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Abstract

In this paper, we propose a novel single image action
recognition algorithm based on the idea of semantic part
actions. Unlike existing part-based methods, we argue that
there exists a mid-level semantic, the semantic part action;
and human action is a combination of semantic part ac-
tions and context cues. In detail, we divide human body into
seven parts: head, torso, arms, hands and lower body. For
each of them, we define a few semantic part actions (e.g.
head: laughing). Finally, we exploit these part actions to
infer the entire body action (e.g. applauding). To make the
proposed idea practical, we propose a deep network-based
framework which consists of two subnetworks, one for part
localization and the other for action prediction. The action
prediction network jointly learns part-level and body-level
action semantics and combines them for the final decision.
Extensive experiments demonstrate our proposal on seman-
tic part actions as elements for entire body action. Our
method reaches mAP of 93.9% and 91.2% on PASCAL VOC
2012 and Stanford-40, which outperforms the state-of-the-
art by 2.3% and 8.6%.

1. Introduction

Single image action recognition is a core computer vi-
sion task which aims to identify the human action in still
images where location prior is provided. It enables bet-
ter performance of image captioning [27], image and video
analysis [23], human-computer interactions [3] and etc.

Early single image action recognition methods ex-
ploit cues such as interactive objects [11], part appear-
ance [10, 14], template matching [5, 28] and spatial rela-
tionships [32]. Among them, part-based methods [10, 14,
32] are most successful, which extract appearance features
from body parts. Recently, benefiting from deep neutral net-
works [22, 12], part-based methods have obtained promis-
ing results.

However, there exists a semantic gap between part ap-
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Figure 1. Inferring body action by semantic part actions. Previ-
ously part-based method [32] mis-classifies the action as “drink-
ing” only because of the hands holding bottles. Our method, how-
ever, makes the correct prediction “pouring liquid” by noticing
semantic part actions that his head is lowered and two arms are
curving down.

pearance and body actions. Most existing methods use deep
neural network as a black box and bridges such gap. Unfor-
tunately, part appearance might be weakly associated with
body actions. We show an example in Fig.1, the hand hold-
ing a bottle makes the action be mislabeled as “drinking”
by previous part-based method [32], his head appearance of
“wearing glasses” can hardly correct this action to be “pour-
ing liquid”.

We argue that there exists a mid-level semantic which
essentially connects part appearance and body action. We
name it the semantic part action. Referring to the example
in Fig.1, by noticing the semantic part actions that the man’s
head is looking down and his arms are curving down, one
might infer that he is actually “pouring liquid” rather than
“drinking”.

In this paper, we focus on exploiting semantic part ac-
tions to improve body action recognition. To this end, we
propose a novel single image action recognition framework.
As illustrated in Fig.2, first, we locate body parts (head,
torso, arms, hands and lower body) using a key-point pre-



drinking?
blowing bubbles ? 
 

head : breathing
right hand : half holding
right arm : curving down 
    

blowing bubbles 

post
processing

body action branch

part action branch

fusion branch

key-point 
prediction network

Part Action 
Network

body action branch

body appearance body actionpart appearance part action

Figure 2. The proposed framework for part action prediction and body action prediction.

diction network. Second, and most importantly, body and
part images are fed into a Part Action Network (PAN) to
predict body actions. The proposed Part Action Network is
composed of multiple branches: two body action branches
that respectively receive body and part images as input and
perform as common classification networks to predict body
actions, a part action branch that predicts part actions, and a
fusion branch that learns to combine part actions and body
actions1. For the part action branch, we define a set of se-
mantic part actions, e.g.,“head: looking up”, “hand: sup-
porting” , and collect annotations.

We evaluate our method on two popular but challenging
dataset: (1) PASCAL VOC 2012 [7] and (2) Stanford-40
[29]. Our method reports improvements from the state-of-
the-art [11, 32, 31] by 2.3% and 8.6% (mean average preci-
sion, mAP).

The contributions of this paper are three-fold: first, we
propose the concept that human action can be inferred by
local part actions, which is a mid-level semantic concept.
Second, we propose the methodology which combines body
actions and part actions for action recognition. And finally,
the proposed method provides significant performance im-
provement from the state-of-the-art methods.

2. Related work

Single image action recognition. There are mainly
three existing strategies for single image action recogni-
tion: context-based approaches, part-based approaches and
template-based approaches. For context-based approaches,
cues of interactive objects are critical. Gkioxari et al. [11]
employ object proposals [24] to find proper interactive ob-
jects. Zhang et al. [31] propose a method that segments

1In our implementation, these branches share convolutional layers, see
Sec.4.2.

out the precise regions of underlying human-object interac-
tions with minimum annotation efforts. Template-based ap-
proaches focus on action structures. Desai and Ramanan [5]
learn a tree structure for each action, treating poses and in-
teractive objects as leaf nodes and modeling their relations.
Yao and Li [28] combine view-independent pose informa-
tion and appearance information, and propose a 2.5D repre-
sentation.
Part-based methods. The human body parts provide
rich information for action. For action recognition and
fine-grained recognition, part-based methods have shown
promising results [18, 30, 26, 10]. A typical approach to
combine global appearance and part appearance is concate-
nating their features and then use a custom classifier to pre-
dict [14]. In [10], parts are supervised by body actions,
and specific networks are trained to distinguish them. In
[6] the relationship of visual attribute and recognition has
been studied, the concept of attribute can be also consid-
ered as one kind of variety of appearance. Zhao et al. [32]
detect semantic parts within the bounding box, and arrange
their features in spatial order to extend inter-class variance.
These previous part-based methods can be represented by a
model as shown in Fig.3(b).
Additional annotations. In [17] the authors use “attribute”
to help recognize actions. Their attributes are mainly pro-
posed to describe the whole body and motion scenarios, e.g.
“torso translation with arm motion”. However, our part ac-
tions are “atoms” or bases which describe actions of fine
parts. In this way, body actions are decoupled with part ac-
tions, and it is more possible to describe numerous body
actions by a finite part action set.
Pose estimation and key-point localization. To distin-
guish part actions, it is important to localize fine parts.
In this paper, we employ methods on human pose estima-
tion [1, 33, 21, 19]. Given key-point locations, it is conve-
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nient and accurate to generate part bounding boxes.

3. Semantic Part Actions
3.1. Semantic part action as mid-level semantics

Body action recognition aims to infer the high-level se-
mantics from low-level body appearance, as illustrated in
Fig.3(a). With the recently development of deep neural net-
works, one might get a reasonable performance by directly
linking body appearance and action as a black box.

Most existing part-based methods, however, consider a
break-down of the human body, and learn connections be-
tween part appearance and body actions (Fig.3(b)). ”Pose-
let” [18] is a typical method that learns body parts by clus-
tering algorithm, which is mainly based on part appearance.
Similarly, [10] can be seen as one of “existing part-based
methods” which mainly rely on part appearance. However,
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Figure 5. Examples of semantic part actions. Images are from
Stanford-40 dataset [29].

without supervision, part appearance is not always strong
associated with the final body action. For example, a man’s
head appearance of “wearing glasses” can hardly reflect the
man’s action of “writing on a book”, while the man’s head
action of “looking down” is more relevant.

We argue that the entire human body action is not only
a direct combination of body and part appearance, but there
exists a mid-level semantic, local part actions. As shown
in Fig.3(c), part actions are transformed from part appear-
ance, and used as mid-level semantics to help to infer body
actions. Semantic part actions provide strong cues for body
actions. For example, if part actions are “head: looking
down”, “torso: bending”, “arms: curving down”, “hands:
fully holding” and “lower body: crouching”, even without
seeing the image, we can guess the entire action is “fixing
something”. In Fig.4 we show more examples.
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Figure 6. The pipeline of generating part bounding boxes.

Table 1. List of part actions.

head
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3.2. Part action definition

As far as we know, there is no existing works on defining
and identifying semantic part actions. And thus, we try to
define a set of frequently appeared semantic part actions.

First of all, we define seven body parts: head, torso,
lower body, arms and hands. Each of them has some seman-
tic actions, as illustrated in Fig.5. For example, the head can
be “laughing”, “looking through”, “looking up” etc.

As for part action definition, we aim at balancing diver-
sity and compactness. We try to use as less part actions as
possible (compactness) to compose as many body actions
as possible (diversity).

For compactness, we try to make the part action set finite
and minimize effect of objects. For example, for “hand:
holding” we only propose “half holding” and “fully hold-
ing” to reflect the sizes of interactive objects roughly 1. For
diversity, if semantic of a part is truly different, we add a
category to describe it, e.g. “hand: writing”. A full list
of possible actions is provided in Tab.1. For each part we
enumerate common and meaningful part actions, based on
which many body actions can be described (as shown in
Fig.4).

1“Half holding” presents a hand that holds big object and half-clenched,
such as bottles, buckets, tennis balls etc. While “fully holding” presents a
hand interacting with narrow objects like sticks and ropes.

Since there are no part action annotations off-the-shelf,
we collect annotations from the training set of Stanford-
40 [29] which are manually labeled by volunteers. Despite
that our part action set is constructed from a single dataset,
we find it generalizes well in other datasets (see Sec.5.2),
which also confirm our assumption on decomposing body
action into part actions. We will release our annotations,
models and codes.

4. Action Recognition
In this section, we introduce our body action prediction

framework and the proposed Part Action Network (PAN).
As illustrated in Fig.2, first, a key-point prediction net-

work is used to localize human joints, then bounding boxes
of our defined parts can be generated by simple post-
processing. Second, a Part Action Network is used to iden-
tify part actions and body actions.

4.1. Body part localization

We employ a key-point prediction network to efficiently
localize multiple body parts. The reasons why we choose
such a network are two-fold: (1) The key-points have essen-
tially shown the locations of parts, with which part bound-
ing boxes can be generated by post-processing. (2) There
are abundant annotations and datasets [2, 16] for the key-
point prediction task, which is also known as pose estima-
tion.

Even though person bounding boxes are provided for
action recognition, sometimes there are multiple people
within one bounding box. Among various pose estimation
methods [19, 33] we choose the Part Affinity Fields Net-
work (PAF, [33]), which can handle multi-person tasks,
to predict key-points. We find that a PAF network pre-
trained on MS-COCO [16] performs surprisingly well on
other datasets like Stanford-40 and PASCAL VOC 2012.

The pipeline of generating part bounding boxes is shown
in Fig.6. The PAF network receives an person bounding
box image (a) as input and produces all possible landmarks
locations (b). By a greedy algorithm provided by [33], land-
marks are grouped into multiple people. We choose the
largest one (c) and generate part bounding boxes by post-
processing (d). In details, most part bounding boxes are
computed as the minimum bounding boxes enclosing the
related key-points. For example, we can generate a bound-
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ing box for torso using key-points of shoulders and hips.
Since there are no key-points describing the top of head and
hands, their bounding boxes are treated differently: for the
head, we place a bounding box with center at the same ver-
tical coordinate of the nose landmark and width constrained
by the ears/eyes landmarks. For hand we extend the line
from elbow to wrist by half, setting the endpoint as the
bounding box center, and set its width and height to be the
length of the forearm (f). All part bounding boxes are ex-
panded by 50% to cover some context as (e).

In case of part localization fails we define some rules: if
no landmarks can be localized of a certain part, we use a
blank image as placeholder in the network (see Sec.4.2). If
some of landmarks can be localized, we infer its location
by the articulated part. In our experiments, the keypoint
localization is highly accurate, so the generation of parts is
also highly consistent.

4.2. Part and body actions prediction

In this section, we describe our Part Action Network
(PAN) which receives both images and localized parts as in-
put, and jointly learns body actions, part actions and fusion
features for action prediction. As a comparison, we also

propose two networks for baseline and existing part-based
methods: 1) Baseline Network, 2) Part-based Network. We
demonstrate their structures and discuss the differences.
Baseline Network. For action recognition, person bound-
ing boxes are provided. It is common to use two images:
image within the bounding box (denoted by Ibbox) and the
whole image (denoted by Iw), as shown in Fig.7. In our im-
plementation, we use the 50-layer ResNet [12] as a front-
end convolution network. Both Ibbox and Iw are resized
to 224 × 224 and fed into the front-end network, proceed-
ing 32× downsampling. Their features fbbox (red block in
Fig.7) and fw (blue block) are separated via a slice layer ap-
plied on the pool5 feature map, and are concatenated as the
final features for action classification. In the training phase
we train three classifiers (black boxes, all are supervised by
“waving hands”), while in test phase only the last classifier
is used to output probability scores. In our framework Ibbox
and Iw are treated as individual samples, an alternative way
of combining them is using a ROI pooling layer from fast-
RCNN[8]. However, it may be difficult for ROI pooling
layer to extract features of tiny parts (e.g. hands).

The Baseline Network is a representative model of base-
line method for action recognition. This network learns the



mapping relationship from body appearance to body action
as demonstrate in Fig.3.
Part-based Network. Based on the Baseline Network, we
add a branch to capture part appearance features (yellow
blocks). Besides Ibbox and Iw, all parts that are localized as
demonstrate in the previous section, are resized to 224×224
and fed into the network. Features of multiple parts (seven
yellow blocks) are transformed into a single feature (the sin-
gle yellow block) by a fully connected layer. Like conven-
tional part-based methods [14, 10, 32], the transformed sin-
gle feature (denoted by fp) are supervised by body action
categories. We concatenate fbbox, fw and fp, and use the
connected classifier to output the final scores.

The part-based network is a representative model of ex-
isting part-based methods, where yellow branch learns map-
ping relationship from part appearance to body actions.
Part Action Network. Our Part Action Network, with an
additional branch to learn and predict part actions (green
blocks), combines global body actions and local part ac-
tions. The part action branch firstly transforms part appear-
ance features (seven yellow blocks) to part action features
(seven green blocks), and then uses a fully connected layer
fctrans to transform part action features to body action fea-
tures (the single green block, denoted by fa). Since fea-
tures before and after fctrans are supervised by part ac-
tions and body actions respectively, fctrans learns the rela-
tionship between part actions and body actions. The fusion
branch concatenate 4 kinds of features, and makes final de-
cisions. Especially, in the test phase, body action prediction
in part action branch are also considered for the final deci-
sion. Scores of part action branch and fusion branch (two
solid boxes in Fig.7) are averaged to form the final score.

To avoid conflict between body action labels and part
action labels, we add a bias on part action labels. For ex-
ample, in Stanford-40 dataset, there are 40 body actions, so
Cbias = 40. The first part action (“head: breathing”) is as-
signed to be the 41th category. For invisible parts, blank
images are used, and we add an individual category for
them. So the part action classifier (dashed circle) outputs
40 + 34 + 1 = 75 probability scores (there are 34 defined
part actions in all). Moreover, if annotation of a visible part
is ambiguous, the part action label is set to be the same with
body action label.

Among the mentioned networks above, Baseline Net-
work is end-to-end trainable, and the others can be trained
jointly, given part bounding boxes. Joint training has been
verified to be powerful for object detection [20, 8], and help
improve the performance in this paper.

In this paper we only collect annotations on the Stanford-
40 dataset [29]. The procedure of using the set on another
dataset is: first obtain a pre-trained part action network on
Stanford-40. Then fix the weights of part action prediction
branch, fine-tune other branches and finally obtain another

Table 2. Preformance (mAP) on the Stanford-40 dataset
method mAP

Action-Specic Detectors [15] 75.4
VGG-16&19 [22] 77.8

TDP [32] 80.6
ResNet-50 [12] 81.2

Action Mask [31] 82.6
Ours (Baseline Network) 84.2

Ours (Part-based Network) 89.3
Ours (Part Action Network) 91.2

model. Following these steps the part action network can be
generally used in other datasets.

5. Experiments
We conduct intensive experiments to validate the pro-

posed Part Action Network. The results show that our
method reaches superior results compared with the state-
of-the-art methods. Especially, on PASCAL VOC 2012
dataset, our performance is 2.3% better than the state-of-
the-art and on Standford-40 is 8.6% better.

5.1. Experimental setup

Network. In this paper we train 3 classification networks:
the Baseline Network, the Part-based Network and the Part
Action Network. Each of them is modified from the 50-
layer ResNet [12] pre-trained on ImageNet [4]. For train-
ing them, the learning rate is set to be 10−5. We train for
5K iterations with a batch size of 20. Three kinds of data
augmentation techniques are employed: flipping, random
cropping and scale jittering [25, 22]. We use the caffe [13]
framework to implement our networks. All the networks
are trained on a single Titan X GPU.
Dataset. As common practice in action recognition, we use
two challenging datasets: 1) PASCAL VOC 2012 [7] and
2) Stanford-40 [29]. The PASCAL VOC dataset contains
10 different actions. For each of the action type, 400-500
images are used for training and validation, and the rest
are used for test. The Stanford-40 dataset contains 40 cate-
gories and uses 100 images for training. In Fig.8 we show
some examples from the Stanford-40 dataset.

5.2. Comparison with existing methods

We compare our approach with the state-of-the-art meth-
ods on the two datasets.
Stanford-40 dataset. Tab.2 shows the comparison on
Stanford-40 dataset [29]. The method of Action-specific
Detector [15] employs transfer learning to learn action-
specific detectors, which are used to detect human re-
gions and replace ground truth bounding boxes. VGG-
16&19 [22] combines a 16-layer CNN and a 19-layer CNN,
and train SVMs on fc7 features. Zhao et al. [32] learn some
semantic detectors, and arrange semantic parts in top-down



Table 3. Preformance (mAP) on the PASCAL VOC 2012 Action validation set

method jumping phoning playing reading riding riding running taking using walking mAPinstrument bike horse photo computer
RCNN [9] 88.7 72.6 92.6 74.0 96.1 96.9 86.1 83.3 87.0 71.5 84.9

Action Mask [31] 85.5 72.1 93.9 69.9 92.2 97.2 85.3 73.3 92.3 60.7 82.2
R*CNN [11] 88.9 79.9 95.1 82.2 96.1 97.8 87.9 85.3 94.0 71.5 87.9

Whole&Parts [10] 84.5 61.2 88.4 66.7 96.1 98.3 85.7 74.7 79.5 69.1 80.4
Ours (Baseline Network) 87.8 75.4 91.7 81.6 93.3 96.7 87.0 77.4 92.1 67.8 85.1

Ours (Part-based Network) 88.2 86.1 92.9 87.4 94.5 97.8 90.4 86.5 92.4 72.2 88.8
Ours (Part Action Network) 89.6 86.9 94.4 88.5 94.9 97.9 91.3 87.5 92.4 76.4 90.0

Table 4. Preformance (mAP) on the PASCAL VOC 2012 Action test set

method jumping phoning playing reading riding riding running taking using walking mAPinstrument bike horse photo computer
Action Mask [31] 86.7 72.2 94.0 71.3 95.4 97.6 88.5 72.4 88.4 65.3 83.2

R*CNN [11] 91.5 84.4 93.6 83.2 96.9 98.4 93.8 85.9 92.6 81.8 90.2
Whole&Parts [10] 84.7 67.8 91.0 66.6 96.6 97.2 90.2 76.0 83.4 71.6 82.6

TDP [32] 96.4 84.7 96.7 83.3 99.4 99.2 91.9 85.3 93.9 84.7 91.6
Ours (Baseline Network) 92.3 84.4 94.7 82.8 97.9 98.4 90.6 83.7 91.3 80.9 89.7

Ours (Part-based Network) 93.4 90.5 95.6 84.0 98.4 98.6 93.4 90.0 94.3 83.5 92.2
Ours (Part Action Network) 95.0 92.4 97.0 88.3 98.9 99.0 94.5 91.3 95.1 87.0 93.9

spatial order, which enlarges inter-class variance and ob-
tain 80.6% mAP. Zhang et al. [31] propose a method that
accurately delineates the foreground regions of underlying
human-object interactions and reaches 82.6%.

As for our proposed networks, Compared with a “fea-
ture + SVM” framework [22, 12], the end-to-end trainable
Baseline Network improves the performance significantly
(+3%). The Part-based Network reaches 89.3%, which
mainly benefits from accurate part locations. It captures
part appearance features and sometimes interactive object
cues. Our Part Action Network achieves a mAP of 91.2%,
and outperforms the second best published method by 8.6%.
Compared with existing part-based methods (which are pre-
sented by Part-based Network), it obtains a gain of 1.9%.
Among all the 40 categories, the main improvement comes
from categories that have similar part appearance and ob-
jects, but can be distinguished by part actions. For exam-
ple, our method improves the performance on “drinking”
and “pouring liquid” by 5.5% and 3.9% via noticing de-
tailed differences of arms and head actions. It also ob-
tains gains on other confusing categories, such as “phon-
ing” (+2.0%), “texting message” (+5.2%), “applauding”
(+4.3%) and “waving hands” (+5.5%). In Fig.8 we visu-
alize more examples.

PASCAL VOC 2012 dataset. To measure the generaliza-
tion of our part action set, we also test our networks on
PASCAL VOC 2012 Action dataset [7] with no additional
annotations. Tab.3 reports the results on PASCAL VOC
2012 Action validation dataset [7], the results on test set
are shown in Tab.4. Gkioxari et al. [10] use deep poselets
to detect head, torso and legs regions and concatenate the
corresponding features.

In this dataset our method outperforms the others by
2.1% and 2.3% in validation and test sets respectively. In
the test set, Part Action Network reaches the best results
for 7 out of 10 categories. Compared with Part-based Net-

Table 5. results of predicting body actions by part actions.

datasets PASCAL PASCAL Stanford-40(validation set) (test set)
mAP 59.0 52.1 49.2

work, Part Action Network improves the performance sig-
nificantly on “phoning” (+1.9%), “reading” (+4.3%). In
these categories, curving up arms, looking down heads, sit-
ting lower bodies and supporting hands are critical. Note
the Part Action Network implicitly used training data of
Stanford-40 dataset, Baseline Network and Part-based Net-
work are trained under the same supervision for fair com-
parison.

5.3. How strong are part actions associated with
body actions?

We have demonstrated that part actions are strong asso-
ciated with body actions in Sec.3. In this section, we imple-
ment experiments to verify how strong the relationship is.
In details, scores produced by part action classifier (dashed
circle in Fig.7) with a size of 75 × 7 are used. For this ex-
periment, predictions before Cbias are removed, and scores
of seven parts are flattened, resulting in a 35×7 = 245 vec-
tor for each sample. We use a SVM with χ2 kernel to map
these part action predictions to body actions. Tab.5 shows
the results on three tasks: 59.0%, 52.1% and 49.2%. The
part actions can provide decent results on the two datasets,
which confirms our assumption on using part actions to in-
fer body actions.

5.4. Part action classification

The part-level action classification performance is criti-
cal for body action prediction. We split the annotated parts
of 4000 training samples in the Stanford-40 [29] dataset into
two equant subsets. One of them is used as training set and
the other is test set. We train a 50-layer ResNet [12]. The
top-1 accuracy is 50.6%. As demonstrated in Sec.5.3 and
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Figure 8. Predictions on the Stanford-40 test set. The defined parts are marked by colored boxes, and their actions are listed. The
mispredicted actions are marked by black boxes. Ground truth is listed below each sample.

Fig.8, some single part action predictions can be inaccu-
rate, however, with the fusion of multiple part actions, body
action predictions are reliable (note the above result only
employs a half of the training data).

5.5. Visualization and analysis

We visualize part localization results, part action predic-
tions and final body action predictions in Fig.8. In the first
three columns we show some examples corrected by our
method compared with the Part-based Network. It is shown
that some part actions are strong associated with body ac-
tions, such as “hand: merging” for “applauding”, “lower
body: crouching” for “fixing a bike” and “arm: curving up”
for “phoning”. Some weakly associated part actions do not
hurt the final results even wrongly predicted.

In the last column we show some mispredicted samples.
They are mainly caused by 2 reasons: 1) errors on part ac-
tion predictions, which are caused by limited training sam-
ples and high similarity of two fine part actions (see the
“writing” and “blowing bubbles” samples). 2) lacking of
mining contextual information. In the sample of “cutting
trees”, all parts are predicted perfectly. However, they pro-
vide limit help to distinguish this action from “cooking”.

We believe that by mining contextual cues like [11], our
method will perform even better.

6. Conclusion

This paper proposes the idea of semantic body part ac-
tions to improve single image action recognition. It is based
on the observation that the human action is a combination
of meaningful body part actions. We define seven body
parts and their semantic part actions. A deep neural net-
work based system is proposed: first, body parts are local-
ize by a key-point network. Second, for each body parts, a
Part Action Network is used to predict semantic body part
actions. Experiments on two dataset: PASCAL VOC 2012
and Stanford-40 reports mean average precision improve-
ment from state-of-the-art by 2.3% and 8.6% respectively.
Experimental analysis and visualization results also show
the reasonability and effectiveness.
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