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Abstract In recent years the machine learning community has witteastemendous
growth in the development of kernel-based learning algor#. However, the performance
of this class of algorithms greatly depends on the choick@kéernel function. Kernel func-
tion implicitly represents the inner product between a papoints of a dataset in a higher
dimensional space. This inner product amounts to the giityilaetween points and pro-
vide a solid foundation for nonlinear analysis in kernesdshlearning algorithms. The most
important challenge in kernel-based learning is the selecif an appropriate kernel for a
given dataset. To remedy this problem, algorithms to lehenkernel have recently been
proposed. These methods formulate a learning algorithirfities an optimal kernel for a
given dataset. In this paper, we present an overview of talggeithms and provide a com-
parison of various approaches to find an optimal kernel Heamore, a list of pivotal issues
that lead to efficient design of such algorithms will be preed.

Keywords Machine Learning, Kernel methods, Learning the kernels

1 Introduction

Kernel-based algorithms (Scholkopf and Smola, 2001; Skeayéor and Cristianini,
2004; Smola et al, 2007) (also known as kernel methods oekenachines) have recently
gained a significant attention in machine learning commuSBipervised algorithms such as
support vector machine (SVM) (Vapnik, 1999) and kernel iilisimant analysis (Mika et al,
1999) as well as unsupervised algorithms like kernel pplectomponent analysis (kernel-
PCA) (Scholkopf et al, 1998) and support vector clusterBgn-Hur et al, 2002) have been
successfully applied to various real-world problems. Duéotver error rate compared to
other learning methods, relatively fast training time atebant compatibility with high
dimensional data these algorithms are the potential soisitio many problems.

The theoretical origins of the kernel methods may be traoati¢ work of Aronszajn
(Aronszajn, 1950) where the reproducing kernels were deeel based on the foundation
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laid by the Mercer’s theorem (Mercer, 1909). In later yewigh the paradigm shift in ma-
chine learning towards nonlinear techniques, kernel nuistiinave attracted more attention.
This is because of their sound mathematical justificatiahzatter performance compared
to their counterparts such as artificial neural network (AMNd decision trees particularly
in tackling nonlinear problems.

Kernel methods have revolutionized nonlinear learningéigms bynonlinear map-
ping of data points to a higher, or possibly infinite, dimensiospéce (known afeature
space) such that building a model (hypothesis) for a problem iseza¥hese approaches
are called the kernel methods due to their dependency orotiwept ofkernel functions. A
kernel function represents the inner product of the imgijichapped points in a high dimen-
sional space. This implicit mapping eliminates the neecctistly feature transformations
and leads to an efficient computation.

In kernel methods, the problem is modeled as a pairwiseioaléetween data points
which is captured in kernels. Thus kernel functions (or $yrkernels) have a profound
impact on the performance of these learning algorithms. é¥ew selection of the appropri-
ate kernel function, and possibly its parameters knowhyper-parameters, are extremely
challenging. It is mostly due to the difficulty of expliciticcessing the high dimensional
space. To remedy this problem, a new trend in machine legqkmiown adearning the ker-
nel, (orkernel learning or kernel selection (Herbster et al, 2005; Kulis et al, 2009; Lanckriet
et al, 2004b; Shaw and Jebara, 2009; Williams et al, 2007ngtheng Lu and Dhillon,
2009)), is becoming popular. Learning the kernel aims tecedn optimal kernel, or its
hyper-parameters, to best define the nature of the undgriiata. In simple terms one can
describe this area of learning the kernel, as an attemptdafkernel by either constructing
a new kernel or fine-tuning the parameters of a given kermel fpecific dataset to achieve
better performance.

In spite of all the recent advances in this area, there hasasut any authoritative review
of current methods in this relatively new and active are@séarch. In this paper we hope to
provide an extensive review of the state of the art that hedpsarchers to further address the
problem of learning the kernel. Moreover, to the best of mavidedge these algorithms have
not been classified so that they can be easily compared. Tteledions of this paper are
twofold: first, to provide a review and comparison of the eatrapproaches and investigate
their merits; second, to present the challenging aspedtioproblem and the approaches
to address them.

This paper is organized as follows: in the subsequent setti® kernel function is in-
troduced in more details. Later in Section 3, various aspeicthe problem of learning the
kernels are presented. Each of these aspects may be cedsidefurther improvements. In
Section 3.6, the algorithms in the area, categorized baséueir optimality conditions, are
detailed. The conclusion and the remarks for future devetoags are presented in Section
4.

2 Kernel functions

Kernel functions represent the inner product of the datatpaivhich amounts to the
angle between their vectors. Consequently, it may be irgteg as thaimilarity between
data points. Therefore, any learning algorithm that neetieasure of similarity can use a
kernel function for that purpose. Furthermore, throughtiglanown askernel trick a large
body of well-established linear algorithms may be easilyvested to nonlinear methods.



Formally, a kernel functioi for a datase’ = {z1,z2,...,zn} is defined as:
k(zs, z5) = (p(xs), #(xj)), k: X xX =R Q)

where ¢ denotesfeature map which maps the points nonlinearly to Hilbert spakei.e.
¢ : R* — 7. The kernel functiork can be further used to build kernel matfixas:

K = (k(zi,z))i; Vi,j=12,...,n 2)

Examples of popular kernel functions drér,z') = « 'z’ (Linear kernel)k(z,z') =
exp( —|lz — z'||? /20?) (Gaussian kernel with bandwid#) and k(xz,z') = (z 'z’ + 1)¢
(Polynomial kernel with degre®) wherez andz’ represent any two points in the data space.
The bandwidthr and degreel are examples of kernel hyper-parameters. It can be shown
that each of these functions amounts to an inner productiofpm #. In fact, as Mercer’s
theorem states, the only necessary condition for a funttieepresent inner product of two
points in a higher dimensional space is its positive defiigigs. It is a remarkable theorem
that lays the foundation for constructing kernel functiarighout any need for direct defini-
tion of the mapping functions. Therefore, as long as one caveghat the matrix (function)
is positive definite, it surely defines an inner product inghkr dimensional space and may
be used in any kernel-based learning algorithm.

3 The challenges of learning the kernel

Learning the kernel is a challenging problem. It is becabsdrnplicit mapping of the
points to the feature space deters direct analysis. Fuonthrer, any changes to the kernel
have to be performed with respect to the constraint on itgipesefiniteness which is
practically complicated to be applied for the given data&dditionally, the mapping func-
tion that projects data to the feature space cannot be Widefined or accessed for analysis.
By learning the kernel, we hope to tackle these issues teaelinproved performance. The
improved performance of a kernel implies the effectiveradss kernel in defining similar-
ities, capturing distinctions between data points andesgmting an optimal inner product
that leads to a better generalization to the unseen exarnngles kernel methods.

The crucial question to be answered in this area is how we#ragt performs for a
given dataset. This question is closely related to othenieg algorithms where the learning
criteria assess the efficiency of the algorithm (e.g. marinmergin in SVM). In the area of
learning the kernels, similar criteria have to be defineduargntee the performance of the
algorithm. These criteria manifest the principles that lséd to an optimal kernel. As these
criteria assess the optimality of a kernel and provide thelitions for improvement of the
kernel for the given dataset, we shall call theptimality conditions'. These conditions lay
the foundation of learning the kernel and justify the opgiation of the kernel.

Optimality conditions in kernel selection, similar to aner learning method, lead to
specifying particular objective or formulation of an idealse whose fulfillment is sought.
For example, assessment of the performance of the model bageinimization of the error
rates using labeled data is a widely used optimality comdlitin definition of the optimality
conditions usually nature of the problem like the avaii@pibf labeled data, dimensions of
the data, etc. is taken into account. The classification okati optimality conditions is as

1 In most of the current approaches, these conditions aresetpon the problem as optimization con-
straints, as such we may use these terms interchangeably.



Fig. 1 The common process in learning the kernels.
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follows: prior knowledge for optimality, statistical amarches to learn the kernel, adaptation
to another kernel, bounds on error rates of the learner dridsit structure of the dataset.

Optimality conditions are incorporated into learning tlegriels similar to learning cri-
teria in learning algorithms. Any learning algorithm ssably investigating the data and
subsequently hypothesizing an appropriate model thatdesstribes the underlying pattern
of the problem. In the kernel methods, this model dependbi®hkédrnel. As shown in Fig. 1,
the kernel may be learnt prior to hypothesizing the modekim&l machines. In each stage
the appropriate conditions have to be considered in reispdetrning problem to ensure
the optimality of the solution.

In addition to optimality conditions, other aspects thatdeo distinction in learning
the kernels may also be considered: optimization, kerreghlag model, kernel selection
phase, learning type and the optimal kernel obtained. Eudiscussion on these aspects is
crucial for understanding the nature of these algorithnustheir advantages or drawbacks
compared to others. On the other hand, such distinctiombstéea systematic classification
of algorithms in this area, as shown in Fig. 2, that has not lieestigated so far due to the
contemporary rise of interest. These aspects shall beet:tzélow.

3.1 Optimization

Optimization and machine learning are two very closelytesldields of research. As
typical to most of the learning algorithms, learning therieds may also be formulated as an
optimization problem. There is a wide range of optimizatiechniques, each of which ex-
hibits different properties. As such, formulation of thgemtiive in a learning problem with
superior performance of the optimization is sought. Inréay the kernels in particular, vari-
ations of convex optimization (Boyd and Vandenberghe, 2084 been very popular (Fung
et al, 2008; Hoi et al, 2006; Lanckriet et al, 2004b). A reafwrihis popularity is the guar-
antee on the unigueness of the solution in convex probleroaekkr, the implementation
of such techniques and analysis of their performance is emeiglly straightforward. Nev-
ertheless, there are publicly available toolboxes Gk&X(Grant and Boyd, 2008, 2009) that
can solve these problems efficiently. On the other hand jgm&tdased approaches (Cortes



Fig. 2 The most important aspects of the algorithms for learningradd is summarized in this classification.
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et al, 2009; Szafranski et al, 2008) are easy to implemefitjesft and simple to under-
stand. However, gradient-descent requires the objeativetibn to be differentiable which
is usually challenging to formulate.

3.2 Kernel learning model

In order to learn the kernel one can develop a procedureherginprove base kernels
or construct a new one from scratch based on the informatiaireed from data. In partic-
ular, we consider three families of models: data-dependemparametric and parametric.
First family is the kernels created from available data asférred to aglata-dependent
kernels. These kernels, such as Fisher (Jaakkola and Haussler) &889marginalization
kernel (Herbster et al, 2005), have simple formulation ki that of a Gaussian kernel.
However, the difference is that they have parameters to teerdaed based on the dataset
while the parameter of Gaussian kernel is not dependentedataset and may be man-
ually selected. In addition, the positive definiteness ekthkernels has to be theoretically
justified. However, a remarkable point is that their optiatian step is limited to estimating
the parameters of the data-dependent model through eliatimple approaches.

Second family of models isonparametric approaches such as Hoi and Jin (2008); Hoi
et al (2007); Raina et al (2007). In these approaches, theeprior model assumed for the
kernel. The objective function of the algorithm is formeldtas a set of user-defined criteria
whose satisfaction is sought to find an optimal kernel. Ttevback of these methods is
that during testing, the optimal kernel has to be built frdra training and test examples.
That is because there is no model to be further used for gestin

The third family of models iparametric which consists of most of the available ap-
proaches in the literature. The methods in this family gaiheseek to form an optimization
that satisfies user-defined criteria to find the parameteesswedefined model. There are
usually two categories of parametric methods:

1. Single base kernelGiven a single base kernel, the objective is to find its refemno
an optimal kernel such that it performs better for a giveraslet (Adankon and Cheriet,



2007; Amari and Wu, 1999; Chen et al, 2008). In this case, t& § to either find
the appropriate hyper-parameters for the base kernel waitsformation to the optimal
kernel. In this category of methods, selection of the baseekes also important and
the objective of learning may be interpreted as optimizatb an initial kernel for a
particular dataset.

2. Multiple base kernels: In these approaches, usually a set of base kernels areldgaila
and the objective is to find a weighting of them which resuitsnproved performance
on a given dataset (Argyriou et al, 2006; Bach et al, 2004stiriP. Bennett, 2002).
The combination of the base kernels could vary from lineandolinear approaches.
However, most of the current methods are formulated as arlioembination of base
kernels,i.e.

K(x,x/) = Zuikzi(x,xl) 3)
i=1

wherem is the number of base kernels abhddenotes each base kernel. Hergijs the
value that defines the weight of each kernel and has to beai#tigndetermined by the
learning algorithm. Furthermore, each of these kernelsbeaassigned to a particular
set of features (or source of information) where learnirgkérnel may be interpreted
as a means of fusion.

3.3 Kernel selection phase

The phase in which a kernel is optimized may be classifiedtimee categories. First
category consists of the methods that tend to select theekprior to its usage in the de-
sired learning algorithm (Argyriou et al, 2006; Chen et 802; Kristin P. Bennett, 2002). In
this category, the kernel selection is completely indepahdf the learning algorithm itself,
which makes it generic. In the second category, a wrapperidiign to the kernel method is
designed which iteratively alternates between two proesduypically, in an outer proce-
dure the best kernel for that iteration is determined antiéniiner one the model is learnt
(Adankon and Cheriet, 2007; Amari and Wu, 1999). The peréoree of the learning algo-
rithm is evaluated at each step to further improve the keAtahe end of this procedure, an
optimal kernel and its corresponding model are obtaineés&hmethods are more tightly
bound to the inner learning algorithm which means in moshefdases the modification
of the method is required upon any changes to the inner lgguadgorithm. The third cat-
egory of methods are embedded into a particular kernel machich as SVM (Kim et al,
2008; Szafranski et al, 2008). A popular example of thisgatgis multi-kernel learning
algorithm (Bach et al, 2004) which led to introduction of aiaion of SVM that uses mul-
tiple kernels and determines their weighting during leagniAs the learning algorithm’s
objective is achieved jointly with the kernel selectioresh embedded methods have bet-
ter overall performance. However, these methods are so$glful for a particular learning
algorithm and ultimately suitable for only a special clabproblems.

3.4 Learning type
Selection of the kernel, similar to any learning algoritimperformed based on the

labeled, unlabeled or mixture of labeled and unlabeled. ddis corresponds to supervised
(Adankon and Cheriet, 2007; Amari and Wu, 1999; Argyrioule2@06; Bach et al, 2004),



Fig. 3 The various aspects of learning the kernel in a common sicenar
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unsupervised (Herbster et al, 2005; Jebara et al, 2004)eandssipervised learning (Cris-
tianini et al, 2002; Hertz et al, 2006; Hoi and Jin, 2008) meth In addition to this, data

from previous examples of same task or similar ones méaydnsferred to be used to learn

a more robust kernel (Abbasnejad et al, 2009; Riickert aad€r, 2008). In any case, due
to the popularity and applicability of supervised learningst of the existing body of work

on the subject has concentrated on learning from labeleeltst

3.5 Optimal kernel obtained

Generally, learning a kernel leads to either a matrix (@uishi et al, 2002; Davis et al,
2007; Herbster et al, 2005) or a function (Adankon and Che2®@7; Amari and Wu, 1999;
Argyriou et al, 2006). Although kernel-based algorithmskvavith both, the drawback of
obtaining a kernel matrix rather than a function is that tredrir is learnt in an inductive
setting. This implies, prior to using the trained model, atmaestage of building the kernel
matrix is inevitable. In these methods, the optimizatiothefkernel matrix is performed on
both test and training data. As such, it is not possible tmlegkernel from a set of training
data alone and use it for testing purposes. However, this eaystified if we consider
that one hopes to achieve better accuracy by learning framiig and test examples even
though it leads to having an extra step of kernel optimizafar each test examples and
sluggish prediction.

A summary of what has been discussed in this section is deraters in Fig. 3. As
is illustrated, the data, the base kernel (if there exisyg and the kernel learning model
are generally considered in designing the optimality coois. Consequently, an algorithm
is modeled as an optimization which leads to a kernel functio matrix. This kernel is
consequently used in kernel machines. The kernel selegtiase determines the quality of
relation between optimization and the kernel machine. Eiaikd discussion on examples
of these kernel learning algorithms is presented in theespEnt sections.

It is worth mentioning that learning the kernel is very clyselated to the problem of
distance metric learning (Yang and Jin, 2006) where thectibgis to find an appropriate
metric for a specific dataset. However, learning a kernelafatataset is a more generic
problem because finding a kernel entails a distance metrimay be noted that several
kernel functions amount to same distance metric (Burgeg9)1&lthough this advantage is
comes with the price of a relatively complex criteria on tleerlel functions to be positive
definite.

In the subsequent section, state of the art in the area dfitgathe kernels categorized
based on their optimality conditions is detailed.



3.6 Optimality conditions in learning the kernels

In this section current approaches to learn the kernel atgoehted. In each of these
methods, it is assumed that a setroinstances is given a& = {z1,x2,...,zn}. If the
dataset is labeled, a vector of labels y (typically in bineagey;, = +1) is also available.
The objective is to find the kernel functienor matrix K. Furthermoretr is the trace of the
matrix and||.|| is the Euclidean norm.

3.6.1 Prior knowledge for optimality

Prior knowledge of the user is commonly used in learning rlgms. This knowledge
may be used in learning the kernels too. For example, théaelaetween instances in terms
of a comparative value that specifies sample more similar to samplé rather tharc is
useful in learning. In this case, Fung et al (2008) showetldHaear programming (LP)
approach can be formulated to learn an appropriate keraes#tisfies this prior knowledge
as a set of constraints. These constraints are used to fipdthmeterized kernel as in Eqgn.
(3). The key to an efficient computation of the optimal kensethe diagonal dominance
theorem which states if

My > | My (4)
J#i
holds for a symmetric matri/, then it is positive semidefinite.

Examples of other methods developed based on the prior kdlgelof the user are those

of Hoi et al (2007) and Tsuda and Noble (2004) which we wiltdss later.

3.6.2 Satistical approaches to learn the kernel

The statistical information in terms of probability dittion of data can be used to
learn a kernel. The probability distribution in some casessumed to be known beforehand
or selected based on the user’s knowledge of the problempiidiEbility distribution can
also be determined using density estimation techniquesPldczen windows. In any case, a
relatively simple phase of either estimating the probghbidlistribution itself or parameters of
the user-defined probability distribution is required efosing the kernel. It is additionally
worth noting that in case the probability distribution issddn a generative approadte.
p(z]0), the kernel obtained provides a way to combine the generatid discriminative
approaches, e.g. SVM, in machine learning. In the folloveinlgsections, related approaches
that utilized the probabilistic methods to determine thénoal kernel are presented.

Probabilistic kernels

One of the data-dependent kernels that falls in the familstafistical models isatu-
ral kernels proposed by Jaakkola and Haussler (1999). If data is gextkveith probabil-
ity distribution p(x|6) in which 6 denotes the parameters of this distribution &nado) =
In p(z|0), then the natural kernel is defined as

k(z,2') = Vol(z,0) M~ 1V,i(2',0) (5)

In caseM = I (identity matrix) the resultant kernel is known Eisher kernel and if M =
11" (wherel denotes the column vector with all values set to one) theekésrcalled the
plain kernel. It is obvious that the value d¥yl(x,6) has to be estimated before kernel’s



usage. If a known probability distribution is used, the paeters can be estimated from
data.

It can be proved that the Fisher kernel is a special cas&ujinalization kernel (Tsuda
et al, 2002). Marginalization kernel is inspired by the ddviarkov model (HMM) and
consequently may be specifically useful in cases where dafarierated in a sequence, for
example a set of strings of characters or more generallydpltg. In marginalized kernels,
the data is supposedly generated with a set of hidden pageshet H. Additionally, it is
assumed that data generation is independenf(z, =’ |h) = p(x|h)p(z’|h). The marginal-
ized kernel is defined as

k(a,a’) = Y plalh)p(|h)k: (2, 2") (6)

heH

wherek; is the joint kernel between two combined variables (z, h) andz’ = (z', h').
Probability product kernel proposed in Jebara et al (2004) defines a kernel between two
distributions as:

ba,2) = kp (@), 2(x") ()

In this expressionp > 0 is a constant ang” is not infinity. Additionally, k» provides a
generic form of inner product between kernels. In case % the popularBhattacharyya
kernel is obtained ag(z,z') = [ |/p;(x)\/ps(2"))dz.

In a particular case of probability product kernel, the Kaltk-Leibler (KL) divergence
is used to measure the similarity of two distributions in enké (Moreno et al, 2003). This
kernel is defined as

k(z,y) = kp(p(x),p(y)) = exp(—aD(p(z)llp(y)) + B) 8)

In this definition, D(p(z)||p(y)) = D(p(z)|p(y)) + D(p(y)|lp(z)) is the symmetric ver-
sion of KL-divergence and, 3 are constant values representing scale and shift. Thigkern
function is particularly useful in cases where the inputdess represent a probability distri-
bution. For example in computer vision, the image histograspresenting the distribution
of density values can be compared using this kernel function

These data-dependent methods are interesting becauseriihgyut the statistical as-
pects of data into building a kernel function. However, defaing the appropriate distribu-
tion and their possible parameters may not always be feagidditionally, it is not possible
to incorporate any preselected kernel in these methodssia eser has a prior knowledge
about the dataset. In the subsequent section the prolighitiformation is used to further
improve the base kernel’s performance in a dataset.

Improving kernels with probabilistic information

Apart from kernels obtained directly from distribution dditd, it is possible to devise
approaches that utilize statistical information to imgrdalkie given base kernels. Bayesian
inference gives rise to the Gaussian processes (MacKay; Faégmussen, 2003) where the
kernel matrix is employed as the covariance matrix in themabdistribution. This Bayesian
inference in the Gaussian process may be used to estimgtardmetep of the kernelky
(Williams and Barber, 1998). The likelihood of this distriton is written as:

1 1 _ n
log p(X|0) = — log(det(Kg)) — 5y Ky 'y — 5 log(2m). ©)
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With respect to the base kernel matiisg and the derivative of Eqn. (9), it is possible to
develop an optimization that finds a local optimum for thebjem.

Other than Gaussian process, a semi-supervised Bayesthndrte select appropriate
hyper-parameters is proposed in Kapoor et al (2005). Sineeaisemi-supervised method
then the cluster-assumption is made which means the ladakedis clouded with the un-
labeled ones. Thus, the labghre related to the unlabeled data through hidden |ayes
p(yID) = [, p(y|h)p(h| D) whereD is the set of all labeled and unlabeled data. Itis assumed
that the kernel and model parameters are captured in pagaget/sing the Bayesian rule,
the following EM algorithm is proposed to model the problesmaxg log[p(y|X, ©)] and
obtaine:

1. E-Stepgiven the curren®;, approximate\'(h, )
z p(h|X, O)p(y|h, O)
2. M-Step update®; ;; = argmaxg [, N'(h, X},) log NOh )
Other examples that construct the kernel matrix using thge8an inference include
Zhang et al (2004, 2006, 2007).

3.6.3 Adaptation to another kernel

One can define learning as the adaptation of the initial lhgxi$ to an ideal case such
that the ultimate kernel obtained generalizes well to umss@mples. The ideal case pro-
vides a representation of the ultimate kernel suitable ftmtaset. Consequently, adaptation
procedure enables the kernel to preserve its initial cheratics while improving its per-
formance by taking the ideal case into account. It is obvibasin the adaptation the notion
of "ideal case* and the way it is compared to the initial kénplays an important role. In
the subsequent sections, the concept and examples of aaand adaptation will be more
thoroughly presented.

Kernel alignment measure

Kernel alignment measure proposed in Cristianini et al (2002) is one of the most com-
monly used measures that compare two positive semidefimiteekmatrices. Here, the con-
cept ofideal kernel plays an important role that refers to the best possiblecehoi kernel
for the dataset at hand. In case of classification, the idemiek is matrixyy ' built from
the labeled data. Then, for a given dataset one can optitmizgiten kernel with respect to
the ideal kernel. Furthermore, using the eigendecompasif the kernel matrix given as
K=3%, Aivgv; , the kernel alignment measure is defined as

(K,yy")

VK K) (yy T yy ")
_ (K,yy")

n\/zu )\i/\j<vivi—r, vjv;r)

Ai(vi, y)?
D MR Gy ) (10)

Viy Ty T3 A2
With « denoting the Lagrange multiplier, the objective functionthe optimization can be
formulated as follows:

Aly) =

max Z Ailvg, )2 — a(z M- 1) (11)
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Setting the derivative of the objective function to zerdgsey; « (v;,y)2. Replacing value
of A in Egn. (10), we have

A(y) = V=iV

n

Finally, the optimal kernel is obtained from an iterativepagach that modifies a kernel
matrix by combiningu;v; with coefficient). In each iteration, the coefficientis updated
by measuring the alignment betweenand y. It is worth noting that the kernel alignment
measure can also be formulated using SDP as (Lanckriet20@4p):

(12)

. T
maximize (K,
ximize  (K,yy )

subjectto tr(A) <1 (13)
(A K T) =0
K I -

While the kernel alignment measure has been used by numersearchers (Cristianini
et al, 2003; Hoi et al, 2006; Jaz Kandola, 2002a,b; Xu et &)72@hu et al, 2005), this
technique remains to be ineffective in cases where ther® isrrimited availability of
labeled examples in the dataset. This is because the faionlaf the ideal kernel often
requires a large set of labeled examples. Furthermore sitokan shown in Nguyen and
Ho (2008) that it is possible for a kernel function to have & lignment measure for
a particular dataset and still run well for that dataset.réfeee, a new measure of kernel

alignment is devised in Nguyen and Ho (2008) based on thefalitibn of data in the feature
space. This distribution is assessed by Fisher discrimaaalysis.

Divergence measures

The information-theoretic notion of divergence can be @yl to measure the simi-
larity between two matrices. In a method proposed by David ¢2007), the notation of
LogDet divergence is used to measure the similarity of twerices A and Ag:

Dyg(A, Ag) = tr(AAg ") —logdet(AA;Y) —n (14)

This problem is optimized using the method proposed by Kail@ (2006). The kernel then
may be modeled a& = X T Ax. We can alternatively replacein all computations with

¢(z) to produce a simple kernel based solution. In this case, ltkedreed kernel is in the
form of

k(z,y) = k(z,y) + Z Z oiik(z, z)k(y, z;) (15)
i=1j=1

where the parameter should be updated in each iteration to obtain the optimaileier
from base kernet.

Bregman divergence is another measure that may be usecdhilarshanner. The Breg-
man divergence for a strictly convex functignover a convex set is defined as

Dy(a,y) = (@) - v(y) - (z — ) Vi (y) (16)
This definition is extended to the Bregman matrix divergesse

Dy (X,Y) = w(X) = (Y) = tr((V(¥)) (X = Y)) 17
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The Bregman divergence is used in Kulis et al (2006, 2009)nt di low-rank kernel ma-
trix. A low rank matrix is sought as it would allow smaller eig/alues to be omitted and
therefore facilitates dimensionality reduction. The impoce of this technique is that, if
the matrix rank is not constrained, it is possible to deriveadrix with respect to an initial
kernel such that they exhibit high similarity. Moreovere thptimization technique used to
obtain the kernel allows users to incorporate their priamidedge as additional constraints
on the kernel matrix. The results obtained from this appgiaae used in a similar method
proposed in Zhengdong Lu and Dhillon (2009) with more emghas preserving the struc-
tural representation of the dataset. The structural reptation refers to the geometrical
aspects of the data captured in the kernel.

3.6.4 Bounds on error rates of the learner

A class of techniques that have been extensively studieglaim lthe kernels evaluates
the bounds of the learner to decide the optimal kernel. Theseniques are in line with
the general paradigm of learning where the ultimate goal isalve a minimal number of
errors in prediction. Consequently, there are methodssegi to either minimize the error
bounds directly by assessing the performance of the learrambed them into the learning
algorithm itself to jointly find the optimal values. Thoseiathare embedded into a learning
algorithm usually lead to introduction of a new formulatiofhthe kernel-based learning
algorithms.

Direct evaluation of error rates

Cross-validation has traditionally been the solution to determine parareétenodel se-
lection for most of the well-known machine learning aldgamits. Not surprisingly, it found
application in kernel methods and specifically SVM (Duan 1e2803). There are vari-
ations of cross-validation, e.§-fold cross-validation and leave-one-out. #fold cross-
validation, dataset is split intb subsets (folds) and the SVM decision rule is obtained from
the k — 1 folds leaving one fold out for test. This procedure is repéat times until all
subsets are tested. In the leave-one-out method, the nuwhiken k-fold is set to be the
number of examples. Hence, leave-one-out method requaiesng and testing equal to the
number of training examples.

It is obvious that cross-validation only provides a way ttesethe hyper-parameters
in a range defined by the user. Additionally, it is not effitiespecially when the number
of examples is large, thus more efficient methods are needee tieveloped. In a method
proposed by Adankon and Cheriet (2007) the concept of ecapiiror criterion (Ayat et al,
2005) is used to determine the performance of the learné.mathod is solely developed
for SVM and uses its decision function. Ligt= (y; + 1)/2, then empirical error is defined
ask; = |t; — p;| wherep; is the posterior probability corresponding to data paintThis
posterior probability is the sigmoid function used in Patirobabilistic SVM as (Platt,
1999b):

1

- 1+ exp(A.f; + B)

whereA and B are parameters to be determined during training phase nfisguhe kernel
function is parameterized bg, the objective of the algorithm is formulated in terms of
a gradient descent for minimizing the empirical error. Hfere, an iterative approach is
employed that takes a subset of the dataset in initial stageattempts to incrementally

pi

(18)
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increase its size such that the remaining points in the gbeatnd of each iteration are as
close as possible to the margin.

The variation of this method can be formulated in a well-kndaoosting scenario.
Boosting seeks to formulate a strong hypothesis about dgrrobased on several weak
learners. In each iteration, a weighing of the weak learieedecided based on the error
rate of the resulting strong hypothesis. AdaBoost (Coliihal, 2002; Schapire and Singer,
1999) as a popular type of boosting has been used in Hertz(20@6) to learn a kernel
function. This method is semi-supervised with particutanus on the cases where the num-
ber of training examples is limited. In this approach, a cioration of base kernel functions
that minimizes the loss function is used. The weak learmethe other hand, is based on the
probabilistic method of Gaussian mixture model (GMM). Thill& model learned from
data is used to create a new kernel which is actually the ptaafithe probability of each
pair of points belonging to the same Gaussian componentadith@ntages of this boosting
approach are its relatively simple implementation and Hiktato run with limited training
examples. However, the number of parameters that has taderdeed by the user such as
the number of iterations in the boosting and the number ofs&ian mixtures make it in-
tractable. Another variation of this approach is proposgddseph et al (2002). The use of
multiple base kernels to learn the kernel using boostingalesbeen considered in Kristin
P. Bennett (2002).

Implicit bounds on the error rates

Instead of assessing the performance of the learning #igorilirectly, one can use
the objective function of the learning algorithm as an oplitg condition. Specifically in
case of supervised learning, variations of SVM are desrabbices. The objective function
of SVM exhibits some favorable aspects: sound geometritatpretation, relatively simple
formulation as a convex optimization which results in a glbpoptimal value and extensive
body of literature in various related issues. As such, thigras kernel is one that performs
well in compliance with SVM objective.

One of the most remarkable and influencing methods in th&sdtaproposed by Lanck-
riet et al (2004b) in which the process of learning the keism@rmulated in two settings of
convex optimizations. The kernel is formulated as a contlmnaf training and test dataset.

The parametric optimal kernel is formulated using a lineankination of base kernels
as in Egn. (3). The parameters of the optimal kernel matexodtained from the objective
of the dual of the hard and soft margin classifiers while thedrof kernel matrix is limited to
a constant value. The algorithm is designed in two settirigsnespect to the coefficients of
the base kernels: if all the coefficients are positive thaltiegy optimization is quadratically
constrained quadratic program (QCQP) and otherwise it essolved using SDP. In these
two formulation the kernel selection is embedded into thenélemachine (SVM) itself
which leads to a new formulation of the learning algorithm.

The Lanckriet's work is one of the groundbreaking methodghin literature that de-
fines a parametric kernel function which can be optimizeth wespect to a specific dataset.
Furthermore, the use of established criteria of maximumgimaslassifiers to obtain con-
vex optimization is another significant aspect becausdyfinstiximizing the margin is a
well-established condition and secondly the objectiveeafrhing the kernel and learning
algorithm comply. Additionally, unlike many other methdtiat seek to find an optimal ker-
nel matrix using only labeled examples, this approach uskeléd and unlabeled data in a
semi-supervised setting. In spite of all these advantdafesapproach is suitable for cases
where abundant number of training examples is available. vEtue of the parameter that
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limits the trace of the kernel matrix is also left to the usebé decided which may not be
straightforward and have a great impact on the obtaineceke@me example of using such
a method for data fusion is discussed in Lanckriet et al (2D04

The use of combination of kernels considered by Lanckrietl €2004b) has been re-
visited in Bach et al (2004) where authors have considerkdngothe problem in a tech-
nique similar to sequential minimization optimization (Sy(Platt, 1999a). The developed
method became to be knownmaltiple kernel learning (MKL) in which the use of multiple
base kernels for decision making is considered. In MKL, daahel may be assigned to a
specific data source and the result is a variation of SVM fdatian. The remarkable aspect
of this model is that, the resulting optimization problensfmrse on two levels: data and
kernel. While the former is shared with normal SVM, the laitglicates the sparsity in the
kernel functions. In other words, there may be a kernel thatt suitable for the dataset or,
on the other hand, the set of features assigned to a spedifielldo not play a significant
role in decision making.

MKL is a new formulation similar to SVM that needs to be funthmplemented in
programming languages and tested accordingly. Howevexriation of MKL is devised in
Rakotomamonjy et al (2007) that is able to use existing impletations of SVM by de-
composing the problem into two stages: in the first stageagipropriate combination of
base kernels is updated and in the subsequent step the parmmeSVM are estimated
accordingly. These two stage alternating approaches liametad other researchers as well
Rakotomamonjy2008,ZenglinXu2010. In particular in Xu E{2010) the connection be-
tween MKL and group lasso (Yuan et al, 2006) is used to forteuéasimple algorithm
where the combination coefficients of kernels are easilgutable. This simplicity leads to
an efficient and applicable algorithm.

Another variation of MKL is proposed in Szafranski et al (8D€hat improves the learn-
ing by introducing the concept of grouping in the kernelsisTheans, kernels correspond-
ing to similar evaluation of the feature sets can be relaiéditionally, the case of large or
possibly infinite set of base kernels in MKL is considered gh{&r and Nowozin (2008).

The use of multiple base kernels has extended in Cortes 20@9J to the case of non-
linear case in which the kernel matrix of the following forsndesigned

K= > o KKy (19)
S1+...+sq=¢q

This formulation of the kernel matrix is in fact a polynoméldegree; that hasn base ker-
nels. Consequently, the objective of the algorithm is to frelvectory = (u1,. .., um) .
The algorithm is specially designed for the min-max forntiola of the regression in Saun-
ders et al (1998). The solution to the problem is developetvasstage optimization that
consists of solving the regression and subsequently usirsglution in a gradient decent to
find the kernel. However, the empirical results do not shoywamsistent performance im-
provement. Additionally, the setting of the proposed applois restricted to one particular
learning algorithm which cannot be extended to other prableOne can further question
if the nonlinear parameterization of the ultimate kerneidtions is necessary or efficient.
In any case, the proposed approach set the stage for furtiretoggment in the field and
possible improvements in the empirical evaluations.

In another approach, Wang et al (2007) devised an algorithiimd the optimal hyper-
parameter for a given dataset by modeling the changes inyther{parameter as a function
that seeks to ultimately minimize the hinge loss in SVM.
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Regularization for learning the kernel

Regularization minimizer, as a well-developed conditiontiee bounds of hypothesis
function, provides a robust foundation for kernel condiamcas considered in Argyriou
et al (2005); Kim et al (2008); Micchelli and Pontil (2005}.i$ showed that a convex
problem can be formulated from the problem with an appréepri@ntinuous loss function
which leads to an interior-point method (Florian A. Potr@)@; Freund and Mizuno, 1996).
Considering the regularization problem with weight veatoas:

n

minimize 3" glyi,w” G + 1) + Muw, v) (20)

w :
=1

Then, Kim et al (2008) showed that the optimal kernel mawixthe loss functiory can be
obtained from the following convex optimization

n
minimize Z q(yih; +yv) + MK (21)
=1

whereh = Ka € R™, v € R andK T is the pseudo-invers of the matrix. This approach
towards minimization of the regularization method is fertlextended by Argyriou et al
(2006) where DC (difference of convex) programming (Hored &hoai, 1999) is used for
optimization. This supervised method works based on thel@aegation functional:

QU = alyi f(z:) + Al fll% (22)
J
In this method, a class of continuously parameterized sleasé kernels is considered as

K = {/Q G(w)dp(w) - p € P(Q)} (23)

wherew is the set of parameters arRl((2) is a set of probability measures on and
G(.)(z,2") is the continuous base kernel with parameidor z, =’ € X. As an example
Gaussian kernel can be considefieg,, G (w)(z, z') = exp(—w|z — 2’||*). The remarkable
point of consideration about this formulation is that itgmtially enables usage of infinite
number of base kernels. The objective of the algorithm, erother hand, is formulated as
the minimization of the regularization error similar to Mrelli and Pontil (2005):

E(K) =min{Q(f) : f € Hk} (24)

The regularization framework has been also studied in angattion with Bregman diver-
gence in Li et al (2009) where the ultimate solution is otedifrom a Newton method.
Further justification of these methods can be found in Mitiched Pontil (2007).

Transferred setting

In a different trend of learning, one can use multiple sosi@iedata to strengthen the
trained model as itransfer learning andmulti-task learning (Caruana, 1997). These sources
of data can be either labeled or unlabeled and exhibit someédé conceptual relation with
the test dataset that the algorithm is designed to work oruddyg multiple datasets one
may hope to learn a model that eventually generalizes bettéhe test dataset. As such,
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Ruckert and Kramer (2008) considered a case where thegmnoBlto use multiple datasets
in a regularization framework to find the optimal kernel. Sa@enultiple datasets may refer to
the same problem obtained from different time periods oilairproblems. This algorithm
works by alternating between learning the appropriate il optimal kernel. Since this
algorithm is specifically designed to work with SVM, the mbiealso learnt by training
SVM. The minimization of the error bounds of the model wilateto finding the linear
combination of base kernels.

In case the additional datasets are unlabeled, the taslkofimg the kernel is tackled
in an unsupervised transfer learning approach as in Raiah (@007). The algorithm is
designed in a two stage process: in the first phase, the iemgddatures from which final
decision may be made are selected using sparse coding asugrewised feature selection
technique. Once these impactful features are known, ttenggghase reuses this informa-
tion about features to find their transformation in the laedetet. Finally, the transformed
features are used in a learning algorithm such as SVM to fireparopriate model.

This is an interesting approach as it shows the ability tonleakernel from labeled
and unlabeled data while the unlabeled data is collected &similar problem. However,
a drawback of such method is that the features found in thabeféd dataset may not
necessarily reflect the most important features in the éab&hining set. In this case, the
parameters learnt in the first phase may even misguide theinga Similar approaches
of using transfer learning to construct a kernel are coms@tlen Abbasnejad et al (2009);
Argyriou et al (2007); Evgeniou et al (2005); Jebara (2004).

3.6.5 Intrinsic structure of the dataset

There is recently an increasing interest in the use of isiistructural aspect of the
dataset for finding the optimal kernels. This is mostly beeathe kernel function of the
choice should be able to preserve and reflect the relatiof@nation of a pair of points.
Moreover, by using the characteristics of the dataset tieel fer prior knowledge of the
algorithm designer or the label of each example may be exainpi this section, several of
these methods will be further discussed.

Input space conditions

Optimality of the selected kernel can be based on some aspéut dataset inferred
from investigating the representation of the dataset imjist space. The inferred informa-
tion will be used in the construction of the feature spaceatT$ the kernel or the mapping
function is enforced to have strongest compliance withelieferred constraints. As an ex-
ample,heat or diffusion kernel (Kondor and Lafferty, 2002) is a well-known data-dependent
kernel function defined over the statistical manifold ofadaith a strong physical interpre-
tation. The name along with the justification of the formidatderived from the physical
interpretation of the diffusion of heat through continusuedia which is obtained from
equation:%w = pAv. The kernel is also obtained from a similar equation:

9
%Kﬂ = HKg (25)
In Eqgn. (25), the matrixd indicates the geometrical representation of the dataseteX

ample, H may be obtained from a graph Laplacian tiigt = 1 if vertices: andj are
connectedH;; = —d; whered; counts the number of edges emanating from pointa
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graphical representation of data afAg; = 0 otherwise. The remarkable point about the
heat kernel is that the intrinsic structure of the datasé&tims of a graph captured i is
used to create a new kernel function.

The solution to Eqn. (25) in continuous case may be obtairad f

1 —|z — 2|
e exp( 17

which reduces to Gaussian kernel with selectiorBof o2 /2. One drawback of the heat
kernel is that the parametgritself should be decided beforehand. Additionally, in e

of generating the matri¥, the proximity between points should be examined and ddcide
by the user which may not be easy.

Another data-dependent kernel functiomiaph Laplacian kernel (Herbster et al, 2005;
Zhu et al, 2005) which has been used extensively to find thetsiial representation of
a dataset. In addition, the kernel function constructioneistered on the notion of graph
Laplacian which is built from the adjacency matfiX where each entry;; denotes the
distance between pointsandj. The graph Laplaciatd is defined ad. = D — W, where
D is a diagonal matrix such thad;; = > ; w;; and the normalized graph Laplacian is
defined ash. = I — D~Y/2LD~'/2_ It can be shown that the pseudo-inverse of the graph
Laplacian is always positive semidefinite and can be useleslsetrnel matrixi.e.

ky(z) =

) (26)

n
K=LT=Y" xluu! (27)
i=r+1

where), v denote the eigenvalues sorted in ascending order and eigjens respectively.
Additionally, r indicate the index of the first positive eigenvalue. Finatlys worth noting
that the diffusion kernel can be related to the graph Laptably

Kheat= exp(—FL) (28)

Graph Laplacian has been one of the basic methods to extraébfiormation about
the structure of the dataset. It has a simple formula thaasfyeimplementable in various
programming languages. In the rest of this section, seesmhples of the algorithms that
used graph Laplacian for kernel construction will be présgn

The prior knowledge of the user about the problem may belyourgted with the notion
of graph Laplacian to formulate a new kernel. Such a probketadkled by Hoi et al (2007)
(similar to Kulis et al (2006) discussed earlier) where thgotive is to use graph Laplacian
as the kernel with structural information in addition to &sfepredefined constraints given
by the user as relative similarity between pairs of examgdsrmulate the optimal kernel.
This algorithm aims at minimizing the inconsistency betweptimal kernel and the graph
Laplacian kernel matrix while satisfying the predefinedstaaints. The ultimate optimiza-
tion is SDP, however, authors argued that it can be furtmeplgfied to a conjugate gradient
method.

This approach (Hoi et al, 2007) has been further extendedyusitive learning in Hoi
and Jin (2008). Active learning is a class of learning althons that aims at improving
the model by taking the most informative examples into antdtihas been very popular in
semi-supervised approaches where labeled data are momnative. In Hoi and Jin (2008),
authors considered using active learning to find the mostriméitive pair of examples to the
optimal kernel. The most important justification of usingiae learning is the appropriate
utilization of the limited labeled examples. The proposetiva learning is a nonparametric
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approach and the main improvement made compared to itstan¢eghat the assumption
of the existence of the relative similarity between poistyaided. Additionally, the opti-
mization obtained in this method is slightly complicate@wvéver, an improvement of Hoi
et al (2007) proposed in Zhuang et al (2009) attempts to fimehpler optimization. The use
of graph Laplacian inherited from Hoi et al (2007), brings #bility to capture the structure
of the dataset. The loss function and the graph Laplaciajoary used as the criteria to
evaluate the performance of the kernel function obtainee: @ajor drawback is that, this is
a nonparametric method in which there is always the po#tgibil over-fitting. It makes the
kernel matrix over-trained for a special dataset while @glaot truly represent the correct
level of similarity between points.

In another interesting semi-supervised approach propws8thdhwani et al (2005) a
small number of labeled examples are used as the initialtpdim kernel construction.
The feature space construction is started with the labedachples and led by the unlabeled
ones. In this method the cluster assumption plays a crug@because it is assumed that the
labeled examples are surrounded by a "cloud” of unlabelegngies. The kernel function
is constructed based on the notion of reproducing kerndddilspace (RKHS) and the
assumption that the evaluation functional is bounded ali gaint. RKHS provides the
necessary framework to build a function in the feature seas®d on a given dataset and
kernel function. In order to obtain the new kernel, the lmeambination of predefined
kernels in? is considered as

K (x,) = k(z,) + > B(@)k(w;,.) (29)
J

In this equation is a data-dependent function of By defining the inner product over
k(z;,.) atz the ultimate kernel is obtained as:

K (z,2') = k(z,z") — k:_;r(l + MK)_IMle (30)

where k, is the column vector of the kernel matrix. The value of theriradd = LP,
wherep is an integer value and is the Laplacian graph defining the geometry of the points.
This work, in addition to defining a family of kernel functi®that favors the geometrical
structure of the dataset, sets the stage for future developai techniques that uses RKHS
to utilize the geometry of a dataset.

The base kernel obtained in Egn. (30) represents a kernekdefin the structure of the
dataset. Hence, it can be used as a basis for other methodgitvéloped. Specifically, in
combination with the divergence measures introducedeza@hengdong Lu and Dhillon
(2009) proposed an approach that seeks to find a kernel méthxighest similarity to a
structural aspect of the dataset represented in anotheglkeatrix (such as graph Laplacian
or the kernel matrix in Eqn. (30) as a more generic case). @gbis purpose, the LogDet
matrix divergence, as defined in Eqn. (14), is used and its mdvantage is its invariance
to rescaling of the feature space. Considerini@s the initial kernel, the ultimate kerngl
may be modeled as:

K= {K K+ TK)*lTK} ,
T
T:Z,/\iviv;r)\lz...z/\rzo (31)
=1
The significance of these kernels are their ability to belgasiended to unseen examples.

On the other hand, the convexity of this set is certain as g, ..., v} are orthogo-
nal. To obtain a solution, it should be firstly noted that imgeal D, (K, K) is not jointly
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convex inK and K. Therefore, the goal of this algorithm is formulated as figdi” and

consequenthi. Hence, a cyclic projection algorithm is used where at etghthe solution
is projected on the constraints. The optimization to sohedivergence oD, (K, K) is

similar to the one used in Davis et al (2007).

Feature space conditions

In the previous subsection, methods that define the kerrseldoan the information ex-
tracted from the input space are considered. As it is shovast of these methods consider
variations of the graph Laplacian to capture the structealesentation of the dataset. How-
ever in this subsection, focus is on the methods that tylgicfine optimality as the con-
dition applied directly to the mapped points in the featyrace. Consequently, the optimal
kernel represents the desired characteristics. As an dgalfgung et al (2008) proposed to
devise a kernel matrix such that the squared Euclideanndistbetween pairs in the same
class in the feature space is reduced.

One important approach in this family that investigates geemetric representation
of the mapped points in the feature space is considered inrifana Wu (1999). This
method is concentrated on the supervised learning spdkific@ase of SVM. The mapped
points are investigated using Riemannian geometry. Then&iaian geometry provides the
foundation to analyze data in a highly nonlinear structaneathly. The Riemannian metric
used in the feature space is obtained from

0 0

9ij = ——k‘(x,x/) o' =g (32)
J 8%’1 8$/j

Furthermore, the volume of the Riemannian space is defined as

dV = \/det |g;;(z)| dz1...dzn (33)

The factor,/det |g;;(x)| represents how a local area is magnified in the feature spate u
mappinge. Subsequently, the Riemannian distance is defined as

n
d82 = Z gij d:Ei d:Ej (34)
ij=1

By increasing the value of metrig;, the distance between pointand; around the decision
boundary is increased. Thus, the nonlinear mapgiig modified such that/det |g;; ()]

is enlarged around the boundaries. These boundaries mapé¢heelected to be the support
vectors in SVM. A conformal transformatiogi; (z) = §2(x)g;;(x) is proposed to solve
the problem where the conformal mal{z) has a large value around the boundaries. The
conformal transformation will not change the angle betwgaints and therefore the spatial
characteristics remain unchanged. This conformal trameftion is defined as:

Kz, 2") = g()q()k(z, o) (35

with factor g(z). The factor of this transformation ensures the modificatiotthe mapping
function. It may be defined as weighted sum of Gaussian k&rnel

glz) = ay exp(—"————"—) (36)
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wheres, denotes each support vector in the set of support vestarsd parametet left to
be determined during learning process. Finally, the kese&dction algorithm is proposed
in three steps: first, SVM is trained using the kernel funttioand the support vectors
are obtained; second, the conformal transformation ofeksraccording to Eqgns. (35) and
(36) is used to obtair; third, train SVM using the modified kernel Although this simple
iterative approach may not be an efficient way of obtainirgdptimal kernel, but the notion
of kernel conformal transformation as a mathematicallyifiesl method to modify a kernel
function has been used jointly with other conditions toHertensure the optimality of the
solution. Examples of such approaches can be found in Gan§2@08); Williams et al
(2007); Wu and Amari (2002); Xiong et al (2005).

Another way of providing constraints on the feature spacéendnsuring the global
optimality of the solution is proposed in Kim et al (2006). tlis method, discriminant
analysis is used to model a convex problem for a given dat@ibetobjective function of
this method is formulated as a solution to the following peofx

_ (wT(¢_>+ - ¢_))2
Fi(w,K) = w! (ny/nE+ +n_/nE~ +X)w 37)

In this equation,s is the mean,Y is the covariance matrix for the positive or negative
classes obtained from the mapped points in the feature spad& > 0 is a regularization
parameter. The optimal weight vector is determined as

w* = arg max Fi(w, K) (38)
For a fixed kernel matrixx” and regularization paramet&y Eqn. (38) is equal to
w* = (ny/nET +n_ /X + X)) HeT —¢7) (39)
Fixing w = w*, the optimal value foiX is obtain as
F{(K) = (67 =67) (ng /ST 40 n2” + 207" - 67) (40)

In order to maximizeFy (K), a semidefinite program is proposed that can be solved using
the available optimization toolboxes. This algorithm isttier extended and simplified by
Jieping Ye (2007) with the advantage of being formulated QC&P problem. The advan-
tage of the QCQP is that it is faster than SDP and computdlyoaffordable for moderate
sized problems. Discriminant analysis provides an effectriterion to assess the feature
space and consequently has been studied in various appstziearn the kernel (Chen
etal, 2008; J. Lu, 2005; Kim et al, 2006; Xiong et al, 2005; ivget al, 2007). In Wang et al
(2009), authors proposed an optimization approach thatmizes the linear discriminant
analaysis’s objective in the feature space which leads thnfinthe parameter of Gaussian
kernel.

While discriminant analysis as well as conformal transfation provide explicit con-
straints on the feature space, a technique that amountsrgoioit constraint is proposed in
Tsuda and Noble (2004). This implicit constraint in additio the user defined linear condi-
tions as the prior knowledge is incorporated in the optitindraobjective to find an optimal
kernel. Intuitively, this method aims to distribute the mpag points in the feature space as
evenly as possible. In other words, all the points are givgrakchance to be mapped in
the feature space while the linear constraints decide thgor between them. This implicit
constraint is defined as the von Neumann'’s entropy for pesitefinite matrices,e.

E(K)=—tr(Klog(K)), K >O0,tr(K)=1 (41)
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Sincetr(K log(K)) is convey, it is shown that maximization of the von Neumantiagy
with respect to a set of linear constraints can be used totimdptimal kernel. This amounts
to taking the global aspect of the dataset using the entropyuse it jointly with local
constraints defined by the user. Ultimately, it is shown thatkernel obtained from this
approach is equivalent to the diffusion kernel.

Another unsupervised method has been proposed in Abbasaiegh (2010) where the
random walk on the graph is used to learn a linear combinatfi¢ime kernels. Random walk
is performed to assess the influence of each point in the imipfgature space. Then, the
feature space is probabilistically constructed such ti@pbints with higher influence in the
input space remain in the dense areas in the feature spasalgdrithm is presented in two
settings and the solution to both of them can be obtained fmonconvex optimizations,
namely linear and semidefinite programming.

Intrinsic structure for dimensionality reduction

Kernel methods and the mapping to a higher dimensional spgaekernel-PCA have
been used for dimensionality reduction. It is therefor@ratl to try to select an appropriate
kernel optimized for the task of dimensionality reductibnWeinberger et al (2004) authors
proposed a method that utilizes the nonlinearly mappedtpainreveal the lower dimen-
sional representation of the dataset, in accordance witfek® CA. The algorithm’s goal is
to construct a kernel matrix that maximizes the variancéefdataset in the feature space
while preserving the distance between neighboring datatforhis goal is formulated as a
semidefinite program. The pairwise distance between dataspran be written as:

3 2 2 6() (eI = (k) (42)

i=1j=1

On the other hand, the distance between data points shocltbonged symmetrically. This

is in line with most of the nonlinear dimensionality redoctitechniques that seek to pre-
serve some aspects of the dataset, such as distance betimtsrirpthis case. This amounts
to the local constraint on the distances between two neigidppoints,i.e.

p(x:) — Sl = llz; — a4 (43)

This unsupervised method is useful for cases where thelkenetion is intended to be used
for dimensionality reduction, e.g. with kernel-PCA. A slarimethod has also been devel-
oped in Shaw and Jebara (2009) where the topological steuofuhe dataset is considered.
The goal of this algorithm is to find an appropriate embeddihg constructed graph from
the dataset in a Euclidean space. This approach is based tactihat the distance between
two points is a linear function of the kernel(z, z') = k(z, z) + k(z',2") — 2k(z, 2’). Ad-
ditionally, the points that are not connected in the grapm¢d close enough in a K-Nearest
Neighbor selection) and correspond to the zero entry in ectivity matrix A should be
placed in distanie. D;; > (1 — A;;) maxs(A;sD;s). Consequently, the objective of the al-
gorithm is formulated as a SDP optimization that seeks toimiae tr( K A) while satisfies
the constraintr(A) < 1.
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Table 1 List of most important methods to learn the kernel and thiginlights

Method

Comments

Fisher kernel (Jaakkola and
Haussler, 1999)

Conformal transformation of the
kernels (Amari and Wu, 1999;
Williams et al, 2007; Wu and
Amari, 2002)

Boosting for learning the kernels
(Hertz et al, 2006; Joseph et al,
2002; Kristin P. Bennett, 2002)

Divergence and alignment mea-
sures (Cristianini et al, 2002;
Davis et al, 2007)

Maximizing the entropy (Tsuda
and Noble, 2004)

Multi-kernel learning (Bach
et al, 2004; Lanckriet et al,
2004b)

Dimensionality reduction (Shaw
and Jebara, 2009; Weinberger
et al, 2004)

Graph Laplacian (Herbster et al,
2005)

Using RKHS to find a function
space (Sindhwani et al, 2005)

Minimizing the regularized ob-
jective function (Argyriou et al,
2005; Hoi et al, 2006; Micchelli
and Pontil, 2005)

Maximizing the discriminant
analysis (Chen et al, 2008; Kim
et al, 2006; Xiong et al, 2005)

Minimizing the empirical error
(Adankon and Cheriet, 2007;
Ayat et al, 2005)

Transferred settings (Abbasne-
jad et al, 2009; Raina et al, 2007;
Rickert and Kramer, 2008)

Non-parametric kernel learning
(Hoi et al, 2007; Zhuang et al,
2009)

Alternating MKL (Rakotoma-
monjy et al, 2007; Xu et al,
2010)

Data-dependent kernel

A generative approach

Statistical manifold of data is investigated
Supervised

The structural representation of the dataset is modified
The mapping function is modified through conformal map
Iterative optimization and examination of kernel’s penfiance
The conformal map is required to be cautiously selected
Multiple training and testing of SVM is required
Supervised

Use of celebrated boosting algorithm

Easy to implement

Iterative approach without any need for sophisticated nogition
methods or specific toolboxes

Supervised, Semi-supervised

Challenging formulation of an appropriate divergencgfaiient mea-
sure

Selection of appropriate ideal kernel

Supervised, Semi-supervised

Desirable interpretation in the feature space
Incorporation of prior knowledge in terms of linear constta
Independent of the kernel machine

An unsupervised approach

Unsupervised

Maximizes the margin

Embedded into the kernel machine

Entails a new formulation of a kernel method similar to SVM
Computationally efficient

Supervised

Captures the structure of the data for nonlinear dimenBtgmaduction
Seeks to preserve some aspects of the data in the featuee spac
Unsupervised

Data-dependent kernel

Frequently used to capture the dataset's characteristics

Mostly constructed using Gaussian kernel which is a panéerietrnel
Unsupervised

Solid mathematical foundation and strong connection tolé¢aening
problem

Formulation of a data-dependent kernel with interpretatibthe struc-
ture of the dataset

A semi-supervised approach

Semi-supervised

Solid foundation with strong relation to the well-estabéig learning
criteria

Lays the foundation for continuous and smooth formulatibipase ker-
nel

Supervised

Strong interpretation

Good measure to be used in feature space
Independent of kernel machine
Supervised

Iterative optimization of the kernel with multiple traigrof SVM
Requires Platt’s sigmoid function

May be used in incremental manner

Supervised

Determine the important features from the auxiliary ddtase

Leads to a robust learned kernel

Suitable for cases where the number of labeled training plesnis
insufficient

produces a kernel matrix rather than a function
Ability to incorporation of prior knowledge
Semi-supervised

Easy extension of the current SVM implementations
Iterative improvement with multiple training of SVM
Strong connection to the learning criteria
Applicable to a wider range of kernel machines
Supervised
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Method Comments
Non-linear combination of ker-  _ |nnovative idea in combination of base kernels
nels (Cortes et al, 2009) — Gradient descent optimization in regression formulation

Further investigation may exhibit better performancéialgh the for-
mulation of a convex problem may be challenging

— Supervised
Random walk for learning the  — Random walk to derive the structural information of the data
kernel (Abbasnejad et al, 2010) - Independent of the kernel machine

— An unsupervised approach

— Unsupervised

Table 2 List of the available source codes for learning the kernels

Method Link

Multiple kernel learning (Support http://www.stat.berkeley.edu/ ~gobo/SKMsmo.tar
Kernel Machine) (Bach et al, 2004)

Probability Product Kernels (Jebara http://www.cs.columbia.edu/ ~jebara/code/elkernel.m
et al, 2004)

Multi-Task Feature and Kernel Selec- http://www.cs.columbia.edu/ ~ jebara/code/multisparse
tion for SVMs (Jebara, 2004)

Convex Combinations of Basic Ker- http://ttic.uchicago.edu/ ~argyriou/code/dc/dc.tar
nels (Argyriou et al, 2005)

Using RKHS to find a function space http://people.cs.uchicago.edu/ ~vikass/
(Sindhwani et al, 2005) manifoldregularization.html

Semidefinite Embedding (Maximum http://www.cse.wustl.edu/ ~ kilian/codef/files/Imvu.zip
Variance Unfolding) (Weinberger

et al, 2005)

Simple multiple kernel learning http://asi.insa-rouen.fr/enseignants/ ~arakotom/code/
(Rakotomamonjy et al, 2008) mklindex.html

Finally, it should be noted that two methods mentioned eaiti Section 3.6.3 (Kulis
et al, 2006, 2009) in which divergence is used to find a lovkternel matrix may be uti-
lized to obtain kernel matrices for dimensionality redactiHowever, because those tech-
niques are more strongly related to adaptation and divesgéitey are not included here.
Furthermore, dimensionality reduction techniques disedsin this subsection are more
task-specific and cannot be easily extended to other prabligmthe classification cases.

4 Conclusions

In this paper, the state of the art techniques related tortaead learning the kernels have
been discussed (in Table 1, a list of most important methottss area and their significance
is listed). We find that the current methods to learning theddevary and improvements in
various aspects of these approaches can be done. Most amihpithe current approaches
classified based on their optimality conditions were dethil

As it is presented, there are various aspects that the noeétite algorithms in the area
can be discussed. In optimization, it is important if anyrgnéee on the optimal solution
can be given. Also it is more desirable to define the model®fehrning beforehand so that
the resultant optimal kernel does not need to be refined glteisting phase. Additionally,
it is useful to have an algorithm that learns the kernel irmtelent of the kernel machine of
choice so that the algorithm can be applied to various prosle
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Furthermore, the following is the list of possible direatofor further research and
development in this area:

— The current methods are mostly concentrated on the cases tgenumber of training
examples is abundant. However, there is not always enolgield examples available
to evaluate the model’'s performance or even incorporatedptimality conditions. In
addition to what is presented, further investigation on nesupervised approaches is
required so that the resultant optimal kernel can be usedsaopervised kernel-based
algorithms, such as clustering, too. An unsupervised dhgor either independent of the
learning problem or embedded into it, may be very useful oviging more efficient
clustering algorithms since the most important aspect wsteting is the measure of
similarity.

— The current trend is to use a kernel or its linear combinatomodel an initial hy-
pothesis for further optimization. However, other possilodels may be opted for this
purpose. One possible direction is to use the nonlinear swtibn of the base kernels.
The nonlinear case may produce better performance andifigxibhere has not been
enough research done in optimizing the kernels with regpebe RKHS which provide
a solid foundation and may lead to promising algorithms. ifididally, use of infinite
number of base kernels has been investigated which has nptg@uced outstanding
performance. It is possible that further studies lead teebe¢sults.

— Geometry of the mapped points in the feature space providedsjustification on the
optimality of the kernel function. However, in these methdHe optimization of the
objective function or forming the dual is the most importaspect that has to be closely
scrutinized.

As a final remark, it should be noted that most of the currept@gches are showing
good results in small datasets and fail to scale to large. gxesuch, the immediate future
work will be developing approaches with faster optimizatadgorithms like stochastic gra-
dient descent that perform better with larger datasets.offiee approaches to learn the
kernel with the capability to update with new examples cao ak another possible path to
improve this area.
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