Bayesian Sparse Sampling for On-line Reward Optimization

Dale Schuurmans
Background Perspective

• Be *Bayesian* about reinforcement learning
• Ideal representation of uncertainty for action selection

Why are Bayesian approaches not prevalent in RL?

• Computational barriers
Our Recent Work

• Practical algorithms for approximating Bayes optimal decision making

• Analogy to game-tree search
 on-line lookahead computation
 + global value function approximation

• Use game-tree search ideas
 but here expecti-max vs. mini-max

• Alternative approach to global value fun. approx.
Exploration vs. Exploitation

• Bayes decision theory
 – Value of information measured by ultimate return in reward

• Choose actions to max expected value
 – Exploration/exploitation tradeoff implicitly handled as side effect
Bayesian Approach

conceptually clean
but
computationally disastrous

versus

conceptually disastrous
but
computationally clean
Bayesian Approach

canceltually clean
but
computationally disastrous

versus

ccanceltually disastrous
but
computationally clean
Overview

• Efficient lookahead search for Bayesian RL
 – *Sparser* sparse sampling
 – Controllable computational cost

• Higher quality action selection than current methods

Greedy
Epsilon - greedy
Boltzmann
Thompson Sampling
Bayes optimal
Interval estimation
Myopic value of perfect info.
Standard sparse sampling
Péret & Garcia

(Luce 1959)
(Thompson 1933)
(Hee 1978)
(Lai 1987, Kaelbling 1994)
(Dearden, Friedman, Andre 1999)
(Kearns, Mansour, Ng 2001)
(Péret & Garcia 2004)

• General, can be combined with value fun. approx.
Goals

• Large (infinite) state and action spaces
• Exploit Bayesian modelling tools
 – E.g. Gaussian processes
Sequential Decision Making

How to make an optimal decision?

“Planning”

Requires model \(P(r, s'|s, a) \)

\[
\begin{align*}
V(s) &= \max_a Q(s, a) \\
Q(s, a) &= \max_a \left[r + \gamma V(s') \right]
\end{align*}
\]

This is: finite horizon, finite action, finite reward case

General case: Fixed point equations: \(V(s) = \max_a Q(s, a) \) \(Q(s, a) = E_{r, s'|s, a} [r + \gamma V(s')] \)
Reinforcement Learning

Do not have model $P(r, s'|s, a)$
Reinforcement Learning

Cannot Compute $E_{r,s'|s,a}$

Do not have model $P(r,s'|s,a)$

NIPS 05 Workshop
Reinforcement Learning

Standard approach: keep point estimate
 e.g. via local Q-value estimates

How to select action?

Problem: greedy does not explore

Do not have model $P(r,s'|s,a)$

Greedy
Reinforcement Learning

How to explore?

Problem: do not account for uncertainty in estimates

ε-greedy

Boltzmann
How to use uncertainty?

Interval estimation

Intuition:
greater uncertainty → greater potential

Problem: \(\delta \)'s computed myopically: doesn’t consider horizon
Bayesian Reinforcement Learning

Prior $P(\theta)$ on model $P(r,s'|sa, \theta)$
Belief state $b=P(\theta)$

Choose action to maximize long term reward

Meta-level state

Meta-level MDP

Have a model for meta-level transitions!
- based on posterior update and expectations over base-level MDPs

NIPS 05 Workshop
Bayesian RL Decision Making

How to make an optimal decision?

Solve planning problem in meta-level MDP:
- Optimal Q,V values

Problem: meta-level MDP much larger than base-level MDP
Impractical

Bayes optimal action selection
Bayesian RL Decision Making

Current approximation strategies:

Consider current belief state b

Draw a base-level MDP

Greedy approach:

current $b \rightarrow$ mean base-level MDP model

\rightarrow point estimate for Q, V

\rightarrow choose greedy action

But doesn’t consider uncertainty
Bayesian RL Decision Making

Current approximation strategies:

Consider current belief state b

Draw a base-level MDP

Thompson approach:

current $b \rightarrow$ sample a base-level MDP model

→ point estimate for Q, V

(Choose action proportional to probability it is max Q)

Exploration is based on uncertainty

But still myopic
Our Approach

• Try to better approximate Bayes optimal action selection by performing lookahead

• Adapt “sparse sampling” (Kearns, Mansour, Ng)
 – Make some practical improvements
Sparse Sampling

(Kearns, Mansour, Ng 2001)

Approximate values
Enumerate action choices
Subsample action outcomes
Bound depth
Back up approx values

+ Chooses approximately optimal action with high probability
 (if depth, sampling large enough)

− Achieving guarantees too expensive

+ But can control depth, sampling
Bayesian Sparse Sampling
Bayesian Sparse Sampling
Observation 1

• Do not need to enumerate actions in a Bayesian setting
 – Given random variables Q_1, \ldots, Q_K
 – and a prior $P(Q_1, \ldots, Q_K)$
 – Can approximate $\max(Q_1, \ldots, Q_K)$
 – Without observing every variable

(Stop when posterior probability of a significantly better Q-value is small)
Bayesian Sparse Sampling
Observation 2

• Action value estimates are not equally important
 – Need better Q value estimates for some actions but not all
 – Preferentially expand tree under actions that might be optimal

Biased tree growth
Use Thompson sampling to select actions to expand
Bayesian Sparse Sampling
Observation 3

Correct leaf value estimates to same depth

Use mean MDP Q-value multiplied by remaining depth

Effective horizon $N=3$
Bayesian Sparse Sampling
Observation 4

Include greedy action at decision nodes (if not sampled)

Add greedy action for local belief state
Bayesian Sparse Sampling

Tree growing procedure

1. Sample prior for a model
2. Solve action values
3. Select the optimal action

- Descend sparse tree from root
 - Thompson sample actions
 - Sample outcome

- Until new node added
- Repeat until tree size limit reached

Control computation by controlling tree size
Simple experiments

• 5 Bernoulli bandits \(a_1, \ldots, a_5 \)
• Beta priors
• Sampled model from prior
• Run action selection strategies
• Repeat 3000 times
• Average accumulated reward per step
Five Bernoulli Bandits

Average Reward per Step vs. Horizon

- eps-Greedy
- Boltzmann
- Interval Est.
- Thompson
- MVPI
Simple experiments

- 5 Gaussian bandits a_1, \ldots, a_5
- Gaussian priors
- Sampled model from prior
- Run action selection strategies
- Repeat 3000 times
- Average accumulated reward per step
Five Gaussian Bandits

Average Reward per Step vs. Horizon

- eps-Greedy
- Boltzmann
- Interval Est.
- Thompson
- MVPI
Gaussian process bandits

- General action spaces
 - Continuous actions, multidimensional actions
- Gaussian process prior over reward models
 - Covariance kernel between actions
- Action rewards correlated
- Posterior is a Gaussian process
Gaussian process experiments

- 1 dimensional continuous action space
- GP priors RBF kernel
- Sampled model from prior
- Run action selection strategies
- Repeat 3000 times
- Average accumulated reward per step
1-dimensional Continuous Gaussian Process

Average Reward per Step vs Horizon

- eps-Greedy
- Boltzmann
- Interval Est.
- Thompson
- MVPI
1-dimensional Continuous Gaussian Process

Average Reward per Step

- eps-Greedy
- Boltzmann
- Interval Est.
- Thompson
- MVPI
- Sparse Samp.
- Bayes Samp.

NIPS 05 Workshop
Gaussian process experiments

- 2 dimensional continuous action space
- GP priors RBF kernel
- Sampled model from prior
- Run action selection strategies
- Repeat 3000 times
- Average accumulated reward per step
2-dimensional Continuous Gaussian Process

Average Reward per Step vs Horizon

- eps-Greedy
- Boltzmann
- Interval Est.
- Thompson
- MVPI
2-dimensional Continuous Gaussian Process

Average Reward per Step vs. Horizon

- eps-Greedy
- Boltzmann
- Interval Est.
- Thompson
- MVPI
- Sparse Samp.
- Bayes Samp.
Gaussian Process Bandits

- Very flexible model
- Actions can be complicated
 - e.g. a parameterized policy
 - Just need a kernel between policies
- Applications in robotics & game playing
- Reward = total reward accumulated by a policy in an episode
Summary

Bayesian sparse sampling

• Flexible and practical technique for improving action selection

• Reasonably straightforward

• Bandit problems
 – Planning is “easy”
 (at least approximate planning is “easy”)
Other Work

AIBO dog walking
Opponent modeling (Kuhn poker)
Vendor-bot (Pioneer)

Improve tree search?
Theoretical guarantees?
Cheaper re-planning?
Incorporate value fun. approx.