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1. INTRODUCTION

Converse Liapunov results are an important tool in the
analysis of stability of classical “smooth” systems and have
been well studied, see for example Hahn (1967); Khalil
(1996); Corless and Glielmo (1998) and citations therein.
Non-smooth systems are important in a wide range of
applications; for example, switched and hybrid systems,
piecewise linear or discontinuous systems, sliding mode
systems, non-smooth control designs for non-holonomic
systems, networked control systems, and robust stabil-
ity analysis where the plant variation is non-smooth or
discontinuous. In a recent survey article Cortés (2008)
provides an excellent overview of the existence and unique-
ness of different solution classes, principally Fillipov or
Carathéodory solutions, for non-smooth systems and dis-
cusses some questions of stability. There is a considerable
body of work available for the stability analysis of solutions
in the sense of Filippov (1988) of non-smooth systems. In
particular, we mention the work of Clarke et al. (1998b),
Aubin and Celina (1994) and Bacciotti and Rosier (2005),
as well as Cortés (2008) recent review article and the refer-
ences contained in these works. Analysis of Carathéodory
solutions appears to be somewhat less developed than for
Fillipov solutions. The existence of Carathéodory solutions
in switched non-linear control systems has been considered
by a number of authors Polycarpou and Ioannou (1993);
Kim and Ha (2004). Ancona and Bressan have studied
the stabilization problem for Carathéodory solutions of
vector fields patched together from smooth vector fields
Ancona and Bressan (1999, 2002, 2004). Bacciotti and
Ceragioli (2006) provide sufficient conditions for stabil-
ity and asymptotic stability of Carathéodory solutions.
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A recent article by Grzanek et al. (2008) uses a general
form of the integral theorem of calculus to guarantee
(Liapunov) stability of solutions, often the most diffi-
cult step in all the above results, and go on to prove
asymptotic stability for general Carathéodory solutions of
system with a Liapunov function. Aeyels and Peuteman
(1998) have studied stability of systems using an integral
formulation of the Liapunov decent condition. Although
their work is focused on applications in time-varying and
averaged systems, it has direct application to analysis of
non-smooth systems with Carathéodory solutions. Aeyels
et al. also consider the question of exponential stability
of systems Aeyels and Peuteman (1999). Other recent
work on exponential stability of nonlinear systems using
discontinuous Liapunov functions was presented in Linh
and Phat (2001). Both these works provide sufficient con-
ditions for exponential stability of non-linear time-varying
systems using Liapunov comparison functions. Converse
Liapunov results for stability are classical for smooth sys-
tems Massera (1949, 1956); Kurzweil (1963). There is a
body of work concerning converse Liapunov results for
switched systems Liberzon and Morse (1999); Dayawansa
and Martin (1999). In work by Lin et al. (1996) a general
converse Liapunov result was proved that showed existence
of a smooth Liapunov function for a system with bounded
disturbances, a result with application to robust stability
analysis of systems. Clarke et al. (1998a) showed existence
of smooth Liapunov functions for strongly asymptotically
stable systems with solutions of the Fillipov type. The ex-
istence of smooth Liapunov functions is somewhat counter
intuitive in both these cases as the underlying system
is non-smooth. More recent work in converse Liapunov
results has considered non-uniform asymptotic stability
Karafyllis and Tsinias (2003). A further perspective is
obtained using the structure of skew product flows Grüne
et al. (2007).



In this paper, we provide a Liapunov function characteri-
sation of uniform local exponential stability (ULES) for
locally Lipschitz, non-linear, time-varying systems that
admit Carathéodory solutions. The main result proves
that a critical point of such a system is uniformly locally
exponentially stable if and only if it admits a ULES Li-
apunov function, a Liapunov function that exhibits cer-
tain growth behavior and regularity (see Definition 2).
The result is based on a generalisation of the Langenhop
(1960) inequality that provides a lower bound on the rate
of decrease of solutions. Our result requires only that a
Carathéodory solution exists and that the vector field is
uniformly Lipschitz around the origin. This appears to
be a stronger result than other extensions of Langenhop
that we have found in the literature Vidyasagar (2002).
The Langenhop inequality is fundamental in the existence
proof of the ULES Liapunov function for uniformly locally
exponentially stable systems. The converse Liapunov re-
sult obtained dovetails with a theorem from Aeyels and
Peuteman (1999) to provide the if and only if Liapunov
characterisation of uniform local exponential stability.

The paper is organised into four sections including the
present introduction, two main technical sections, and a
short conclusion (Section 4). In the technical sections,
Section 2 presents the problem formulation and proves
the generalisation of the Langenhop inequality. Section
3 presents the converse Liapunov theorem for uniformly
locally exponentially stable systems and states the main
result.

2. A LANGENHOP INEQUALITY FOR
TRAJECTORIES

Consider the time-varying system
d
dt
x(t) = f(t, x(t)) (1)

where I ⊂ R is a non-empty interval, U ⊂ Rn is a non-
empty open set and f : I × U −→ Rn. To begin with, we
do not place any regularity conditions on f but we will
introduce some conditions as we go.

The term solution of (1) will mean a Carathéodory solu-
tion, i.e. a function x : J −→ U where J ⊂ I is a non-
empty interval such that f(·, x(·)) is locally (Lebesgue)
integrable on J and such that x(·) fulfils the associated
integral equation

x(t) = x(t0) +
∫ t

t0

f(τ, x(τ))dτ (2)

for some t0 ∈ J and all t ∈ J . Since a Carathéodory
solution is given by an integral of the form (2), it is auto-
matically absolutely continuous. Hence, a Carathéodory
solution is differentiable almost everywhere and fulfils
equation (1) at the points where it is differentiable.

It is, of course, well known that Carathéodory solutions
exist for all initial data (t0, x0) ∈ I × U , x(t0) = x0 and
that maximal 1 such solutions are unique if f fulfils the
respective Carathéodory conditions 2 . To obtain our first
1 A solution x : J −→ U , J ⊂ J̃ , is called maximal if it can not be
continued beyond its existence interval J , i.e. if for every solution
x̃ : J̃ −→ U that coincides with x on J it follows that J̃ = J .
2 The usual Carathéodory conditions for existence of solutions are
continuity in x for almost all t, measurability in t for all x and

result, we will not assume any of these conditions a priori,
since the result is merely concerned with individual solu-
tions (trajectories). However, the hypotheses of Theorem 1
below almost imply the usual Carathéodory conditions, at
least “along” the trajectory under investigation. We refer
the reader to the excellent book by Filippov (1988) for a
thorough discussion of various notions of weak solutions
and their respective properties. There is also a recent
survey paper by Cortés (2008) that is available online.

The following is a version of Langenhop’s inequality (Lan-
genhop (1960)) for individual Carathéodory solutions. It is
best applicable for locally uniformly Lipschitz systems in
a neighborhood of a stationary solution. See the discussion
below the theorem for the details.
Theorem 1. Let x : J −→ U be a (Carathéodory ) solution
of (1) and let ‖x(t)‖ > 0 for some t ∈ J . Pick t0 ∈ J with
t0 < t. Assume that there exists L > 0 such that

‖f(τ, x(τ))‖ ≤ L · ‖x(τ)‖ (3)
for almost all τ ∈ [t0, t]. Then

‖x(t)‖ ≥ ‖x(t0)‖ · e−L(t−t0) .

Proof. Since x(·) is a solution of the integral equation (2)
we have that

x(t) = x(τ) +
∫ t

τ

f(s, x(s))ds

for all t0 ≤ τ ≤ t and hence

‖x(t)‖ ≥ ‖x(τ)‖ −
∫ t

τ

‖f(s, x(s))‖ds

for all t0 ≤ τ ≤ t. Defining

φ(τ) := ‖x(t)‖+
∫ t

τ

‖f(s, x(s))‖ds

it follows that φ(τ) ≥ ‖x(t)‖ > 0 and φ(τ) ≥ ‖x(τ)‖ for all
t0 ≤ τ ≤ t. But then L · φ(τ) ≥ L · ‖x(τ)‖ ≥ ‖f(τ, x(τ))‖
and hence

L− ‖f(τ, x(τ))‖
φ(τ)

≥ 0

for almost all τ ∈ [t0, t]. Integrating this inequality from
t0 to t yields

L(t− t0)−
∫ t

t0

‖f(τ, x(τ))‖
φ(τ)

dτ ≥ 0. (4)

Next, we note that

ψ(s) :=


0 , s < t0
‖f(s, x(s))‖ , t0 ≤ s ≤ t

0 , s > t

is integrable over R and hence φ(·) is absolutely continuous
and in particular differentiable almost everywhere, namely
at every Lebesgue point of ψ(·), and moreover φ′(τ) =
−‖f(τ, x(τ))‖ at every such point τ ∈ [t0, t], see e.g.
(Rudin, 1987, Theorem 7.11). Hence (4) is equivalent to

L(t− t0) +
∫ t

t0

φ′(τ)
φ(τ)

dτ ≥ 0.

Since φ(·) is absolutely continuous and bounded away
from zero by ‖x(t)‖ > 0, the logarithm log(φ(·)) is

boundedness in x for almost all t where the bound is absolutely
continuous in t. The usual condition for uniqueness of solutions is a
local Lipschitz condition in x. For the details see e.g. Filippov (1988).



also absolutely continuous with derivative d
dτ log(φ(τ)) =

φ′(τ)/φ(τ) almost everywhere on [t0, t]. Applying the fun-
damental theorem of calculus in a version for absolutely
continuous functions, see e.g. (Rudin, 1987, Theorem
7.20), yields

log(φ(t)) ≥ log(φ(t0))− L(t− t0)
and hence using φ(t) = ‖x(t)‖ and φ(t0) ≥ ‖x(t0)‖ that

log(‖x(t)‖) ≥ log(‖x(t0)‖)− L(t− t0).
Taking exponentials on both sides completes the proof.

A few remarks are in order. For r > 0 and x ∈ Rn

denote Br(x) := {y ∈ Rn | ‖y − x‖ < r}. The standard
Carathéodory condition for uniqueness of solutions is that
f is locally Lipschitz in x, or more precisely that for every
x ∈ U there exist an rx > 0 and a locally integrable
function Lx : I −→ [0,∞) such that Brx

(x) ⊂ U and
‖f(t, y)− f(t, z)‖ ≤ Lx(t)‖y − z‖ (5)

for all y, z ∈ Brx
(x) and all t ∈ I. The case where the local

Lipschitz functions Lx(·) are bounded is of particular in-
terest in the discussion of stability of stationary solutions,
see e.g. Aeyels and Peuteman (1998).

For systems with f(t, 0) = 0 almost everywhere, i.e. where
0 ∈ U is a stationary solution, our condition (3) follows
from essential boundedness of the local Lipschitz functions
Lx(·), where that bound is uniform in x ∈ U . In particular,
if zero is a stable stationary solution then solutions that
start close enough to zero remain in a compact set and
hence (possibly non-uniform) essential boundedness of the
local Lipschitz functions Lx(·) alone guarantees (3) for
solutions that live close enough to zero. In the following,
we will use Theorem 1 only in that latter context.

3. A CONVERSE LIAPUNOV THEOREM FOR
UNIFORMLY LOCALLY EXPONENTIALLY STABLE

SYSTEMS

In this section, we will assume that [t∗,∞) ⊂ I for some
t∗ ∈ R and that system (1) has unique maximal solutions 3

for all initial data (t0, x0) ∈ I × U , x(t0) = x0. We
will denote the corresponding maximal existence intervals
by Jφ(t0, x0) ⊂ I and to avoid confusion, we will write
φ(t; t0, x0) for the value of the solution with initial data
(t0, x0) at time t ∈ Jφ(t0, x0).

Assume now that f(t, 0) = 0 for almost all t ∈ [t∗,∞),
i.e. that 0 ∈ U is a stationary solution of system (1).
Recall that the zero solution is called uniformly locally
exponentially stable if there exist positive numbers r, m
and λ such that Jφ(t0, x0) ⊃ [t0,∞) and

‖φ(t; t0, x0)‖ ≤ ‖x0‖ ·m e−λ(t−t0) (6)
for all x0 ∈ Br(0) and all t ≥ t0 ≥ t∗. Note that this
implies m ≥ 1.
Definition 2. Let η > 0. A function V : [t∗,∞)×Bη(0) −→
[0,∞) is called a uniform local exponential stability Lia-
punov function, ULES Liapunov function, for system (1)
if there exist positive numbers α, β, γ, δ, η′ < η and L
such that
3 We choose to make this assumption directly in Theorems 4 and
5 as it is a key conceptual condition for the results presented. The
results, however, could be stated without this requirement by noting
for example that Lemma 3 implies uniqueness of maximal solutions.

(1) α‖x‖2 ≤ V (t, x) ≤ β‖x‖2,
(2) |V (t, x)− V (t, y)| ≤ L · (‖x‖+ ‖y‖) · ‖x− y‖ and
(3) V (t+ δ, φ(t+ δ; t, z))− V (t, z) ≤ −γ‖z‖2

for all x, y ∈ Bη(0), all z ∈ Bη′(0) and all t ≥ t∗.

Theorem 4 below yields existence of ULES Liapunov func-
tions for systems with essentially bounded local Lipschitz
functions Lx(·) for which zero is a uniformly locally ex-
ponentially stable stationary solution. See the previous
section for a short discussion of local Lipschitz functions.
The proof of the theorem uses the following technical
lemma.
Lemma 3. Assume that the local Lipschitz functions Lx(·)
in (5) exist and are essentially bounded, i.e. for every x ∈ U
there exists Mx > 0 such that Lx(t) ≤ Mx for almost all
t ∈ I. Let K ⊂ U be a compact, convex set then there
exists M > 0 such that ‖f(t, x) − f(t, y)‖ ≤ M · ‖x − y‖
for almost all t ∈ I and all x, y ∈ K. Furthermore, let
φ(·; t0, x0) and φ(·; t0, y0), x0, y0 ∈ K be two solutions of
(1) that both exist and remain in K for some time interval
[t0, t1] ⊂ I with t1 ≥ t0. Then

‖φ(t; t0, x0)− φ(t; t0, y0)‖ ≤ ‖x0 − y0‖ · eM(t−t0)

for all t0 ≤ t ≤ t1.

Proof. Cover the compact set K with a finite number
of local Lipschitz domains Brx

(x), cf. (5), and let M >
0 denote the maximum of the finitely many associated
essential boundsMx for the local Lipschitz functions Lx(·).
A simple application of the triangle inequality shows that
‖f(t, x)−f(t, y)‖ ≤M ·‖x−y‖ for all x, y ∈ K by breaking
down the bounded line segment joining x and y within the
convex set K into finitely many pieces, each covered by
one of the local Lipschitz domains. This argument holds
for almost all t ∈ I since the union of finitely many sets of
measure zero, namely the time sets where the individual
bounds Mx may not hold, is again a set of measure zero.

Regarding the second statement, we have that

φ(t; t0, x0) = x0 +
∫ t

t0

f(τ, φ(τ ; t0, x0))dτ

for all t0 ≤ t ≤ t1 and analogously for φ(t; t0, y0). Hence
the difference ψ(t) := φ(t; t0, x0)− φ(t; t0, y0) fulfils

‖ψ(t)‖ ≤ ‖ψ(t0)‖+
∫ t

t0

M · ‖ψ(τ)‖dτ

where we have used the first part of the lemma. Since
‖ψ(·)‖ is continuous, the statement now follows from an
application of Gronwall’s inequality, see e.g. (Hale, 1969,
Corollary I.6.6).
Theorem 4. Let [t∗,∞) ⊂ I for some t∗ ∈ R and let
system (1) have unique maximal solutions for all initial
data (t0, x0) ∈ I × U , x(t0) = x0. Assume further that
the local Lipschitz functions Lx(·) in (5) exist and are
essentially bounded, i.e. for every x ∈ U there exists
Mx > 0 such that Lx(t) ≤ Mx for almost all t ∈ I. Let
zero be a uniformly locally exponentially stable solution
of (1). Then there exists a ULES Liapunov function for
system (1).

Proof. Let T > 0 be arbitrary but fixed. There exists a
constant c ≥ 1 such that ‖x‖2 ≤ c‖x‖ and ‖x‖ ≤ c‖x‖2
for all x ∈ Rn, where ‖·‖ is our arbitrary norm and ‖·‖2 is
the Euclidean norm. Using the exponential bound (6),



‖φ(τ ; t, x)‖2 ≤ ‖x‖ ·mc e−λ(τ−t) (7)

for all x ∈ Br(0) and all τ ≥ t ≥ t∗ and hence

V (t, x) :=
∫ t+T

t

‖φ(τ ; t, x)‖22dτ

is well-defined for all x ∈ Br(0) and all t ≥ t∗. Further-
more, V (t, x) ≤ β‖x‖2 for all x ∈ Br(0) and all t ≥ t∗,
where β := (1− e−2λT )(mc)2/(2λ) > 0.

From (7) it follows that φ(τ ; t, x) ∈ Br′(0) for all x ∈
Br(0), where r′ := rmc2 > 0. Applying Lemma 3 to the
compact, convex set Br′(0) shows that ‖f(t, x)−f(t, y)‖ ≤
M · ‖x − y‖ for all x, y ∈ Br′(0). In particular, choosing
y = 0 this implies ‖f(τ, φ(τ ; t, x))‖ ≤ M · ‖φ(τ ; t, x)‖ for
all x ∈ Br(0) and all τ ≥ t ≥ t∗. Now let x ∈ Br(0), x 6= 0.
Applying Theorem 1 yields

‖φ(τ ; t, x)‖2 ≥ ‖x‖ · c e−M(τ−t) (8)

for all τ ≥ t ≥ t∗ and hence V (t, x) ≥ α‖x‖2 where
α := (1 − e−2MT )c2/(2M) > 0. The inequality is trivial
for x = 0.

To deduce the second statement of the theorem, compute

|V (t, x)− V (t, y)|

= |
∫ t+T

t

(
‖φx‖22 − ‖φy‖22

)
dτ |

= |
∫ t+T

t

(
φ>x φx − φ>y φy

)
dτ |

= |
∫ t+T

t

(
φ>x (φx − φy) + (φx − φy)>φy

)
dτ |

≤ c2
∫ t+T

t

(‖φx‖+ ‖φy‖) · ‖φx − φy‖dτ

≤ mc2 (‖x‖+ ‖y‖) · ‖x− y‖
∫ t+T

t

e(M−λ)(τ−t) dτ

for all x ∈ Br(0) and all t ≥ t∗, where we have used the
shorthand notation φx := φ(τ ; t, x) and φy := φ(τ ; t, y).
Here, the last inequality follows by applying the exponen-
tial bound (6) and Lemma 3. The desired inequality now
follows by setting L := (e(M−λ)T −1)mc2/(M − λ) > 0.

For the third and final statement of the theorem, we start
by observing that (7) implies

‖φ(τ ; t, x)‖2 ≤ ‖x‖2 ·m′ e−λ(τ−t) (9)

where m′ := mc2 ≥ m ≥ 1. We compute

V (t+ δ, φ(t+ δ; t, x))− V (t, x)

=
∫ t+δ+T

t+δ

‖φ(τ ; t+ δ, φ(t+ δ; t, x))‖22dτ

−
∫ t+T

t

‖φ(τ ; t, x)‖22dτ

=
∫ t+δ+T

t+δ

‖φ(τ ; t, x)‖22dτ −
∫ t+T

t

‖φ(τ ; t, x)‖22dτ

=
∫ t+T

t

(
‖φ(τ + δ; t, x)‖22 − ‖φ(τ ; t, x)‖22

)
dτ

=
∫ t+T

t

(
‖φ(τ + δ; τ, φ(τ ; t, x))‖22 − ‖φ(τ ; t, x)‖22

)
dτ

≤
(
m′2 e−2λδ −1

) ∫ t+T

t

‖φ(τ ; t, x)‖22dτ

≤
(
m′2 e−2λδ −1

)
β‖x‖2

for all x ∈ Br(0) and all t ≥ t∗, where the second and
fourth equalities follow from the uniqueness of maximal
solutions, the first inequality follows from (9), and the
last inequality follows from the first part of the theorem.
The statement now follows by choosing δ > log(m′)/λ and
γ := (1−m′2 e−2λδ)β > 0.

This leads to the main result of the paper.
Theorem 5. Let [t∗,∞) ⊂ I for some t∗ ∈ R and let
system (1) have unique maximal solutions for all initial
data (t0, x0) ∈ I × U , x(t0) = x0. Assume further that
the local Lipschitz functions Lx(·) in (5) exist and are
essentially bounded, i.e. for every x ∈ U there exists
Mx > 0 such that Lx(t) ≤ Mx for almost all t ∈ I. Let
0 ∈ U and f(t, 0) = 0 for almost all t ∈ I.
Then zero is a uniformly locally exponentially stable
solution of system (1) if and only if there exists a ULES
Liapunov function for system (1) at zero, cf. Definition 2.

Proof. Existence of a ULES Liapunov function follows
from Theorem 4. The reverse implication was proved
by Aeyels and Peuteman (Aeyels and Peuteman, 1999,
Theorem 1).

4. CONCLUSION

We have provided a characterization of uniform local
exponential stability (ULES) for locally Lipschitz, non-
linear, time-varying, possibly non-smooth systems that
admit Carathéodory solutions in terms of the existence
of a certain type of local Liapunov function that we
dubbed ULES Liapunov function. In future work this
characterization will be used to provide a criterion for
uniform local exponential stability in terms of exponential
stability of the linearization.
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