Transporting iterative algorithms from Euclidean space to manifolds

Jochen Trumpf

Jochen.Trumpf@anu.edu.au

Department of Information Engineering
Research School of Information Sciences and Engineering
The Australian National University
and
National ICT Australia Ltd.
overview

- the Newton iteration
overview

- the Newton iteration
- parametrisations
overview

- the Newton iteration
- parametrisations
- the new algorithm
overview

- the Newton iteration
- parametrisations
- the new algorithm
- convergence properties
overview

- the Newton iteration
- parametrisations
- the new algorithm
- convergence properties
- an example
overview

- the Newton iteration
- parametrisations
- the new algorithm
- convergence properties
- an example
- general iterates
overview

- the Newton iteration
- parametrisations
- the new algorithm
- convergence properties
- an example
- general iterates

joint work with J. Manton
Newton’s method

\[x_{k+1} = x_k - \{\text{Hess } f(x_k)\}^{-1} \text{grad } f(x_k), \quad x_0 \in \mathbb{R}^n \]

is an iteration

\[x_{k+1} = N(f)(x_k), \quad x_0 \in \mathbb{R}^n \]

which is defined for any twice differentiable function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \).
The sequence

\[x_k = \{N(f)\}^k (x_0) \]

it generates converges locally quadratic to non-degenerate critical points of \(f \).
The sequence

\[x_k = \{N(f)\}^k(x_0) \]

it generates converges locally quadratic to non-degenerate critical points of \(f \).

In particular, it converges locally to any (isolated) strict local maximum of \(f \).
Sometimes a to be maximised function is not naturally defined on an \mathbb{R}^n but rather on some smooth manifold (curved space), e.g. the sphere.
Sometimes a to be maximised function is not naturally defined on an \mathbb{R}^n but rather on some smooth manifold (curved space), e.g. the sphere. One description of manifolds is that they look locally like an \mathbb{R}^n. This means that the manifold can be covered by a collection of subsets for each of which there is a homeomorphism (coordinate chart) onto an open set in \mathbb{R}^n.
Sometimes a to be maximised function is not naturally defined on an \mathbb{R}^n but rather on some smooth manifold (curved space), e.g. the sphere.

One description of manifolds is that they look locally like an \mathbb{R}^n. This means that the manifold can be covered by a collection of subsets for each of which there is a homeomorphism (coordinate chart) onto an open set in \mathbb{R}^n.

The whole atlas has to fit nicely together, i.e. via diffeomorphisms in overlapping regions.
This implies that for each point p of the manifold M there exists a local parametrisation, i.e. a smooth injective map

$$\mu_p : \mathbb{R}^n \rightarrow M, \quad \mu_p(0) = p$$
This implies that for each point p of the manifold M there exists a local parametrisation, i.e. a smooth injective map

$$\mu_p : \mathbb{R}^n \rightarrow M, \quad \mu_p(0) = p$$

We consider the special case where μ_p varies locally smoothly with the base point, which might only be possible in a small neighborhood of a given point p^* (hedgehog theorem).
Take e.g. the sphere and the operation of the special orthogonal group on it

\[\phi : SO(n + 1) \times S^n \longrightarrow S^n, \]
\[(Q, p) \mapsto Qp \]

and consider the exponential map

\[\exp : so(n + 1) \longrightarrow SO(n + 1), \]
\[\Omega \mapsto \exp \Omega. \]
It can be shown that

$$\phi(\exp(.), p^*) : so(n + 1) \longrightarrow S^n$$

is locally injective around 0 when restricted to the subspace

$$\left\{ \begin{pmatrix} 0 & Z \\ -Z^T & 0 \end{pmatrix} \mid Z \in \mathbb{R}^{k \times (n-k)} \right\}.$$

This defines a local parametrisation μ_{p^*} which can be “moved around” S^n by applying ϕ.
Let μ_p and ν_p be two families of local parametrisations and consider the iteration

$$p_{k+1} = \nu_{p_k}(N(f \circ \mu_{p_k})(0)), \quad p_0 \in M$$

which is defined for every twice differentiable function $f : M \rightarrow \mathbb{R}$.
Let μ_p and ν_p be two families of local parametrisations and consider the iteration

$$p_{k+1} = \nu_{p_k}(N(f \circ \mu_{p_k})(0)), \quad p_0 \in M$$

which is defined for every twice differentiable function $f : M \rightarrow \mathbb{R}$.

Note that for $M = \mathbb{R}^n$ and $\nu_p = \mu_p$ the obvious parametrisation $x \mapsto p + x$ this is the standard Newton method.
Theorem: If μ_p and ν_p are smooth around a non-degenerate critical point p^* of f and if moreover $\mu'_{p^*}(0) = \nu'_{p^*}(0)$ then our algorithm converges locally quadratic to p^*.
Theorem: If μ_p and ν_p are smooth around a non-degenerate critical point p^* of f and if moreover $\mu'_{p^*}(0) = \nu'_{p^*}(0)$ then our algorithm converges locally quadratic to p^*.

In general, nothing is said (and known) about global convergence.
Consider a real symmetric $n \times n$ matrix N with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_k > \lambda_{k+1} \geq \cdots \geq \lambda_n$. Its k-dimensional principal eigenspace is the subspace spanned by the eigenvectors to $\lambda_1, \ldots, \lambda_k$.
Consider a real symmetric $n \times n$ matrix N with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_k > \lambda_{k+1} \geq \cdots \geq \lambda_n$. Its k-dimensional principal eigenspace is the subspace spanned by the eigenvectors to $\lambda_1, \ldots, \lambda_k$.

Consider the function (generalised Rayleigh quotient)

$$f : \text{Grass}(k, n) \rightarrow \mathbb{R}, \quad [X] \mapsto \text{tr } X^\top N X$$
\(\mu_p \) is given by

\[
p = \begin{bmatrix} Q \begin{pmatrix} I \\ 0 \end{pmatrix} \end{bmatrix}
\]

\[
\mu_p(Z) = \begin{bmatrix} Q \exp \begin{pmatrix} 0 & Z \\ -Z^\top & 0 \end{pmatrix} \begin{pmatrix} I \\ 0 \end{pmatrix} \end{bmatrix}
\]

where \(Q \in O(n) \) and \(Z \) is \(k \times (n - k) \).
Then

$$\nabla (f \circ \mu_p)(0) = \left[Q^\top N Q, \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \right] = \begin{pmatrix} 0 & -N_{12} \\ N_{12}^\top & 0 \end{pmatrix}$$
Then

\[\text{grad}(f \circ \mu_p)(0) = \begin{bmatrix} Q^\top N Q, \\ I_0 0 \end{bmatrix} = \begin{pmatrix} 0 & -N_{12} \\ N_{12}^\top & 0 \end{pmatrix} \]

and

\[\text{Hess}(f \circ \mu_p)(0) Z = \begin{pmatrix} 0 & Z N_{22} - N_{11} Z \\ Z^\top N_{11} - N_{12} Z^\top & 0 \end{pmatrix} \]
So computing \(N(f \circ \mu_p)(0) \) amounts to solving the Sylvester equation

\[
N_{11}Z -ZN_{22} = -N_{12}
\]
So computing $N(f \circ \mu_p)(0)$ amounts to solving the Sylvester equation

$$N_{11}Z - ZN_{22} = -N_{12}$$

This Z could then be plugged into

$$\nu_p(Z) = \begin{bmatrix} Q \exp \begin{pmatrix} 0 & Z \\ -Z^\top & 0 \end{pmatrix} \begin{pmatrix} I \\ 0 \end{pmatrix} \end{bmatrix}$$

to get a new Q.

Transporting iterative algorithms from Euclidean space to manifolds – p. 14/18
an example

It’s much better though to use an orthogonal projection onto $O(n)$ instead by computing a QR-decomposition of

$$\begin{pmatrix} I & 0 \\ -Z^\top & I \end{pmatrix} = Q_Z R$$

and to use QQ_Z as the new Q.
Replacing the Newton iteration $N(f) : \mathbb{R}^n \rightarrow \mathbb{R}^n$ by any other iteration $G(f) : \mathbb{R}^n \rightarrow \mathbb{R}^n$ that is locally order q converging to non-degenerate critical points of f, we can derive sufficient conditions on a family μ_p of local parametrisations that guarantee local order q convergence of the “transported algorithm”

$$p_{k+1} = \mu_{p_k}(G(f \circ \mu_{p_k})(0)), \quad p_0 \in \mathcal{M}$$
general iterates

Let \(G(f) : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be defined by

\[
G(f)(x) := g(x, f(x), \text{grad } f(x), \text{Hess } f(x))
\]

where

\[
g : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^n
\]

is sufficiently smooth.
Let \(G(f) : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be defined by
\[
G(f)(x) := g(x, f(x), \text{grad } f(x), \text{Hess } f(x))
\]
where
\[
g : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n\times n} \rightarrow \mathbb{R}^n
\]
is sufficiently smooth.
For \(N(f) \) it would be \(g(x, \alpha, y, Z) = x - Z^{-1}y \).
Theorem: If $G(.)$ is order q locally convergent to non-degenerate critical points and μ_p is a locally smooth family of local parametrisations which are local diffeomorphisms then the transported algorithm is locally order q convergent to non-degenerate critical points.
Theorem: If $G(.)$ is order q locally convergent to non-degenerate critical points and μ_p is a locally smooth family of local parametrisations which are local diffeomorphisms then the transported algorithm is locally order q convergent to non-degenerate critical points.

This result can be further generalised (see forthcoming paper).
Theorem: If $G(.)$ is order q locally convergent to non-degenerate critical points and μ_p is a locally smooth family of local parametrisations which are local diffeomorphisms then the transported algorithm is locally order q convergent to non-degenerate critical points.

This result can be further generalised (see forthcoming paper).

Thank you.