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Abstract

We study the theory of projective reconstruction for
multiple projections from an arbitrary dimensional pro-
jective space into lower-dimensional spaces. This prob-
lem is important due to its applications in the analysis
of dynamical scenes. The current theory, due to Hart-
ley and Schaffalitzky, is based on the Grassmann ten-
sor, generalizing the ideas of fundamental matrix, tri-
focal tensor and quadrifocal tensor in the well-studied
case of 3D to 2D projections. We present a theory
whose point of departure is the projective equations
rather than the Grassmann tensor. This is a better fit
for the analysis of approaches such as bundle adjust-
ment and projective factorization which seek to directly
solve the projective equations. In a first step, we prove
that there is a unique Grassmann tensor corresponding
to each set of image points, a question that remained
open in the work of Hartley and Schaffalitzky. Then,
we prove that projective equivalence follows from the set
of projective equations, provided that the depths are all
nonzero. Finally, we demonstrate possible wrong solu-
tions to the projective factorization problem, where not
all the projective depths are restricted to be nonzero.

1. Introduction

In this paper we develop the theory of pro-
jective reconstruction for multiple projections from
an arbitrary dimensional projective space to lower-
dimensional spaces. A set of such projections can be
represented as

λijxij = PiXj (1)

for i = 1, . . . ,m and j = 1, . . . , n, where Xj ∈ Rr are
high-dimensional (HD) points, Pi ∈ Rsi×r are projec-
tion matrices, xij ∈ Rsi are image points and λij-s are
nonzero scalars known as projective depths. The prob-
lem of projective reconstruction is to obtain the projec-
tion matrices Pi, the points Xj and the depths λij , up

to a projective ambiguity, given the image points xij .
The goal of this paper is to deduce the uniqueness of
such reconstruction, given the set of equations (1).

The classic case of projections from 3D scenes to
2D images has been intensely studied in the past two
decades [4]. In this case Xj ∈ R4 resp. xij ∈ R3

represent points in the projective spaces P3 resp. P2 in
homogeneous coordinates. When the scene is rigid, the
traditional way of analysing and solving the problem of
projective reconstruction is via the bifocal tensor (fun-
damental matrix), trifocal tensor or quadrifocal tensor
[4, 5]. The standard procedure is to build a multiple
view tensor from point (or line) correspondences among
two, three or four views, and then from the tensor ex-
tract the original camera matrices up to projectivity.
The 3D points can be subsequently estimated through
a triangulation procedure.

The recovery of structure and motion is more chal-
lenging in the case of nonrigid motions. Wolf and
Shashua in [11] consider a number of different struc-
ture and motion problems in which the scene observed
by a perspective camera is nonrigid. They show that
all the given problems can be modeled as projections
from a higher-dimensional projective space Pk into P2

for k = 3, 4, 5, 6. They use tensorial approaches to
address each of the problems. Hartley and Vidal [2]
considered the problem of perspective nonrigid defor-
mation, assuming that the scene deforms as a linear
combination of k different linearly independent basis
shapes. They show that the problem can be modeled
as projections from P3k to P2.

Such applications manifest the need for a general
theory of projective reconstruction for arbitrary dimen-
sional spaces. Hartley and Schaffalitzky [3] present a
comprehensive theory to address the projective recon-
struction for general projections. Their theory unifies
the previous work by introducing the Grassmann ten-
sor, which generalizes the concepts of bifocal, trifocal
and quadrifocal tensors used in P3 → P2 projections,
and other tensors used for special cases in other di-
mensions. The central theorem in [3] proves that the
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projection matrices can be obtained up to projectivity
from the corresponding Grassmann tensor.

Tensor-based projective reconstruction is sometimes
not accurate enough, especially in the presence of noise.
One problem is imposing necessary restrictions on the
form of the Grassmann tensor during its computation.
As a simple example the fundamental matrix (bifocal
tensor) needs to be of rank 2. The other restriction is
that for projections from Pr−1, at most r views con-
tribute to the computation of each tensor. This pre-
vents us from making use of the whole set of image
points to reduce the estimation error. This has led to
the use of other approaches such as bundle adjustment
[10] and projective factorization [9, 6, 8, 1], in which the
projection equations (1) are directly solved for projec-
tion matrices Pi, HD points Xj and projective depths
λij . Analysing such methods requires a theory which
derives the projective reconstruction from the projec-
tion equations (1), rather than from the Grassmann
tensor.

Recently, Nasihatkon et al. developed such a theory
for P3 → P2 projections [7]. They classify all the wrong
solutions to the projective factorization equation Λ �
[xij ] = P X which is the matrix form of (1), based on
the zero patterns of the depth matrix Λ. The theory
is particularly useful in the design and verification of
factorization-based algorithms. Their theory, however,
is restricted to the case of 3D to 2D projections. As
far as we are aware, no such theory has been proposed
for general dimensional projections.

In this paper, we give a theory which deduces pro-
jective reconstruction from the set of equations (1). As
a first step, we need to answer a question which is left
open in [3], namely whether the set of image points
xij uniquely determine the Grassmann tensor, up to a
scaling factor. Notice that this is important even for
tensor-based projective reconstruction. Our theory in
section 3.1 gives a positive answer to this question.

The second question is whether all configurations of
projective matrices and HD points projecting into the
same image points xij (all satisfying (1) with nonzero
depths λij) are projectively equivalent. This is impor-
tant for the analysis of bundle adjustment as well as
factorization-based approaches. The answer to such a
simple question is by no means trivial. Notice that the
uniqueness of the Grassmann tensor is not sufficient
for proving this, as it does not rule out the existence of
degenerate solutions {Pi} whose corresponding Grass-
mann tensor is zero. This paper gives a positive answer
to this question as well, as a consequence of the theory
presented in section 4.

The last issue, which only concerns the
factorization-based approaches, is classifying all

the degenerate solutions to the projective factorization
equation Λ � [xij ] = P X. This is the matrix form of
(1) and shows the idea behind factorization methods:
find the depths Λ = [λij ] such that the matrix of
weighted image points Λ � [xij ] = [λijxij ] has a
rank-r factorization in the form of the product of two
matrices P and X. In such algorithms it is difficult or
inefficient to enforce all the depths λij to be nonzero.
Therefore, it is important to classify the projectively
nonequivalent solutions which occur when not all
elements of Λ are restricted to be nonzero. We study
the form of such degenerate solutions in section 5, and
demonstrate them by giving examples.

2. Background

2.1. Conventions

We borrow most of our notation from previous work,
in particular from [4, 3, 7]. We use typewriter letters
(A) for matrices, bold letters (a,A) for vectors, lower-
case normal letters (a) for scalars and upper-case nor-
mal letters (A) for sets, except for special sets like R
and P. We use calligraphic letters (A) for both ten-
sors and mappings (functions). To refer to the column
space and null space of a matrix A we respectively use
C(A) and N (A). The vertical concatenation of a set of
matrices A1, A2, . . . , Am is denoted by stack(A1, . . . , Am).
We make use of the terms “generic” and “in general
position” for entities such as points, matrices and sub-
spaces. In such cases, if the generic properties are not
explicitly stated, we simply mean that they belong to
an open and dense subset which will be implicitly de-
termined from the properties assumed as a consequence
of genericity in our proofs.

Throughout the paper we deal with a set of high-
dimensional (HD) points X1,X2, . . . ,Xn ∈ Rr, which
represent points in the projective space Pr−1 in homo-
geneous coordinates, and a set of projection matrices
P1, P2, . . . , Pn where the i-th matrix Pi ∈ Rsi×r repre-
sents a projective mapping from Pr−1 to Psi−1. Each
mapping takes each HD point Xj to an image point
xij ∈ Rsi−1, through the relation λijxij = PiXj .

Here, the setup ({Pi}, {Xj}) is referred to as the true
configuration. We also use a second setup of projection
matrices and points ({P̂i}, {X̂j}). This new setup, de-
noted by hatted quantities, are referred to as the esti-
mated configuration. The object of our main theorems
here is to show that if the setup ({P̂i}, {X̂j}) projects
into the same set of image points as ({Pi}, {Xj}), then

({P̂i}, {X̂j}) and ({Pi}, {Xj}) are projectively equiva-
lent. We must stress that, here, the projection matri-
ces Pi, P̂i, HD points Xj , X̂j and image points xij are
treated as members of a real vector space, even though
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they might represent quantities in a projective space.
The equality sign “=” here is strict and never implies
equality up to scale.

2.2. Projective equivalence

We formalize the concept of projective equivalence
for HD points and projection matrices as follows.

Definition 1. Two sets of projection matrices {Pi}
and {P̂i}, with Pi, P̂i ∈ Rsi×r for i = 1, 2, . . . ,m are
projectively equivalent if there exist nonzero scalars
τ1, τ2, . . . , τm and an r×r invertible matrix H such that

P̂i = τi Pi H, i = 1, 2, . . . ,m. (2)

Two sets of points {Xj} and {X̂j} with Xj , X̂j ∈ Rr
for j = 1, 2, . . . , n, are projectively equivalent if there
exist nonzero scalars ν1, ν2, . . . , νn and an invertible
r×r matrix G such that

X̂j = νj GXj , j = 1, 2, . . . , n. (3)

Two setups ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are pro-
jectively equivalent if both (2) and (3) hold, and fur-
thermore G = H−1.

The following lemma is needed later on in the paper.

Lemma 1. Consider a set of points X1,X2, . . . ,Xn ∈
Rr with n > r with the generic properties

(P1) span(X1, . . . ,Xn) = Rr, and

(P2) the set of points {Xi} cannot be partitioned into
p ≥ 2 nonempty subsets, such that subspaces de-
fined as the span of each subset are independent1.

Now, for any set of points {X̂i} projectively equivalent
to {Xi}, the matrix G and scalars νj defined in (3) are
unique up to a scale ambiguity of the form (βG, {νj/β})
for any nonzero scalar β.

Notice that (P2) is generic only when n > r. The
proof is based on the theory of eigenspaces of a square
matrix and is given in the Supplementary Material.

2.3. Triangulation

The problem of Triangulation is to find a point X
given its images through a set of known projections
P1, . . . , Pm. The next lemma provides conditions for
uniqueness of triangulation.

Lemma 2 (Triangulation). Consider a set of projec-
tion matrices P1, P2, . . . , Pm with Pi ∈ Rsi×r, and a
point X ∈ Rr, configured such that

1Subspaces U1, . . . , Up are independent if dim(
∑p

j=1 Uj) =∑p
j=1 dim(Uj), where

∑p
j=1 Uj = {

∑p
j=1 uj |uj ∈ Uj}.

(T1) there does not exist any linear subspace of dimen-
sion less than or equal to 2, passing through X
and nontrivially intersecting2 all the null spaces
N (P1),N (P2), . . . ,N (Pm).

Now, for any nonzero Y 6= 0 in Rr if the relations

PiY = βiPiX, i = 1, 2, . . . ,m (4)

hold for scalars βi, then Y = βX for some scalar β 6=0.

Notice that we have not assumed βi 6= 0.

Proof. From PiY = βiPiX we deduce

Y = βiX + Ci (5)

for some Ci ∈ N (Pi), which means Ci ∈ span(X,Y).
Now, if all Ci-s are nonzero, then the subspace
span(X,Y) nontrivially intersects all the subspaces
N (Pi), i = 1, . . . ,m, violating (T1). Hence, for some
index k we must have Ck = 0. By (5), therefore, we
have Y = βkX, that is Y is equal to X up to scale. As
Y is nonzero, βk cannot be zero.

Notice that for the classic case of projections P3 →
P2, (T1) simply means that the camera centres N (Pi)
and the projective point span(X) ∈ P3 are collinear.
For general dimensional projections, however, it is not
trivial to show that (T1) is generically true. A proof
of this is provided in the Supplementary Material.

2.4. Valid profiles and the Grassmann tensor

Consider a set of projection matrices P1, P2, . . . , Pm,
with Pi ∈ Rsi×r, such that

∑m
i=1(si − 1) ≥ r. A valid

profile [3] is defined as an m-tuple of nonnegative3 in-
tegers α = (α1, α2, . . . , αm) such that 0 ≤ αi ≤ si−1
and

∑
αi = r. Clearly, there might exist different valid

profiles for a setup {Pi}. One can choose r×r subma-
trices of P = stack(P1, P2, . . . , Pm) according to a profile
α, by choosing αi rows from each Pi. Notice that due
to the property αi ≤ si−1, never the whole rows of any
Pi is chosen for building the submatrix.

Consider the set of m index sets I1, I2, . . . , Im, such
that each Ii contains the indices of αi rows of Pi. Each
way of choosing I1, I2, . . . , Im gives a square submatrix
of P = stack(P1, . . . , Pm) where the rows of each Pi are
chosen in order. The determinant of this submatrix is
multiplied by a corresponding sign4 to form an entry of

2Two linear subspaces nontrivially intersect if their intersec-
tion has dimension one or more.

3Notice that, the definition of a valid profile here slightly dif-
fers from [3] which needs αi ≥ 1. We choose this new definition
for convenience, as it does not impose the restriction m ≤ r on
the number of views.

4The sign is defined by
∏m

i=1 sign(Ii) where sign(Ii) is +1 or
−1 depending on whether the sequence (sort(Ii) sort(Īi)) is an
even or odd permutation for Īi = {1, . . . , si} \ Ii (see [3]).
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the Grassmann coordinate of P = stack(P1, P2, . . . , Pm),
shown here by T I1,I2,...,Imα . Such entries for different
choices of the Ii-s can be arranged in a multidimen-
sional array Tα called the Grassmann tensor corre-
sponding to α. The dimension of Tα is equal to the
number of nonzero entries of α = (α1, α2, . . . , αm),
as Tα does not depend on those matrices Pi with
αi = 0. To show the dependence of the Grassmann
tensor on projection matrices Pi, we sometimes use
the mapping Gα which takes a set of projection ma-
trices to the corresponding Grassmann tensor, that is
Tα = Gα(P1, P2, . . . , Pm). Notice that Gα itself is not
a tensor. Obviously, Gα(P1, . . . , Pm) is nonzero if and
only if P has a non-singular submatrix chosen according
to α.

Hartley and Schaffalitzky [3] show that if a point
X is projected through P1, P2, . . . , Pm into the image
points x1,x2, . . . ,xn, according to λixi = PiX, then
for any set of full-column-rank matrices U1, U2, . . . , Um
such that Ui ∈ Rsi×(si−αi) and xi ∈ Ui = C(Ui), the
following holds∑

I1,...,Im

T I1,I2,...,Imα

m∏
i=1

det(UĪii ) = 0, (6)

where UĪii is the square submatrix made by choosing
rows of Ui according to Īi, the complement of Ii. Notice

that det(UĪii ) for different values of Īi form the Grass-
mann coordinates of the subspace Ui = C(Ui). The
main theorem of [3] states that the projection matrices
Pi can be uniquely constructed from the Grassmann
tensor, up to projectivity:

Theorem 1 ([3]). Consider a set of m generic projec-
tion matrices P1, P2, . . . , Pm, with Pi ∈ Rsi×r, such that
m ≤ r ≤

∑
i si−m, and a valid profile (α1, α2, . . . , αm)

for which αi ≥ 1 for all i. Then if at least one si is
greater than 2, the matrices Pi are determined up to a
projective ambiguity from the set of minors of P chosen
with αi rows from each Pi. If si = 2 for all i, there are
two equivalence classes of solutions.

The constructive proof given by [3] gives a proce-
dure to construct the projection matrices Pi from the
Grassmann tensor. From each set of image point corre-
spondences x1j ,x2j , . . . ,xmj different sets of subspaces
U1, U2, . . . , Um can be passed such that xij ∈ Ui. Each
choice of subspaces U1, . . . , Um gives a linear equation
(6) on the elements of the Grassmann tensor. The
Grassmann tensor can be obtained as the null vector of
the matrix of coefficients of the resulting set of linear
equations5.

5In Sect. 3.1 we prove the Grassmann tensor is unique, mean-
ing that the matrix of coefficients of these linear equations has a
1D null space.

Lemma 3. Consider a set of projection matrices
P1, . . . , Pm with Pi ∈ Rsi×r and Pi 6= 0 for all
i. Assume that there exists a valid profile α =
(α1, α2, . . . , αm) with αk = 0 such that Gα(P1, . . . , Pm)
is nonzero. Then there exists a valid profile α′ =
(α′1, α

′
2, . . . , α

′
m) with α′k > 0 such that Gα′(P1, . . . , Pm)

is nonzero.

The lemma is proved by demonstrating that one row
of a full-rank submatrix chosen according to α can
be replaced with one nonzero row of Pk such that the
resulting submatrix remains full-rank. The full proof
comes in the Supplementary Material.

3. Projective Reconstruction

Here, we state one version of the projective recon-
struction theorem, proving the projective equivalence
of two configurations ({Pi}, {Xj}) and ({P̂i}, {X̂j})
projecting into the same image points, given condi-
tions on ({P̂i}, {X̂j}). In the next section, based on
this theorem, we present an alternative theorem with
conditions on the projective depths λ̂ij .

Theorem 2 (Projective Reconstruction). Consider a
configuration of m projection matrices and n points
({Pi}, {Xj}) where the matrices Pi ∈ Rsi×r are generic,∑m
i=1(si − 1) ≥ r, and si ≥ 3 for all views6, and the

points Xj ∈ Rr are sufficiently many and in general

position. Given a second configuration ({P̂i}, {X̂j})
that satisfies

P̂iX̂j = λ̂ijPiXj (7)

for some scalars {λ̂ij}, if

(C1) X̂j 6= 0 for all j, and

(C2) P̂i 6= 0 for all i, and

(C3) there exists a non-singular r×r submatrix Q̂

of P̂ = stack(P̂1, P̂2, . . . , P̂m) containing strictly
fewer than si rows from each Pi. (equivalently
Gα(P̂1, . . . , P̂m) 6= 0 for some valid profile α),

then the two configurations ({Pi}, {Xj}) and

({P̂i}, {X̂j}) are projectively equivalent.

It is important to observe the theorem does not
assume a priori that the projective depths λ̂ij are
nonzero. At a first glance, this theorem might seem to
be of no use, especially because condition (C3) looks
hard to verify for a given setup {P̂i}. But, this theo-
rem is important as it forms the basis of our theory,

6We could have assumed the milder condition of si≥3 for at
least one i. Our assumption avoids unnecessary complications.
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by giving the minimal required conditions on the setup
({P̂i}, {X̂j}), from which simpler necessary conditions
can be obtained.

Overview of the proof of Theorem 2 is as follows.
Given the profile α = (α1, . . . , αm) from condition
(C3),

1. for the special case of αi ≥ 1 for all i, we prove
that the Grassmann tensors Gα(P1, . . . , Pm) and
Gα(P̂1, . . . , P̂m) are equal up to a scaling factor,
(Sect. 3.1).

2. Using the theory of Hartley and Schaffalitzky [3],

we show that ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are
projectively equivalent for the special case of αi ≥
1 for all i, (Sect. 3.2).

3. We prove the theorem for the general case where
some of αi-s might be zero, and hence the number
of views can be arbitrarily large, (Sect. 3.3).

3.1. The uniqueness of the Grassmann tensor

The main purpose of this subsection is to show that
if X̂j 6= 0 for all j, the relations P̂iX̂j = λ̂ijPiXj imply
that the Grassmann tensor Gα(P̂1, . . . , P̂m) is equal to
Gα(P1, . . . , Pm) up to a scaling factor. This implies that
the Grassmann tensor is unique up to scale given a set
of image points xij obtained from λijxij = PiXj .

Theorem 3. Consider a setup ({Pi}, {Xj}) of m
generic projection matrices and n points, in general po-
sition and sufficiently many, and a valid profile α =
(α1, α2, . . . , αm) such that αi ≥ 1 for all i. Now, for

any other configuration ({P̂i}, {X̂j}) with X̂j 6= 0 for
all j, the set of relations

P̂iX̂j = λ̂ijPiXj (8)

implies Gα(P̂1, . . . , P̂m) = β Gα(P1, . . . , Pm) for some
scalar β.

Due to lack of space, here we give the idea of the
proof and present a formal proof in the Supplementary
Material.

We consider two submatrices Q and Q′ of P =
stack(P1, . . . , Pm) chosen according to the valid pro-
file α = (α1, . . . , αm), such that all rows of Q and
Q′ are equal except for the l-th rows qTl and q′Tl ,
which are chosen from different rows of Pk. We also
represent by Q̂ and Q̂′ the corresponding submatri-
ces of P̂ = stack(P̂1, . . . , P̂m). Then we show that if
det(Q) 6= 0, the equations (8) imply

det(Q̂′) =
det(Q′)

det(Q)
det(Q̂). (9)

The rest of the proof is as follows: By starting with a
submatrix Q of P according to α, and iteratively up-
dating Q by changing one row at a time in the way
described above, we can finally traverse all possible
submatrices chosen according to α. Due to generic-
ity we assume that all submatrices of P chosen ac-
cording to α are non-singular7. Therefore, (9) im-
plies that during the traversal procedure the ratio β =
det(Q̂)/ det(Q) stays the same. This means that each el-
ement of Gα(P̂1, . . . , P̂m) is β times the corresponding
element of Gα(P1, . . . , Pm), implying Gα(P̂1, . . . , P̂m) =
β Gα(P1, . . . , Pm).

The relation (9) is obtained in two steps. The first
step is to write equations (8) in matrix form as

M(Xj)

(
λ̂j
X̂j

)
= 0, j = 1, 2, . . . , n, (10)

where λ̂j = [λ̂1j , . . . , λ̂mj ]
T , and

M(X) =


P1X P̂1

P2X P̂2

. . .
...

PmX P̂m

 . (11)

The matrix M(X) is (
∑
i si)×(m+r), and therefore a

tall matrix. Due to the assumption X̂j 6= 0 in Theo-
rem 3, we conclude that M(Xj) is rank deficient for
all Xj . Then, considering the fact that M(X) is rank
deficient for sufficiently many points Xj in general po-
sition, we show that M(X) is rank deficient for all
X ∈ Rr. Therefore, for all (m+ r)×(m+ r) submatri-
ces M′(X) of M(X) we have det(M′(X)) = 0.

The second step is to choose a proper value for X
and a proper submatrix M′(X) of M(X), such that
(9) follows from det(M′(X)) = 0. This proper value
for X is Q−1el, where el is the l-th standard basis and
l is the row which is different in Q and Q′, as defined
above. The submatrix M′(X), is made by choosing
the corresponding rows of P = stack(P1, . . . , Pm) con-
tributing to making Q, choosing the corresponding row
q′Tl of Pk contributing to making Q′, and choosing one
extra row form each Pi for i 6= k. The details are given
in the Supplementary Material.

3.2. Proof of Theorem 2 for the special case of αi ≥ 1

Lemma 4. Theorem 2 is true for the special case of
αi ≥ 1 for all i.

The steps of the proof are: Given α from condition
(C3) of Theorem 2, Theorem 3 tells Gα(P̂1, . . . , P̂m) =

7though the proof is possible under a slightly milder assump-
tion,
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β Gα(P1, . . . , Pm). From (C3) it follows that β 6= 0.
Thus, Theorem 1 (proved in [3]), suggests that {Pi} and
{P̂i} are projectively equivalent. Then, using the Tri-
angulation Lemma 2, we prove that ({Pi}, {Xj}) and

({P̂i}, {X̂j}) are projectively equivalent. The formal
proof is given in the Supplementary Material.

3.3. The general case

To prove Theorem 2 in the general case, where we
might have αi = 0 for some elements of the valid
profile α = (α1, . . . , αm), given in condition (C3) of
the theorem, we proceed as follows: By (C3) we have
Gα(P̂1, . . . , P̂m) 6= 0, by Lemma 3, for each view k,

there exists a valid profile α(k) for which α
(k)
k ≥ 1 and

the Grassmann tensor Gα(k)(P̂1, . . . , P̂m) is nonzero.

Define Ik = {i |α(k)
i ≥ 1}. Lemma (4) proves for

each Ik that the configurations ({Pi}Ik , {Xj}) and

({P̂i}Ik , {X̂j}) are projectively equivalent. As ∪kIk =
{1, . . . ,m}, using Lemma 1 we show the projective
equivalence holds for the whole set of views, that is
({Pi}, {Xj}) and ({P̂i}, {X̂j}). See the Supplementary
Material for the complete proof.

4. Restricting projective depths

This section provides a second version of Theorem 2
in which it is assumed that λ̂ij-s are all nonzero, instead

of putting restrictions on ({P̂i}, {X̂j}).

Theorem 4 (Projective Reconstruction). Consider a
configuration of m projection matrices and n points
({Pi}, {Xj}) where the matrices Pi ∈ Rsi×r are generic
and as many such that

∑m
i=1(si − 1) ≥ r, and si ≥ 3

for all views, and the points Xj ∈ Rr are sufficiently
many and in general position. Now, for any second
configuration ({P̂i}, {X̂j}) satisfying

P̂iX̂j = λ̂ijPiXj . (12)

for some nonzero scalars λ̂ij 6= 0, the configuration

({P̂i}, {X̂j}) is projectively equivalent to ({Pi}, {Xj}).

The condition λ̂ij 6= 0 is not tight, and used here to
avoid complexity. In Sect. 5 we will discuss that the
theorem is provable under milder restrictions. How-
ever, by proving projective equivalence, it eventually
follows that all λ̂ij-s are nonzero. We prove the theo-
rem after giving required lemmas.

Lemma 5. Consider m matrices P̂1, P̂2, . . . , P̂m with
P̂i ∈ Rsi×r, for which a valid profile can be defined.
Also, assume that P̂ = stack(P̂1, . . . , P̂m) has full col-
umn rank. If P̂ has no non-singular r×r submatrix
chosen by strictly fewer than si rows form each P̂i,

then there exists a nonempty subset of views I 6= ∅
with

∑
i∈I si ≤ r, such that P̂Ī = stack({P̂k}k/∈I)

has rank r′ = r −
∑
i∈I si. Further, the row space

of PĪ is spanned by the rows of an r′×r submatrix
Q̂Ī = stack({Q̂k}k/∈I) of P̂Ī , where each Q̂k is created
by choosing strictly less than si rows from P̂k.

The proof is given in the Supplementary Material.

Lemma 6. Under the conditions of Theorem 4, if the
matrix P̂ = stack(P̂1, P̂2, . . . , P̂m) has full column rank,
it has a non-singular r×r submatrix chosen according
to some valid profile α = (α1, . . . , αm).

Proof. To get a contradiction, assume that P̂ does not
have any full-rank submatrix with any valid profile.
Then by Lemma 5, there exists a nonempty index set
I 6= ∅ with

∑
i∈I si ≤ r, and P̂Ī = stack({P̂k}k/∈I) has a

row space of dimension r′ = r −
∑
i∈I si < r, spanned

by the rows of an r′×r matrix Q̂Ī = stack({Q̂k}k/∈I),
where each Q̂k consists of strictly less than sk rows
of P̂k. Notice that some Q̂k-s might have zero rows.
By relabeling the views if necessary, we assume that
P̂Ī = stack(P̂1, . . . , P̂l) and Q̂Ī = stack(Q̂1, . . . , Q̂l) (thus
I = {l+1, . . . ,m}). As rows of Q̂Ī span the row space

of P̂Ī , we have P̂Ī = A Q̂Ī for some (
∑l
i=1 si)×r′ matrix

A. From (12), we have P̂iX̂j = λ̂ijPiXj and, as a re-

sult, Q̂iX̂j = λ̂ijQiXj , where Qi is the submatrix of Pi
corresponding to Q̂i. This gives

P̂Ī X̂j = diag(P1Xj , P2Xj , . . . , PlXj) λ̂j (13)

Q̂Ī X̂j = diag(Q1Xj , Q2Xj , . . . , QlXj) λ̂j (14)

where diag(.) makes a block diagonal matrix out of its

arguments, and λ̂j = [λ̂1j , . . . , λ̂lj ]
T . From P̂Ī = AQ̂Ī ,

then we have M(Xj) λ̂j = 0, where

M(X) = diag(P1X, . . . , PlX)− A diag(Q1X, . . . , QlX).

Notice that,M(X) is (
∑l
i=1 si)×l, and thus a tall ma-

trix. As λ̂j 6= 0 (since λ̂ij 6= 0 for all i, j),M(Xj)λ̂j =
0 implies thatM(Xj) is rank deficient. Since,M(X) is
rank-deficient for sufficiently many points Xj in general
position, with the same argument as given in the proof
of Theorem 3 (See the Supplementary Material), we
conclude that M(X) is rank-deficient for all X ∈ Rr.
Notice that Q̂Ī is r′×r with r′ < r. As Pi-s are generic,
we can take a nonzero vector Y in the null space of
Q̂Ī such that no matrix P̂i for i = 1, . . . , l has Y in
its null space8. In this case, we have QiY = 0 for all
i, implying M(Y) = diag(P1Y, . . . , PlY). Now, from

8Y must be chosen from N (QĪ) \∪li=1(N (QĪ)∩N (Pi)) which

is nonempty (in fact open and dense in N (QĪ)) for generic Pi-s.
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Y /∈ N (P̂i), we have PiY 6= 0 for i = 1, . . . , l. This
implies that M(Y) = diag(P1Y, . . . , PlY) has full col-
umn rank, contradicting the fact that M(X) is rank
deficient for all M(X).

Proof of Theorem 4. Using Theorem 2 we just need to
prove that the condition λ̂ij 6= 0 imply conditions (C1-

C3) of Theorem 2. Assume that λ̂ij 6= 0 for some i
and j, then from the genericity of Pi and Xj we have

P̂iX̂j = λ̂ijPiXj 6= 0, implying P̂i 6= 0 and X̂j 6= 0.

This means that λ̂ij 6= 0 for all i and j imply (C1)

and (C2). Now, it is left to show that λ̂ij 6= 0 imply
(C3), that is P̂ has a full-rank r×r submatrix chosen
according to some valid profile α. This is proved in
Lemma 6 for when P̂ = stack(P̂1, P̂2, . . . , P̂m) has full
column rank. We complete the proof by showing that
P̂ always has full column rank.

Assume, P̂ is rank deficient. Consider the matrix
X̂ = [X̂1, , . . . , X̂m]. The matrix P̂X̂ can always be fac-
torized as P̂X̂ = P̂′X̂′, with P̂′ and X̂′ respectively of the
same dimensions as P̂ and X̂, such that P̂′ has full col-
umn rank. By defining the same block structure as P̂

and X̂ for P̂′ and X̂′, that is P̂ = stack(P̂′1, . . . , P̂
′
m) and

X̂′ = [X̂′1, . . . , X̂
′
m], we observe that P̂′iX̂

′
j = P̂iX̂j =

λ̂ijPiXj . As P̂′ has full column rank, from the dis-
cussion of the first half of the proof, we can say that
({P̂′i}, {X̂′j}) is projectively equivalent to ({Pi}, {Xj}).
This implies that X̂′ = [X̂′1, . . . , X̂

′
m] has full row

rank. As P̂′ and X̂′ both have maximum rank r, their
P̂′X̂′ = P̂X̂ has rank r, requiring P̂ to have full column
rank, a contradiction.

5. Wrong solutions to projective factor-
ization

Let us write equations λ̂ijxij = P̂iX̂j in matrix form

Λ̂� [xij ] = P̂ X̂, (15)

where Λ̂ � [xij ] = [λ̂ijxij ], P̂ = stack(P̂1, . . . , P̂m) and

X̂ = [X̂1, . . . , X̂n]. The factorization-based algorithms
seek to find Λ̂ such that Λ̂�[xij ] can be factorized as the
product of a (

∑
i si)×r matrix P̂ by an r×n matrix X̂.

If xij-s are obtained from a set of projection matrices Pi
and points Xj , according to xij = PiXj/λij , our the-
ory says that any solution (Λ̂, P̂, X̂) to (15), is equivalent
to the true solution (Λ, P, X), if (Λ̂, P̂, X̂) satisfies some
special restrictions, such as conditions (C1-C3) on P̂

and X̂ in Theorem 2, or Λ̂ having no zero element in
Theorem 4. It is worth to see what degenerate (projec-
tively nonequivalent) forms a solution (Λ̂, P̂, X̂) to (15)
can get when such restrictions are not completely im-
posed. This is important in the factorization-based

methods, in which sometimes such restrictions cannot
be completely implemented.

The reader can check that Theorem 4 is provable
under weaker assumptions than λ̂ij 6= 0, as follows

(D1) The matrix Λ̂ = [λ̂ij ] has no zero rows,

(D2) The matrix Λ̂ = [λ̂ij ] has no zero columns,

(D3) For every subset I of views with
∑
i∈I si < r, the

matrix Λ̂Ī has sufficiently many nonzero columns,
where Ī is the complement of I and Λ̂Ī is the ma-
trix of Λ̂ created by selecting rows according to Ī.

Notice that (D1) and (D2), respectively guarantee (C1)
and (C2) in Theorem 2. The condition (D3), guaran-

tees that λ̂j used in the proof of Lemma 6, is nonzero
for sufficiently many j-s. Therefore, (D3) is used to
guarantee (C3) in Theorem 2, that is P̂ has a nonzero
minor chosen according to some valid profile.

It is easy to see how violating (D1) and (D2) can
lead to a false solution to (15) (for example set P̂k = 0

and λ̂kj = 0 for all j). In what comes next, we assume
that (D1) and (D2) hold, and look for nontrivial false
solutions to (15). From our discussion we can conclude
that if Λ̂ has no zero rows and no zero columns, false
solutions to (15) are those in which all r×r submatrices
of P̂ chosen with fewer than si rows from each P̂i are
singular. In this case, if P̂X̂ is factorized such that P̂ has
full column rank, according to Lemma 5, there exists
a nonempty set of views I with

∑
i∈I si ≤ r, according

to which the matrix P̂ can be split into two submatrices
PI and PĪ , such that PI is of rank r′ = r−

∑
i∈I si. We

give an example showing how such a case can happen.
For a setup ({Pi}, {Xj}), partition the views into

two subsets I and Ī, such that
∑
i∈I si ≤ r. Split P

into two submatrices PI = stack({Pi}i∈I) and PĪ =
stack({Pi}i∈Ī). By possibly relabeling the views, we

assume that P = stack(PI , PĪ). Notice that PI has∑
i∈I si rows, and therefore, at least an r′ = r−

∑
i∈I si

dimensional null space. Consider the r×r′ full-column-
rank matrix N whose columns are in the null space of PI .
Also, let R be the orthogonal projection matrix into the
row space of PI . Divide the matrix X = [X1, . . . ,Xm]
into two parts X = [X1, X2] where X1 = [X1, . . . ,Xr′ ]
and X2 = [Xr′+1, . . . ,Xm]. Define the corresponding
submatrices of P̂ and X̂ as

P̂I = PI , P̂Ī = PĪ X1 N
T , (16)

X̂1 = R X1 + N, X̂2 = R X2. (17)

One can easily check that

P̂X̂=

[
P̂I

P̂Ī

]
[X̂1, X̂2] =

[
PIX1 PIX2

PĪX1 0

]
= Λ̂� (PX) (18)
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where Λ̂ has a block structure of the form

Λ̂ =

[
Λ̂I

Λ̂Ī

]
=

[
1 1

1 0

]
(19)

From (16) it is clear that the row space of P̂Ī is
spanned by columns of N, which makes an r′ dimen-
sional space9 (compare Lemma 5). One can check that
P̂ = stack(P̂I , P̂Ī) has no non-singular submatrix chosen
by less than si rows from each P̂i. Also, notice that Λ̂Ī ,
the lower block of Λ̂, has only r′ nonzero columns, no
matter how large the number of columns n is. This is
how (D3) is violated.

Using the above style for finding the wrong solu-
tions, Λ̂Ī can have at most r′ nonzero columns. Un-
fortunately, unlike the case of P3 → P2 projections,
this is not always the case. In other words, sufficiently
many in the condition (D3) to rule out false solutions
does not mean more than r′ = r −

∑
i∈I si. Instead,

the limit for the number of nonzero columns allowable
in a wrong solution is as many such that the rank of
Λ̂Ī � (PĪX) is not more than r′. This is necessary for
having a wrong solution as Λ̂Ī � (PĪX) = P̂Ī X̂, and P̂Ī

cannot have a rank of more than r′ according to Lemma
5. One can also show that this is a sufficient condition
for having a wrong solution. For the classic case of
P3 → P2 projections, the index set I can only have
one member and r′ = r −

∑
i∈I si = 4 − 3 = 1. The

condition Rank(Λ̂Ī � (PĪX)) ≤ r′ = 1, implies that only
one column of Λ̂Ī can be nonzero, causing Λ̂ to have a
cross-shaped structure. Therefore, the theory given in
[7] follows as a special case of ours.

6. Conclusion

This paper investigates projective reconstruction for
arbitrary dimensional projections. We obtain the fol-
lowing results for a generic setup:

• The Grassmann tensor obtained from the image
points xij is unique (up to a scaling factor).

• Any solution to the set of equations λ̂ijxij =

P̂iX̂j is projectively equivalent to the true setup,

if the P̂i-s and X̂j-s are nonzero and P̂ =
stack(P̂1, . . . , P̂m) has a non-singular r×r subma-
trix created by choosing strictly fewer than si rows
from each P̂i ∈ Rsi×r.

• Any solution to the set of equations λ̂ijxij = P̂iX̂j

is projectively equivalent to the true setup if λ̂ij 6=
0 for all i, j.

9In our example, the row space of P̂Ī is the null space of P̂I .
This is not necessary for a wrong solution, and is chosen here to
simplify the example.

• False solutions to the projective factorization
problem Λ̂ � [xij ] = P̂ X̂ in the general case can
be much more complex than in the case of projec-
tions P3 → P2.

A possible extension to this work is to consider the
case of incomplete data, where some of the image points
xij are missing. It would be also useful to compile
a simplified list of all the required generic properties
needed for the proof of projective reconstruction. This
is because, in almost all applications the projection ma-
trices and points have a special structure, meaning they
are members of a nongeneric set. It is now a nontriv-
ial question whether the restriction of the genericity
conditions to this nongeneric set is relatively generic.
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