
HOSO: Histogram Of Surface Orientation for
RGB-D Salient Object Detection

David Feng, Nick Barnes, Shaodi You
Data61, CSIRO; RSE, Australian National University

{david.feng, nick.barnes, shaodi.you}@data61.csiro.au

Abstract—Salient object detection using RGB-D data is an
emerging field in computer vision. Salient regions are often
characterized by an unusual surface orientation profile with
respect to the surroundings. To capture such profile, we in-
troduce the histogram of surface orientation (HOSO) feature
to measure surface orientation distribution contrast for RGB-D
saliency. We propose a new unified model that integrates surface
orientation distribution contrast with depth and color contrast
across multiple scales. This model is implemented in a multi-
stage saliency computation approach that performs contrast
estimation using a kernel density estimator (KDE), estimates
object positions from the low-level saliency map, and finally
refines the estimated object positions with a graph cut based
approach. Our method is evaluated on two RGB-D salient object
detection databases, achieving superior performance to previous
state-of-the-art methods.

I. INTRODUCTION

The saliency of a scene component, such as a pixel, patch,
or object, refers to how much it stands out with respect to its
surroundings. While the majority of saliency methods aim to
model and predict human eye fixation points on images [1],
[2], recently there has been an increasing number of works
on detection and segmentation of salient objects and regions
[3], [4]. This is referred to as salient object detection. Salient
object detection has many applications, including compression
[5], resizing [6], thumbnailing [7], and adaptive image display
for small devices [8].

Saliency is typically computed by measuring contrast at a
local [1] or global scale [9]. Previous work predominantly
operates on RGB input, computing contrast from appearance-
based features such as colour, edges, and texture [10], [11].
However, the increasing availability of depth sensing tech-
nology has encouraged the exploration of structural features,
facilitating improved performance when the foreground and
background have similar appearance. Relatively little work
has taken advantage of 3D data for saliency computation, and
consequently there is scope for better models for the effective
representation and integration of structural information. Many
RGB-D saliency approaches simply use depth values to mod-
ulate RGB saliency maps [12], [13], [14], [15], or measure
depth contrast [16], [17] in a similar way to RGB saliency
methods. These methods produce false positives when the
background is closer than the object or has relatively high
depth contrast.

We make the observation that, in terms of depth, saliency
consists of not just how close an object is, but that it has
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Fig. 1. Saliency output on an image with low foreground depth
contrast. Our method measures surface orientation distribution con-
trast to effectively identify foreground structure. Output is shown for
three state-of-the-art methods Global Priors [17], Anisotropic Center
Surround Difference [19], and Low Medium High [16].

an unusual profile of surface orientation with respect to its
local region or to other parts of the scene, or has an overall
orientation that is unusual. For example the corner between
a wall and floor, an obstacle on the ground, or clutter in a
tidy space. Surface orientation contrast thus offers a promising
structural measure of saliency at multiple scales that operates
independently to depth, and can be used to complement depth-
based contrast. However, while first order surface properties
are commonly used for tasks such as 3D object recognition
[20], incorporation of surface orientation for saliency detection
has received much less attention [21], [22], [17].

In this paper, we present a new unified model for salient
object detection that integrates surface orientation, depth, and
color contrast at multiple scales. Unlike previous approaches,
we integrate both orientation and depth contrast in a con-
sistent framework, taking advantage of the complementary
information they offer. Surface orientation contrast in existing
methods is computed only at a global scale [22] or only with
respect to similar regions in the image [21], which can lead
to an increased number of false positives and false negatives
respectively. Instead, our unified model performs a multi-scale
measurement of orientation contrast, based on the intuition that
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Fig. 2. Overview of the main stages of our method. We measure multi-scale contrast of orientation, depth, and colour to obtain a low-level
saliency map. We use the low-level saliency to estimate and object map, and then perform boundary refinement using a graph cut based
approach.

salient objects are likely to remain distinct across multiple
scales. Unlike purely global formulations of surface orienta-
tion, our method captures locally unusual surface orientation
profiles that characterize many types of structurally interesting
regions, such as wall-floor edge boundaries. Furthermore,
while previous work represents regions using mean orientation,
we introduce the histogram of surface orientation (HOSO) fea-
ture for RGB-D saliency to capture the distribution of surface
normals, providing a robust and descriptive characterisation of
the underlying region. While histogram based representations
of first order image properties are common in feature detection
and matching [23], their use and effectiveness is unexplored
for RGB-D salient object detection.

Contrast computation in our system is performed using
a Gaussian KDE [16]. This allows the integration of dif-
ferent feature types during computation, rather than fusing
individually computed feature contrast maps [24], [25], to
better exploit the strong complementarities between surface
orientation, depth, and color. The incorporation of multiple
discriminative features tends to produce a precise but sparse
low-level saliency map. We post-process this map using object
map estimation and boundary refinement procedures to obtain
a uniform saliency response across detected objects.

We evaluate our model on two recently proposed RGB-
D datasets for salient object detection, achieving superior
performance to state-of-the-art methods on both datasets.
Furthermore, we demonstrate the contribution of each feature
type and computation stage to the overall performance of our
model. Note that we do not provide comparison with recent
deep learning based systems, e.g. [26]. Although these systems
produce good performance, the focus of this paper is the
investigation of low-level structure-based saliency cues. It has
been shown that effective saliency cues contribute improved
performance in standard deep learning frameworks [27].

The main contributions of this paper are: insight that surface

orientation distribution contrast provides valuable cues for
determining locally unusual structure that is indicative of
salient objects, and a novel feature, HOSO, for capturing these
cues; proposal of the first unified multi-scale saliency detection
system incorporating surface orientation, colour, and depth
contrast; and demonstration of the effectiveness of HOSO and
our system through state-of-the-art results on two datasets.

II. RELATED WORK

RGB-D saliency computation is a rapidly growing field,
driven by a wide variety of applications including stereoscopic
rendering [13], robotic grasping [28], and structure based
image retargeting [14].

Early works in depth saliency integrate depth as an addi-
tional channel into a classic RGB saliency framework [1].
Ouerhani and Hugli [24] explore which features to incorporate
into the framework, selecting depth over depth gradient and
curvature. Frintrop et al. [25] apply the framework to depth
and intensity to reduce the search space for object detection.
These methods fuse individually computed saliency maps from
feature type, and do not exploit complementary cues between
features during the contrast computation stage.

Based on findings that closer objects are more likely to
appear salient in the human visual system [29], a number of
existing techniques modulate RGB saliency maps using image
depth values. Zhang et al. [12] scales the output of [1] with
depth to identify regions of interest in stereoscopic video.
Similarly, Chamaret et al. [13] weights an RGB saliency map
with depth to identify salient regions for adaptive rendering on
a 3D display. In addition to linear depth scaling, reweighting
RGB saliency based on a Gaussian distribution over depth has
also been explored. Lin et al. [14] use a Gaussian distribution
centered on the local maximum of a depth histogram to
reweight an RGB saliency map. Tang et al. [15] attenuate
saliency using a Gaussian based on the depths of salient
regions, filtering object patches for salient object detection.



Fig. 3. Illustration of the HOSO feature for three different patches on a cube, with camera direction along the Z axis. Given an image patch
P , surface normals within P are parameterized by their 2D orientation and binned into a 5×5 histogram hP .

Some approaches aim to directly model the influence of depth
on human visual attention by learning a non-linear depth prior
from eye tracking data. Lang et al. [30] model the joint density
between depth distribution and saliency response using a Gaus-
sian Mixture Model learned from 3D eye tracking data, while
Wang et al. [31] apply a learned mapping between saliency
and Difference of Gaussians response on the depth image.
This type of approach does not fully exploit the interaction
between RGB and depth feature types. Furthermore, with the
exception of [31], these approaches do not consider relative
depth, and work best when the range of salient objects is closer
than the background, which is a strong assumption.

Many RGB-D saliency techniques compute saliency based
on global depth contrast. Niu et al. [32] extend [9] with dispar-
ity contrast for salient object detection in stereo image pairs.
Fang et al. [33] measure global contrast over depth, colour,
luminance, and texture to predict gaze in stereoscopic images.
Peng et al. [16] compute saliency using depth and colour at
both global and local scales. While the majority of previous
work takes absolute depth differences when measuring depth
contrast, some methods modulate depth contrast by the relative
depth between regions. Cheng et al. [34] use global color and
depth contrast for salient object detection, with increased depth
contrast from pop-out regions. Ju et al. [19] compute saliency
based on the average distance to minimum values encountered
along a set of scanlines. This approach is sensitive to noise
and the placement of the scan lines, which only provide a
partial sample of the neighborhood. Feng et al. [18] propose
an enclosure-based formulation of depth saliency. While this
method alleviates some of the problems of depth contrast
methods, it does not take into account unusual profiles of
surface shape when predicting saliency.

Previous approaches are generally unlikely to produce good
results when the foreground has low depth contrast to the back-
ground. Surface orientation contrast is an alternative structural
cue that is useful for identifying salient regions. Potapova et
al. [28] show that the surface orientation difference between
objects and the supporting surface is an important factor in
determining locations that are suitable for robot grasping.
Surface orientation is employed as an application-specific cue,
whereas we use it as part of a comprehensive model to
measure general structural saliency. Ciptadi et al. [21] compute
surface orientation contrast between a target region and the
K most similar regions using vectorized patches of surface
normals. The selection of nearest neighbours in feature space

reduces the discriminability of the feature. Desingh et al. [22]
represent surface patches with histograms of pairwise angular
distances between point-wise normals. Contrast is computed at
a global scale and does not capture local distinctness, which is
particularly informative in structural analysis. Ren et al. [17]
use orientation as a prior, marking surfaces perpendicular to
the camera axis as more salient. This method produces false
positives for background regions that face the camera, and
false negatives for objects not facing the camera or with com-
plex surfaces. Unlike previous work, we examine orientation
distribution contrast at multiple scales, facilitating detection of
a wider range of salient region types such as structural edges.
We directly represent surface orientation distribution using a
2D histogram representation, HOSO, in order to give a rich
description of the underlying surface that is robust to noise.
Furthermore, previous approaches incorporate either depth
contrast or surface orientation contrast to compute saliency.
We present a model that exploits contrast with respect to both
surface orientation and depth features, taking advantage of the
strong complementary relationship between these features.

III. HOSO FEATURE

Our saliency model includes the distribution of surface
orientation as a feature, based on the observation that salient
objects are more likely to contain orientation structure that
contrasts with the surroundings.

We aim to identify structurally salient regions based on
their surface orientation profile. In order to perform this task,
the representation of patch-level surface orientation must be
descriptive as well as robust to noise. First-order surface
properties are particularly sensitive to sensor noise, which can
impact the performance of a saliency system if used directly
[24].

Rather than representing a patch with a single orientation
value as in previous work, we use a histogram to capture the
distribution of patch normals as the core orientation feature.
This provides a more detailed representation of the underlying
surface shape, and improves the capacity of the feature for dis-
tinguishing locally unusual structure. Furthermore, histograms
are more robust to sensor noise than mean values.

The HOSO feature is computed as follows. First, point-
wise normals are estimated from the depth image using PCA
with an 11×11 support. The large support size was chosen to
further alleviate the effect of noise. We parameterize normals
by their 2D orientation (θx, θy) to avoid wrap around issues
and facilitate uniform quantization. Normal orientations in a



(a) Segmentation (b) r = 60 (c) r = 140 (d) r = 220

Fig. 4. Example image segmentation and illustration of contexts at
multiple scales. The candidate patch P is shown in green. The context
sets φP are shown in red, containing patches within distance r of P .

patch P are binned into a normalized 2D histogram hP with
N bins in each dimension (see Figure 3). The bin mapping
function for both dimensions is equal to

b(θ) =

⌊
N · θ

π

⌋
. (1)

Thus, each point in P with orientation (θx, θy) increments bin
(b (θx) , b (θy)) of hP . The value of bin (i, j) of hP is thus
given by

hP (i, j) =
1

card(P )
|{(θx, θy) ∈ P | b(θx) = i ∧ b(θy) = j}| .

(2)
The dissimilarity of the surface orientation distributions of

two patches is measured using the Bhattacharyya distance
distB(·, ·) between their HOSO features:

dist (P,Q) = distB (hP − hQ) . (3)

1) Patch-level Feature: Given an image patch P , we com-
pute saliency based on the HOSO feature hP , in addition to
the mean depth dP and mean Lab colour lP of the patch [16].

IV. SALIENCY DETECTION SYSTEM

The pipeline of our method consists of three major stages, as
shown in Figure 2. First, a low-level saliency map is computed
from surface orientation, depth, and colour contrast at multiple
scales. We use Gaussian Kernel Density Estimation [16] to
measure contrast and integrate the different features during the
contrast computation stage. This is followed by an object es-
timation stage, which uniformly highlights foreground regions
identified in the low-level saliency map. Each pixel is assigned
a probability that it belongs to the foreground, computed using
a Gaussian model of the object constructed from the low-level
saliency map. In the final step, the boundaries of the estimated
object map are refined with a graph cut based approach [35].

A. Low-level Saliency

This section describes our method for computing the low-
level saliency map from raw patch level features. We first
segment the input image into patches using SLIC [36]. The
low-level saliency S(P ) of a patch P is formulated as the
product of a contrast measurement function across multiple
scales, such that:

S (P ) =
∏
φ∈ΦP

C (P, φ) , (4)

where ΦP = {φrP |r ∈ R} denotes the scale space of P , and
C measures the contrast between P and its context φrP , which

consists of all other patches within a radius of r (see Figure
4). That is, {φrP = Q|‖cP − cQ‖2 < r}, where cP and cQ are
patch centroids.

The contrast between a patch P and its context φ is
measured by estimating the probability p(P |φ) that P comes
from the distribution defined by φ in feature space, as in [16].
A low value of p implies that P is unlikely to belong to φ,
and has a high contrast. The contrast measurement function is
thus given by:

C (P, φ) = − log (p (P |φ)) , (5)

We use a kernel density estimator to compute p [16].
However, in addition to mean depth and colour, we extend the
density estimation to include the HOSO feature, incorporating
differences of surface orientation distributions into the density
function. If a patch has unusual surface orientation profile
compared to its surroundings, such as a ball resting on the
ground, then it will have a low estimated probability of
being part of the context distribution, and consequently a high
saliency score. On the other hand if a patch has an almost
identical surface orientation profile to its surroundings, such
as a patch on a planar surface, then the estimated probability
density function will have a high value at HOSO feature of
the point, leading to a low saliency score.

The probability density estimation is thus given by:

p (P |φ) =
1

card(φ)

∑
Q∈φ

Kh (hP , hQ)Kd (dP , dQ)Kl (lP , lQ) ,

(6)
where Kh(·, ·), Kd(·, ·), and Kl(·, ·) are the kernel components
corresponding to surface orientation distribution, mean depth,
and mean colour respectively.

We define the surface orientation distribution component as
a Gaussian kernel with bandwidth σh,P,Q:

Kh(hP , hQ) = exp

(
−distB (hP , hQ)

2

2σ2
h,P,Q

)
. (7)

The estimate is obtained by measuring the Bhattacharyya
distance from the HOSO feature hP of the candidate patch
to the density function of the set of patches Q of its context.

As in [34] we observe that objects that are closer than their
surroundings are more likely to be salient. We aim to limit
the contribution of context patches with lower depth than the
candidate patch, since in these cases the candidate patch is
more likely to be background. This is achieved by scaling the
base KDE bandwidth σh, depending on whether the candidate
patch is in front of the context patch:

σh,P,Q =

{
σh if dP > dQ
α · σh otherwise. (8)

Setting α > 1 increases the bandwidth and reduces the
influence of the context patch.

The depth and colour Gaussian kernels Kd(·, ·) and Kl(·, ·)
are defined similarly, using the Euclidean distance between
feature values instead of Bhattacharya distance, and with
respective bandwidths σd,P,Q and σl,P,Q.



The contribution of each feature when computing low-
level saliency on RGBD-1000 is shown in Figure 5. Note
that incorporating orientation with depth results in a larger
improvement than using colour and depth, validating the
incorporation of surface orientation as a structural saliency
feature. The combination of all three features gives the best
performance, indicating that each feature contributes positively
to the final result.

1) Priors: The KDE contrast computation process only
incorporates relative depth information. Numerous studies
report that absolute depth is also a critical component of
pre-attentive visual attention, with closer objects more likely
to appear salient to the human visual system [29], [37],
[30]. Accordingly, scaling saliency by depth is a common
refinement step in previous work [32], [34], [19], [15], [22],
[13], [12]. We perform absolute depth reweighting, dividing
patch saliency with mean patch depth.

The tendency of the human visual system to fixate on
objects near the center of an image is well known [38]. A
large number of existing saliency methods incorporate a spatial
prior to model this effect [39], [40], [41]. Similar to [39], we
apply a Gaussian G(P ) to reweight patch saliency based on
the distance between the centroid of patch P and the image
center.

The low-level saliency map with depth and center bias is
thus given by:

Sb(P ) = S(P ) · 1

dP
·G(P ). (9)

B. Salient Object Map Estimation

The low-level saliency computation stage tends to produce
saliency maps characterized by sparse high-saliency patches.
The multiplicative aggregation of complementary and discrim-
inative features can result in a low overall saliency score for
a patch if one feature is assigned a low contrast. Thus, only
a few highly distinct points produce a high saliency score in
the low-level map.

Ensuring a consistently strong saliency response across
entire objects is a fundamental objective in salient object
detection [4]. We use the low-level saliency map described in
Section IV-A to build a Gaussian model of the object based on
image position and depth, from which each pixel is assigned
a score reflecting the probability that it is part of the salient
object. This is implemented in a similar way to the high-level
object bias enhancement performed in [16], but with mean and
variance computation modified to account for a saliency map
with sparse regions of high response.

The probability that a pixel belongs to a salient object is
computed based on the estimated location and size of the
object, formulated as a Gaussian model H . Let (ax, ay, az)
denote the image position and depth of pixel a. Then the x
component of the model is given by

H(ax) = exp

[
−
(
ax − µx

2σx

)2

−
(
ay − µy

2σy

)2

−
(
az − µz

2σz

)2
]
,

(10)

where (µx, µy, µz) is the expected object center, and
(σx, σy, σz) is the expected object size. We will now detail
the computation of µx and σx; the y and z components of the
model are computed in a similar manner.

Let Sb(a) denote the low-level saliency of a, obtained by
propagating patch saliency to member pixels. In order to
handle a saliency map with sparse regions of high response,
we set the expected object center µx along the x dimension
as the weighted mean over all pixels:

µx =

∑
a∈I Sb(a) · ax∑
a∈I Sb(a)

. (11)

The expected object size along the x dimension is based on
the unbiased estimate of the weighted sample variance of the
image:

σx
2 =

∑
a∈I

(
Sb(a) (ax − µx)

2
)∑

a∈I Sb(a)∑
a∈I Sb(a)−

∑
a∈I Sb(a)2

. (12)

Since low-level saliency may not be high at all the ex-
tremities of the object, we scale the variance estimate with
a constant factor v0.

C. Boundary Refinement

The estimated object map H from the previous stage can
contain inaccurate foreground boundaries, particularly when
the object occupies a similar depth range to nearby back-
ground. Boundary refinement is a common post-processing
step employed in existing salient object detection systems (e.g.
[34], [16], [35]). We use the graph cut based saliency refine-
ment method described by [35] to obtain object boundaries
based on appearance information. The foreground model is
initialized with a binary mask obtained by applying a threshold
t0 to H . The output graph cut segmentation mask A is used
to prune non-foreground areas from H . The final pixel-wise
saliency is thus given by

S(a) = A(a) ·H(a). (13)

V. EXPERIMENTS

We evaluate our method on two recently proposed datasets
for RGB-D salient object detection. The first is RGBD1000
[16], which was introduced to address the lack of a large
dataset with depth information for salient object detection. It
contains 1000 images featuring diverse scene and object types,
with low depth and colour contrast between the foreground
and background. We also report the performance of our
method on the NJUDS2000 salient object detection dataset
[19], containing 2000 disparity images computed from stereo
image pairs.

Our method is compared with three state-of-the-art RGB-D
salient object detection systems: Low-Medium-High Saliency
(LMH) [16] proposed by the authors the RGBD1000 dataset,
Anisotropic Center Surround Difference (ACSD) [19], from
the authors of the NJUDS2000 dataset, and Global Prior
saliency (GP) [17]. We also include comparisons to two top
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Fig. 5. (a) Comparison of low-level saliency results on RGBD1000 when incorporating various patch feature combinations. D=mean depth,
O=surface orientation histogram (HOSO), C=mean L*a*b colour. This shows that the effect of surface orientation is large if there is a lack
of colour information, for example in a low contrast environment or under low lighting conditions. In the case that colour is incorporated,
using HOSO provides additional improvement. (b) The effect of center and depth bias on low-level saliency using our orientation feature
(O) and a custom implementation of the low-level depth saliency term of DCS (D). Analysis of contrast for (c) surface orientation and (d)
mean depth features at multiple scales on RGBD1000, displaying the percentage of foreground (fg) and background (bg) patches that exhibit
the normalized contrast values with respect to a neighbourhood of radius r.

ranking 2D saliency algorithms according to a recent survey
[4]: DSR [42], and DRFI [10].

We examine the effect of center and depth bias on low-
level orientation contrast saliency compared to the low-level
depth saliency from [16]. Note that since [16] is only available
as a single executable, we use a custom implementation of
the low-level saliency which omits center and depth prior
application. We also measure the performance of the low-level
and object estimation stages of our framework, and examine
the contribution of the different feature types used in our low-
level saliency computation method.

A. Contrast Computation Scales

We perform an analysis of structural feature contrast at
different scales for foreground identification on the dataset, in
order to help inform scale selection for our saliency system.

Figures 5c and 5d show that for a small scale size, fore-
ground patches typically have higher contrast with orientation
than depth. In particular, a large number of foreground patches
have low local depth contrast, suggesting that depth contrast
provides poor discriminability at a local scale, and that orien-
tation contrast is more likely to distinguish foreground regions
when the context size is small. However, background regions
tend to have greater orientation contrast for larger scales than
depth contrast, suggesting that the former is not suited for
large context sizes. Based on these observations, we omit depth
and orientation when computing contrast with small and large
context sizes respectively.

B. Implementation Details

In the experiments, we measure contrast across three scales,
R = {60, 140, 220}. These scales were selected to produce
small, medium, and large contexts for each patch. The KDE
bandwidths in Equation 6 of the mean depth and Lab colour
features were set to σ2

d = σ2
l = 0.025. For orientation,

bandwidths of σ2
h = 0.1 for scale 60 and σ2

h = 0.3 for scale
140 were found to work well.

The expected object size scale v0 was set to v0 = 3.
We found setting N = 5 bins for each histogram dimension

achieves a good balance between descriptiveness, robustness,
and efficiency for HOSO. The threshold used for graph cut
initialisation was set to t0 = 0.8. Our unoptimized implemen-
tation takes approximately 7 seconds per 640 × 480 image
running on a 2.6GHz i5 processor with 8GB of RAM.

C. Evaluation Metrics

Performance is evaluated through the precision-recall curve
and mean F-score, the Fβ measure with β = 0.3 emphasizing
precision [3]. The F-score is computed from the saliency
output using an adaptive threshold equal to twice the mean
of the image [3].

VI. RESULTS

Our method produces a superior F-score compared to all
other methods on both datasets, as seen in Figures 6c and 6d.
Furthermore, our method achieves a consistently high perfor-
mance across the two datasets whereas most other methods
tend to favour one or the other.

Figure 6a shows that our system achieves higher preci-
sion than most other methods at comparable recall rates on
RGBD1000. The increased precision is most apparent at just
under 0.8 recall. At this point our method is able to identify
a larger portion of foreground regions than other methods
without affecting precision. Similarly, Figure 6b shows that
our method has the highest precision tied with LBE up to just
under 0.7 recall. Note that while the precision recall curves of
our method are comparable to LBE, our method measures a
different type of structural cue which corresponds more closely
to salient object shape, as demonstrated by our superior F-
scores in Figures 6c and 6d. Figures 6a and 6b also show
the contribution of each computation stage in our framework.
We see from the figure that applying the object estimation
map significantly improves results compared to the low-level
saliency map, in particular boosting recall as we expect. The
application of boundary refinement subsequently increases the
precision of the estimated object map. This pattern of improve-
ment follows the aim of each stage: identification of salient
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Fig. 6. Quantitative comparisons of performance over RGBD1000 and NJUDS2000 datasets. Ours(L) denotes our low level saliency map,
and Ours(L+O) denotes our estimated object map.

regions, expansion of candidate regions to cover foreground
objects, and boundary refinement to remove background.

We plot the precision-recall for our low-level saliency
map using different feature combinations in Figure 5a. As
expected, using individual features gives relatively low scores.
Combining depth and orientation produces better results than
combining depth and colour, which highlights the complemen-
tary nature of the two structural features. The relatively high
performance of this pairing suggests that orientation may be
used as an alternative when colour is not available. The best
performance is observed when using all three feature types,
demonstrating that each feature offers distinct information that
is extracted effectively in our framework. As shown in Figure
5b, the low-level surface orientation saliency of our method
outperforms the low-level depth saliency of [16] both with
and without the bias terms. This demonstrates that surface
orientation contrast is a more reliable indicator of foreground
than depth contrast, particularly near image boundaries.

VII. CONCLUSION

In this paper, we present a unified model for salient object
detection that exploits orientation, depth, and colour contrast
at multiple scales, using a novel orientation distribution feature
HOSO for RGB-D saliency. Low-level saliency computation
is performed with a KDE and used to estimate object loca-
tions, which are refined with a graph cut based approach.
Feature scales are selected based on an analysis of contrast,
with orientation suited for small scales and depth applied to
larger scales. Experimental results show an improvement in
performance compared to the previous state-of-the-art.
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