques that uses RKHS
to utilize the geometry of a dataset.

The base kernel obtained in Eqn. (30) represents a kernel defined on the structure of the
dataset. Hence, it can be used as a basis for other methods to be developed. Specifically, in
combination with the divergence measures introduced earlier, Zhengdong Lu and Dhillon
(2009) proposed an approach that seeks to find a kernel matrixwith highest similarity to a
structural aspect of the dataset represented in another kernel matrix (such as graph Laplacian
or the kernel matrix in Eqn. (30) as a more generic case). To serve this purpose, the LogDet
matrix divergence, as defined in Eqn. (14), is used and its main advantage is its invariance
to rescaling of the feature space. ConsideringK as the initial kernel, the ultimate kernelK
may be modeled as:

K =
{

K −K(I + TK)−1TK
}

,

T =

r
∑

i=1

, λiviv
⊤
i λ1 ≥ . . . ≥ λr ≥ 0 (31)

The significance of these kernels are their ability to be easily extended to unseen examples.
On the other hand, the convexity of this set is certain as longas{v1, . . . , vr} are orthogo-
nal. To obtain a solution, it should be firstly noted that in generalDℓd(K,K) is not jointly
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convex inK andK. Therefore, the goal of this algorithm is formulated as finding T and
consequentlyλ. Hence, a cyclic projection algorithm is used where at each step the solution
is projected on the constraints. The optimization to solve the divergence ofDℓd(K,K) is
similar to the one used in Davis et al (2007).

Feature space conditions

In the previous subsection, methods that define the kernel based on the information ex-
tracted from the input space are considered. As it is shown, most of these methods consider
variations of the graph Laplacian to capture the structuralrepresentation of the dataset. How-
ever in this subsection, focus is on the methods that typically define optimality as the con-
dition applied directly to the mapped points in the feature space. Consequently, the optimal
kernel represents the desired characteristics. As an example, Yeung et al (2008) proposed to
devise a kernel matrix such that the squared Euclidean distance between pairs in the same
class in the feature space is reduced.

One important approach in this family that investigates thegeometric representation
of the mapped points in the feature space is considered in Amari and Wu (1999). This
method is concentrated on the supervised learning specifically in case of SVM. The mapped
points are investigated using Riemannian geometry. The Riemannian geometry provides the
foundation to analyze data in a highly nonlinear structure smoothly. The Riemannian metric
used in the feature space is obtained from

gij =
∂

∂xi

∂

∂x′j
k(x, x′) |x′=x (32)

Furthermore, the volume of the Riemannian space is defined as

dV =
√

det |gij(x)| dx1 . . . dxn (33)

The factor
√

det |gij(x)| represents how a local area is magnified in the feature space under
mappingφ. Subsequently, the Riemannian distance is defined as

ds2 =

n
∑

i,j=1

gij dxi dxj (34)

By increasing the value of metricgij , the distance between pointsi andj around the decision
boundary is increased. Thus, the nonlinear mappingφ is modified such that

√

det |gij(x)|
is enlarged around the boundaries. These boundaries may then be selected to be the support
vectors in SVM. A conformal transformatioñgij(x) = Ω(x)gij(x) is proposed to solve
the problem where the conformal mapΩ(x) has a large value around the boundaries. The
conformal transformation will not change the angle betweenpoints and therefore the spatial
characteristics remain unchanged. This conformal transformation is defined as:

κ(x, x′) = q(x)q(x′)k(x, x′) (35)

with factorq(x). The factor of this transformation ensures the modificationon the mapping
function. It may be defined as weighted sum of Gaussian kernels:

q(x) =

|S|
∑

ℓ=1

αℓ exp(−
|| x− sℓ ||2

2σ
) (36)
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wheresℓ denotes each support vector in the set of support vectorsS and parameterα left to
be determined during learning process. Finally, the kernelselection algorithm is proposed
in three steps: first, SVM is trained using the kernel function k and the support vectors
are obtained; second, the conformal transformation of kernels according to Eqns. (35) and
(36) is used to obtainκ; third, train SVM using the modified kernelκ. Although this simple
iterative approach may not be an efficient way of obtaining the optimal kernel, but the notion
of kernel conformal transformation as a mathematically justified method to modify a kernel
function has been used jointly with other conditions to further ensure the optimality of the
solution. Examples of such approaches can be found in Gang Wu(2003); Williams et al
(2007); Wu and Amari (2002); Xiong et al (2005).

Another way of providing constraints on the feature space while ensuring the global
optimality of the solution is proposed in Kim et al (2006). Inthis method, discriminant
analysis is used to model a convex problem for a given dataset. The objective function of
this method is formulated as a solution to the following problem:

F1(w,K) =
(w⊤(φ̄+ − φ̄−))2

w⊤(n+/nΣ+ + n−/nΣ− + λI)w
(37)

In this equation,φ̄ is the mean,Σ is the covariance matrix for the positive or negative
classes obtained from the mapped points in the feature space, andλ > 0 is a regularization
parameter. The optimal weight vector is determined as

w∗ = argmax
w

F1(w,K) (38)

For a fixed kernel matrixK and regularization parameterλ, Eqn. (38) is equal to

w∗ = (n+/nΣ
+ + n−/nΣ

− + λI)−1(φ̄+ − φ̄−) (39)

Fixingw = w∗, the optimal value forK is obtain as

F ∗
1 (K) = (φ̄+ − φ̄−)⊤(n+/nΣ

+ + n−/nΣ
− + λI)−1(φ̄+ − φ̄−) (40)

In order to maximizeF ∗
1 (K), a semidefinite program is proposed that can be solved using

the available optimization toolboxes. This algorithm is further extended and simplified by
Jieping Ye (2007) with the advantage of being formulated as aQCQP problem. The advan-
tage of the QCQP is that it is faster than SDP and computationally affordable for moderate
sized problems. Discriminant analysis provides an effective criterion to assess the feature
space and consequently has been studied in various approaches to learn the kernel (Chen
et al, 2008; J. Lu, 2005; Kim et al, 2006; Xiong et al, 2005; Yeung et al, 2007). In Wang et al
(2009), authors proposed an optimization approach that maximizes the linear discriminant
analaysis’s objective in the feature space which leads to finding the parameter of Gaussian
kernel.

While discriminant analysis as well as conformal transformation provide explicit con-
straints on the feature space, a technique that amounts to animplicit constraint is proposed in
Tsuda and Noble (2004). This implicit constraint in addition to the user defined linear condi-
tions as the prior knowledge is incorporated in the optimization objective to find an optimal
kernel. Intuitively, this method aims to distribute the mapped points in the feature space as
evenly as possible. In other words, all the points are given equal chance to be mapped in
the feature space while the linear constraints decide the relation between them. This implicit
constraint is defined as the von Neumann’s entropy for positive definite matrices,i.e.

E(K) = − tr(K log(K)), K ≻ 0, tr(K) = 1 (41)
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Sincetr(K log(K)) is convex, it is shown that maximization of the von Neumann entropy
with respect to a set of linear constraints can be used to find the optimal kernel. This amounts
to taking the global aspect of the dataset using the entropy and use it jointly with local
constraints defined by the user. Ultimately, it is shown thatthe kernel obtained from this
approach is equivalent to the diffusion kernel.

Another unsupervised method has been proposed in Abbasnejad et al (2010) where the
random walk on the graph is used to learn a linear combinationof the kernels. Random walk
is performed to assess the influence of each point in the inputor feature space. Then, the
feature space is probabilistically constructed such that the points with higher influence in the
input space remain in the dense areas in the feature space. This algorithm is presented in two
settings and the solution to both of them can be obtained fromtwo convex optimizations,
namely linear and semidefinite programming.

Intrinsic structure for dimensionality reduction

Kernel methods and the mapping to a higher dimensional spaceas in kernel-PCA have
been used for dimensionality reduction. It is therefore rational to try to select an appropriate
kernel optimized for the task of dimensionality reduction.In Weinberger et al (2004) authors
proposed a method that utilizes the nonlinearly mapped points to reveal the lower dimen-
sional representation of the dataset, in accordance with kernel-PCA. The algorithm’s goal is
to construct a kernel matrix that maximizes the variance of the dataset in the feature space
while preserving the distance between neighboring data points. This goal is formulated as a
semidefinite program. The pairwise distance between data points can be written as:

1

2n

n
∑

i=1

n
∑

j=1

‖φ(xi)− φ(xj)‖2 = tr(K) (42)

On the other hand, the distance between data points should bechanged symmetrically. This
is in line with most of the nonlinear dimensionality reduction techniques that seek to pre-
serve some aspects of the dataset, such as distance between points in this case. This amounts
to the local constraint on the distances between two neighboring points,i.e.

‖φ(xi)− φ(xj)‖2 = ‖xi − xj‖2 (43)

This unsupervised method is useful for cases where the kernel function is intended to be used
for dimensionality reduction, e.g. with kernel-PCA. A similar method has also been devel-
oped in Shaw and Jebara (2009) where the topological structure of the dataset is considered.
The goal of this algorithm is to find an appropriate embeddingof a constructed graph from
the dataset in a Euclidean space. This approach is based on the fact that the distance between
two points is a linear function of the kernel:d(x, x′) = k(x, x) + k(x′, x′)− 2k(x, x′). Ad-
ditionally, the points that are not connected in the graph (or not close enough in a K-Nearest
Neighbor selection) and correspond to the zero entry in connectivity matrixA should be
placed in distanti.e. Dij > (1−Aij)maxs(AisDis). Consequently, the objective of the al-
gorithm is formulated as a SDP optimization that seeks to maximize tr(KA) while satisfies
the constrainttr(A) < 1.
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Table 1 List of most important methods to learn the kernel and their highlights

Method Comments
Fisher kernel (Jaakkola and
Haussler, 1999)

– Data-dependent kernel
– A generative approach
– Statistical manifold of data is investigated
– Supervised

Conformal transformation of the
kernels (Amari and Wu, 1999;
Williams et al, 2007; Wu and
Amari, 2002)

– The structural representation of the dataset is modified
– The mapping function is modified through conformal map
– Iterative optimization and examination of kernel’s performance
– The conformal map is required to be cautiously selected
– Multiple training and testing of SVM is required
– Supervised

Boosting for learning the kernels
(Hertz et al, 2006; Joseph et al,
2002; Kristin P. Bennett, 2002)

– Use of celebrated boosting algorithm
– Easy to implement
– Iterative approach without any need for sophisticated optimization

methods or specific toolboxes
– Supervised, Semi-supervised

Divergence and alignment mea-
sures (Cristianini et al, 2002;
Davis et al, 2007)

– Challenging formulation of an appropriate divergence/alignment mea-
sure

– Selection of appropriate ideal kernel
– Supervised, Semi-supervised

Maximizing the entropy (Tsuda
and Noble, 2004)

– Desirable interpretation in the feature space
– Incorporation of prior knowledge in terms of linear constraints
– Independent of the kernel machine
– An unsupervised approach
– Unsupervised

Multi-kernel learning (Bach
et al, 2004; Lanckriet et al,
2004b)

– Maximizes the margin
– Embedded into the kernel machine
– Entails a new formulation of a kernel method similar to SVM
– Computationally efficient
– Supervised

Dimensionality reduction (Shaw
and Jebara, 2009; Weinberger
et al, 2004)

– Captures the structure of the data for nonlinear dimensionality reduction
– Seeks to preserve some aspects of the data in the feature space
– Unsupervised

Graph Laplacian (Herbster et al,
2005)

– Data-dependent kernel
– Frequently used to capture the dataset’s characteristics
– Mostly constructed using Gaussian kernel which is a parametric kernel
– Unsupervised

Using RKHS to find a function
space (Sindhwani et al, 2005)

– Solid mathematical foundation and strong connection to thelearning
problem

– Formulation of a data-dependent kernel with interpretation of the struc-
ture of the dataset

– A semi-supervised approach
– Semi-supervised

Minimizing the regularized ob-
jective function (Argyriou et al,
2005; Hoi et al, 2006; Micchelli
and Pontil, 2005)

– Solid foundation with strong relation to the well-established learning
criteria

– Lays the foundation for continuous and smooth formulation of base ker-
nel

– Supervised

Maximizing the discriminant
analysis (Chen et al, 2008; Kim
et al, 2006; Xiong et al, 2005)

– Strong interpretation
– Good measure to be used in feature space
– Independent of kernel machine
– Supervised

Minimizing the empirical error
(Adankon and Cheriet, 2007;
Ayat et al, 2005)

– Iterative optimization of the kernel with multiple training of SVM
– Requires Platt’s sigmoid function
– May be used in incremental manner
– Supervised

Transferred settings (Abbasne-
jad et al, 2009; Raina et al, 2007;
Rückert and Kramer, 2008)

– Determine the important features from the auxiliary dataset
– Leads to a robust learned kernel
– Suitable for cases where the number of labeled training examples is

insufficient

Non-parametric kernel learning
(Hoi et al, 2007; Zhuang et al,
2009)

– produces a kernel matrix rather than a function
– Ability to incorporation of prior knowledge
– Semi-supervised

Alternating MKL (Rakotoma-
monjy et al, 2007; Xu et al,
2010)

– Easy extension of the current SVM implementations
– Iterative improvement with multiple training of SVM
– Strong connection to the learning criteria
– Applicable to a wider range of kernel machines
– Supervised
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Method Comments
Non-linear combination of ker-
nels (Cortes et al, 2009)

– Innovative idea in combination of base kernels
– Gradient descent optimization in regression formulation
– Further investigation may exhibit better performance, although the for-

mulation of a convex problem may be challenging
– Supervised

Random walk for learning the
kernel (Abbasnejad et al, 2010)

– Random walk to derive the structural information of the dataset
– Independent of the kernel machine
– An unsupervised approach
– Unsupervised

Table 2 List of the available source codes for learning the kernels

Method Link
Multiple kernel learning (Support
Kernel Machine) (Bach et al, 2004)

http://www.stat.berkeley.edu/ ˜ gobo/SKMsmo.tar

Probability Product Kernels (Jebara
et al, 2004)

http://www.cs.columbia.edu/ ˜ jebara/code/elkernel.m

Multi-Task Feature and Kernel Selec-
tion for SVMs (Jebara, 2004)

http://www.cs.columbia.edu/ ˜ jebara/code/multisparse

Convex Combinations of Basic Ker-
nels (Argyriou et al, 2005)

http://ttic.uchicago.edu/ ˜ argyriou/code/dc/dc.tar

Using RKHS to find a function space
(Sindhwani et al, 2005)

http://people.cs.uchicago.edu/ ˜ vikass/

manifoldregularization.html

Semidefinite Embedding (Maximum
Variance Unfolding) (Weinberger
et al, 2005)

http://www.cse.wustl.edu/ ˜ kilian/code/files/lmvu.zip

Simple multiple kernel learning
(Rakotomamonjy et al, 2008)

http://asi.insa-rouen.fr/enseignants/ ˜ arakotom/code/

mklindex.html

Finally, it should be noted that two methods mentioned earlier in Section 3.6.3 (Kulis
et al, 2006, 2009) in which divergence is used to find a low-rank kernel matrix may be uti-
lized to obtain kernel matrices for dimensionality reduction. However, because those tech-
niques are more strongly related to adaptation and divergence they are not included here.
Furthermore, dimensionality reduction techniques discussed in this subsection are more
task-specific and cannot be easily extended to other problems like the classification cases.

4 Conclusions

In this paper, the state of the art techniques related to the area of learning the kernels have
been discussed (in Table 1, a list of most important methods in this area and their significance
is listed). We find that the current methods to learning the kernel vary and improvements in
various aspects of these approaches can be done. Most importantly the current approaches
classified based on their optimality conditions were detailed.

As it is presented, there are various aspects that the meritsof the algorithms in the area
can be discussed. In optimization, it is important if any guarantee on the optimal solution
can be given. Also it is more desirable to define the model of the learning beforehand so that
the resultant optimal kernel does not need to be refined during testing phase. Additionally,
it is useful to have an algorithm that learns the kernel independent of the kernel machine of
choice so that the algorithm can be applied to various problems.
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Furthermore, the following is the list of possible directions for further research and
development in this area:

– The current methods are mostly concentrated on the cases where the number of training
examples is abundant. However, there is not always enough labeled examples available
to evaluate the model’s performance or even incorporate into optimality conditions. In
addition to what is presented, further investigation on newunsupervised approaches is
required so that the resultant optimal kernel can be used in unsupervised kernel-based
algorithms, such as clustering, too. An unsupervised algorithm, either independent of the
learning problem or embedded into it, may be very useful in providing more efficient
clustering algorithms since the most important aspect of clustering is the measure of
similarity.

– The current trend is to use a kernel or its linear combinationto model an initial hy-
pothesis for further optimization. However, other possible models may be opted for this
purpose. One possible direction is to use the nonlinear combination of the base kernels.
The nonlinear case may produce better performance and flexibility. There has not been
enough research done in optimizing the kernels with respectto the RKHS which provide
a solid foundation and may lead to promising algorithms. Additionally, use of infinite
number of base kernels has been investigated which has not yet produced outstanding
performance. It is possible that further studies lead to better results.

– Geometry of the mapped points in the feature space provide sound justification on the
optimality of the kernel function. However, in these methods the optimization of the
objective function or forming the dual is the most importantaspect that has to be closely
scrutinized.

As a final remark, it should be noted that most of the current approaches are showing
good results in small datasets and fail to scale to large ones. As such, the immediate future
work will be developing approaches with faster optimization algorithms like stochastic gra-
dient descent that perform better with larger datasets. Theonline approaches to learn the
kernel with the capability to update with new examples can also be another possible path to
improve this area.
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