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Abstract— We generalize the concept of geodesic convexity in
the Special Orthogonal Group SO(3) and apply the generaliza-
tion to the discussion of rotation averaging. As a result we are
able to derive strong and new theorems about the location of
global minima of the rotation averaging cost function. A brief
discussion of the relationship of our results to previous results
from the literature will be provided, as well as an application
to camera rig calibration in computer vision.

I. INTRODUCTION

Rotation averaging refers to a particular optimisation prob-
lem on the Special Orthogonal Group SO(3) in real three
dimensional space that generalises the notion of mean in
vector spaces. Given a (finite) set of rotations, the goal is to
find a rotation that minimizes the sum of distances or sum of
squared distances to the given rotations. Such a minimizing
rotation is called a mean or averaged rotation.

There are several natural and non-equivalent choices for
distances on SO(3), including the geodesic distance with
respect to the standard biinvariant Riemannian metric, the
chordal distance in the embedding 9-dimensional matrix
space and the quaternion distance, leading to a large variety
of means with different sets of properties.

We focus on issues such as uniqueness and convexity, in
particular for the mean with respect to the squared geodesic
distance. Among the previous work in this area are contri-
butions by Karcher [7], Pennec [12], Corcuera and Kendall
[1], Gramkow [5], Moakher [11], Manton [10], Krakowski
et al. [8], Sarlette and Sepulchre [13] and Fletcher et al. [4].

Our main contribution is a generalisation of the concept
of geodesic convexity which we call weak convexity. The
generalisation works by giving up one of the usual axioms
of geodesic convexity, namely that a connecting geodesic
arc necessarily has minimal length. It turns out that this new
concept allows us to link the Riemannian and convex geome-
tries of SO(3) very closely to those of three dimensional real
projective space which in turn leads to nice characterizations
of the convexity properties of the cost functions involved in
rotation averaging. As a result, we are able to prove strong
and new theorems about the location of global minima of
the averaging cost functions. Note that our concept of weak
convexity is different from Corcuera and Kendall’s concept
of generalized convexity where the sacrificed axiom is that
of connecting geodesic arcs being unique [1].

We briefly touch on an application of this theory to camera
rig calibration, a problem in computer vision [2].
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II. DISTANCE MEASURES FOR ROTATIONS
In this paper we mainly use the following standard matrix

representation of the Special Orthogonal group SO(3) of
rotations in real three dimensional space.

SOB)={ReR¥>3|RTR=1, det R=1}

Any rotation in SO(3) can be expressed as a rotation through
a given angle 6 about some axis. We define the angular
distance between two rotations .S and R to be the angle of
the rotation SRT. Thus,

dL(S,R) = (SRT)HFro

=
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where the norm is the Frobenius norm. The logarithm can
be computed using the formula
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and § = y/|ly|l2 is the rotation axis of R. Note that by
this definition, the angular distance between two rotations
is at most equal to 7 and is in fact equal to the geodesic
distance under the standard biinvariant Riemannian metric
on SO(3). The logarithm map above is an inverse of the
Riemannnian exponential map given by the matrix expo-
nential exp: s0(3) — SO(3) in this representation where
50(3) is the set of skew-symmetric matrices, the Lie algebra
associated with the Lie group SO(3). The Lie bracket is
given by the matrix commutator [A, B] = AB — BA.

The chordal distance between two rotations S and R is
the Euclidean distance between them in the embedding space
R3*3. Thus,

denora(S; R) = ||S — R||ro = 2V/2sin(0/2)

where 0 = d (S, R). The relationship between the angular
distance and the chordal distance is most easily established
using Rodrigues’ formula.

Another distance measure derives from the Euclidean
distance between two quaternions in the embedding space
R*. Any rotation R may be represented by a unit quaternion
r as follows. If ¢ is the axis of the rotation and 8 is the angle
of the rotation about that axis, then r is defined as

r = (cos(0/2),§sin(0/2)).



The converse mapping from the set of unit quaternions () to
SO(3) given by

(cos(0/2),ysin(0/2)) — exp vex(0y)

is a Lie group homomorphism since the quaternion mul-
tiplication corresponds to matrix multiplication under this
mapping. Both r and —r represent the same rotation, that is,
the homomorphism from @ to SO(3) is a 2-to-1 mapping.
Topologically, the unit quaternions form a unit sphere S3
in R3, and hence the above identifies Q ~ S3 as a two-fold
covering space (or double cover) of SO(3). If we restrict our-
selves to rotations through angles less than 7 then these are
in 1-to-1 correspondence to points of the upper quaternion
hemisphere with the “north pole” (1,0, 0, 0) corresponding to
the identity rotation (rotation through an angle of 0). In this
picture, the “equator” of the quaternion sphere corresponds
exactly to the rotations through an angle of m with opposite
points on the equator representing the same rotation. We may
think to define a quaternion distance dquat(S, R) between
two rotations to be dquat(S,R) = [|s — r||2, where s and
r are quaternion representations of S and R, respectively.
Unfortunately, this simple equation will not do, since both
r and —r represent the same rotation, and it is not clear
which one to choose (and analogous for s and —s, of course).
However, this is resolved by defining

dquat (S, R) = min{||s — 7|2, ||s + r||2} = 2sin(6/4)

where once again 6 = d (S, R). This follows from a simple
geometric argument on Q ~ S°.

Plots of the three different distance functions discussed so
far, plotted as functions of the angular distance are shown in
Figure 1. While the distances themselves are not equivalent,
they all yield the same path metric on SO(3) in that the
shortest curves connecting two points on SO(3) are the same
under all three distance measures, namely the geodesics with
respect to the standard biinvariant Riemannian metric. This
follows from an infinitesimal comparison argument. These
shortest paths can hence be pictured as great circle arcs on
the quaternion unit hemisphere.

Starting from the representation of SO(3) as the quater-
nion sphere visualized as the unit sphere S2 embedded in
R*, the gnomonic projection to R? is the projection from
the centre of the sphere, (0,0,0,0), onto a tangent (3-
dimensional) hyper-plane. For simplicity, we may consider
this to be the tangent hyper-plane passing through the point
(1,0,0,0) on S3, representing the identity rotation. Clearly,
this is a 2-to-1 projection of S3, since opposite points on
the sphere project to the same point. Since a great circle
on S3 is the intersection of S with a (2-dimensional) plane
passing through the centre point (0, 0,0, 0), namely the plane
spanned by the radius vector of any point on the great circle
and a tangent vector along the great circle at that point,
we easily see that the projection of a great circle is the
intersection between this plane and the projection hyper-
plane. This shows that the projection of a great circle on S3
is a straight line in the projection hyper-plane. This type of
map is sometimes also called a Beltrami map in the literature.
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Fig. 1. Distance metrics. On the left (top to bottom) are angular,
quaternion and chordal distances plotted as a function of rotation angle. On
the right the squared distances. Plots are shown for rotation angles from
0 to w. The plots of the chordal and quaternion metrics are scaled to be
comparable with the angle metric.

In S3, the “equator” is the intersection of the “equatorial

Fig. 2.

Gnomonic projection of a sphere.

hyper-plane” consisting of points (0, z, y, z), with the sphere.
Projecting from the origin, we see that the equator maps
to the “plane at infinity” in R3. More exactly, we see that
the gnomonic projection maps S% to R3 U 7., which is a
3-dimensional projective space, topologically homeomorphic
to SO(3). Geodesics in SO(3) correspond to straight-lines in
R3 along with straight lines in the plane at infinity. We will
see later that this representation of SO is particularly useful
when it comes to concepts like geodesics and convexity. The
above described the gnomonic projection localized at the
identity rotation, since the tangent hyper-plane was chosen to
pass through the point in the quaternion sphere representing



the identity rotation. One may equally well construct a
gnomonic projection, with similar properties, localized about
any other rotation (point on the quaternion sphere).

III. WEAK CONVEXITY

The general definition of convexity of a function in R"
is as follows. Given a convex region U C R™ a function f
defined on U is convex if for any two points z¢ and z; in
U, and any point y lying on the line segment bounded by
xo and x1, given by y = (1 — AN)zo + Azp with 0 < A < 1,
we have

fly) < (=) f (o) + Af (1)

In adapting this definition to SO(3), or indeed to any
Riemannian manifold, the role of a line is naturally taken
by a geodesic.

As discussed in the last section the geodesics on SO(3)
are doubly-covered by great circles on S3 and there is a
uniform length scaling by a factor of 2 between the geodesics
on SO(3) and those on S3. In particular, we see that the
geodesics on SO(3) are closed curves with a total length of
27. There are exactly two geodesic segments between any
two points in SO(3) (without exception). Given two points
(rotations) Rg and R; in SO(3), we call the shorter of the
two geodesic segments from Ry to R; the short geodesic
segment between these points. If Ry and R; differ by a
rotation through 7, then which of the two geodesic segments
is the shorter one is ambiguous and hence there is no short
geodesic segment between such points. We can now define
two slightly different notions of geodesic convexity of sets
in SO(3).

Definition 1: A non-empty region U C SO(3) is called
weakly convex if for any two points Ry and R; in U exactly
one geodesic segment from Ry to R; lies entirely inside U.
A weakly convex region U C SO(3) is called convex if the
geodesic segment from Ry to Ry in U is always the short
geodesic segment between these points.

A closed ball of radius r > 0 in SO(3) is a set

B(R7 T) - {S € 80(3) ‘ dl(Sv R) < ’I‘}

for some R in SO(3). An open ball of radius » > 0 in
SO(3), denoted B(R,r), is the interior of the closed ball,
consisting of rotations at distance strictly less than r from R.
We emphasize for clarity that the balls B(R,r) or B(R, )
are defined in terms of the angular distance on SO(3).

Lemma 1: A closed ball in SO(3) is convex if and only if
its radius is less than 7/2. Similarly, an open ball in SO(3)
is convex if and only if its radius is less than or equal to
m/2. A closed ball in SO(3) is weakly convex if and only
if its radius is less than 7, and an open ball on SO(3) is
weakly convex if and only if its radius is less than or equal
to .

We will not include any proofs of results in this short
paper. Proofs of all the statements made will be reported
elsewhere and can be obtained from the authors by request.
Convex and weakly convex subsets of SO(3) can not be
arbitrarily “large”, in the following precise sense.

Theorem 1 (Size of convex sets): Any convex subset of
SO(3) is contained in a closed ball of radius 27/3. Any
weakly convex subset of SO(3) is contained in an open ball
of radius 7.

The proof of this theorem turns out to be surprisingly
difficult (particularly the second part). As a consequence
of this result we may picture any weakly convex subset of
SO(3) simply as a convex set in R? under a suitably chosen
gnomonic projection, namely the one mapping the boundary
of the containing ball of radius 7 to the plane at infinity.
This is because the gnomonic projection maps geodesics to
geodesics, and hence weakly convex sets to convex sets.

Some of the notions from classical convex geometry in R?
carry over to weakly convex or convex sets in SO(3) via this
mapping. It follows immediately that the closure of a convex
set in SO(3) is convex. This is not always true for weakly
convex sets. We can define the affine hull aff(C') of a weakly
convex set C' # () to be the preimage of the R3 based affine
hull under the gnomonic map completed by the missing
“points at infinity”, i.e. the points in SO(3) closing the
geodesics contained in this preimage. Equivalently, aff(C)
is the preimage of the projective closure of the R? based
affine hull under the gnomonic map. It is clear that this
“affine” hull is a compact submanifold of SO(3) of the same
dimension as the classical affine hull of the gnomonic picture
of C that consists entirely of whole, closed geodesics. It
is hence in particular independent of where the gnomonic
projection was centered. This means it is well defined as an
intrinsic geometric object in SO(3). In dimension 2, we will
refer to such an “affine” submanifold as a geodesic plane.
In dimension 0 it consists of a single point, in dimesion 1
of a single whole, closed geodesic and in dimension 3 it is
equal to SO(3) itself. As usual, the relative interior ri(C') of
C' is now the interior with respect to the topology of aff(C),
and in general the relative interior ri(C) is different from the
interior C, unless dim aff(C') = 3 whence aff(C) = SO(3).
Also, the relative boundary C' \ 1i(C) is in general different
from the boundary C'\ C.

Proposition 1: The intersection of two convex sets in
SO(3) is convex. This is not true of weakly convex sets
in general. However, the intersection of a weakly convex
set with a geodesic plane is weakly convex. Moreover, the
intersection of two weakly convex sets consists of at most
two weakly convex and pairwise disjoint components.

The previous proposition implies that there is no natural
concept of a (unique) “weakly convex hull” of a given
subset of SO(3). Hence some of the machinery of convex
analysis does not immediately generalize to the weakly
convex setting. However, convex functions can be defined
as in R"™, except that geodesics in SO(3) take the place of
straight lines joining two points in R"™.

Definition 2: Consider a function f : U — R defined
on a weakly convex subset U of SO(3). Let Ro, Ry € U
and let g : [0,1] — U be a geodesic path (constant speed
parametrization of a geodesic arc) in U, such that g(0) = Ry
and g(1) = R;. The function f is called convex, if for any



such Ry, R; and g, we have an inequality

flgN) < (T =N f(Ro) + Af(Ry)

for all A € [0, 1]. The function is called strictly convex if this
inequality is strict for all A € (0,1) whenever Ry # Rj.

Various properties of convex functions hold true, just as
with convex functions in R™.

Proposition 2: The sum of convex (or strictly convex)
functions defined on a weakly convex region U is convex
(respectively, strictly convex). A strictly convex function
defined on a weakly convex set has at most a single global
minimum; for convex functions, any local minimum is a
global minimum and the minima form a weakly convex set
on which the function is constant.

The proof is the same as for convex functions in R™. Con-
vexity of functions can be defined locally through computing
the second derivative of their restriction along geodesic paths
through a point.

Definition 3: A function f : SO(3) — R is locally convex
at a point Ry € SO if for any constant speed geodesic path
s:[—1,1] — SO(3), with s(0) = Ry the function fos(t) =
f(s(t)) has non-negative second derivative at ¢ = 0. It is
locally strictly convex at Ry if any such f o s(t) has positive
second derivative at t = 0.

The connection between local convexity and convexity is
as follows.

Proposition 3: If f : SO(3) — R is smooth and locally
convex (or strictly convex) at each point in a weakly convex
set U, except possibly at isolated global minima of f, then it
is convex (respectively, strictly convex) in U. If f : SO(3) —
R is smooth but not locally convex at some point then it is
not convex in any non-trivial ball around that point.

Next we investigate when the distance function d(S, R)
defined for two rotations is a convex function of S (for fixed
R).

Theorem 2 (Convexity of distances): Consider the func-
tion f(S) = d(S,R)P for a fixed rotation R, a diustance
d(-,+), and an exponent p. The function is convex, or strictly
convex, as a function of S in the following cases.

1) d(-,R) is convex on the set B(R, ).
2) dehora(-, R) is not convex on any non-trivial ball
around R.
3) dquas (-, R) is not convex on any non-trivial ball around
R.
4) dy(-,R)? is strictly convex on the set B(R, ).
5) denora (-, R)? is strictly convex on the set B(R,7/2)
and convex on the set B(R,7/2). )
6) dquat (-, R)? is strictly convex on the set B(R, 7).
This theorem is proved by calculating the eigenvalues
of the Riemannian Hessian of these distance functions.
Compare these results to the graphs in Figure 1.

IV. THE MAIN RESULTS

Given an exponent p > 1 and a set of n > 1 rotations
{Ry,...,R,} C SO(3) we define the LP-mean rotation with

respect to d as
n

,R,}) = argmin
RESO(3) ;

d? — mean({Ry, ... d(R;, R)P.
Since SO(3) is compact, a minimum will exist as long as
the distance function is continuous. In this problem, we
will be given a set of rotations I?;, and the task will be to
find the mean of these rotations, as defined previously. This
problem has been much studied in the literature, but there
are still open problems, some of which are resolved here. We
consider the L?-mean with respect to the angular distance
d . This mean is also known as the Karcher mean [7] or the
geometric mean [11].

Theorem 3: Given rotations R;, ¢ = 1,...,n, the cost
function C(R) = 1", d/(R;, R)? is strictly convex, except
on the union of sets

7 ={S € S0(3) | d(R;, 8) = 7}

in the following sense. These sets m; divide SO(3) into at
most (g) +n regions whose interior is weakly convex. C'(R)
is strictly convex on the interior of each of these regions and
is non-differentiable on the boundary, that is, on the union of
the sets 7;. The cost function C'(R) has at most one minimum
on each of the closed regions and hence there are at most
(g) + n minima.

This theorem indicates that SO(3) may be divided into
a large number of individual weakly convex regions, each
with its own local minimum. It may seem, therefore, that the
problem of finding the global minimum is quite challenging.
The following discussion shows that if the rotations R; are
not too widely separated, one of the weakly convex regions
may be quite large, and will contain the global minimum.

We consider the case where all the rotations R; lie inside
a closed ball of radius r < 7. Thus, let S be a rotation such
that d,(R;,S) < r < m. Now, let T be a rotation in the open
ball B(S,7—r). Then d(R;,T) < d(R;, 8)+d,(S,T) <
7+ ds(S,T) < m Hence B(S,m — r) is contained in
all the B(R;,7) and hence also in the component of their
intersection containing .S. Applying this reasoning to the case
where r < 7/2 and noting that closed balls are compact,
allows us to assert the following theorem.

Theorem 4: Let R; be rotations satisfying d,(R;,S) <
r < 7 for some rotation S and for all 7, then

C(R) = Zdz(Ri, R)?

is strictly convex on B(S,m — r), and hence has a single
isolated minimum on any closed ball contained in this set.

The most interesting case is where r < m/2, so all
rotations are contained in B(S,7/2). The theorem then
implies that the cost function is strictly convex and has a
single isolated minimum on B(S,7/2).! This is a useful
result, since it means that there will be a single (local)

! An alternative proof of the unique existence of this minimum (in a much
more general setting) can be found in [6, Theorem 3.7].



minimum of C(R) in this closed ball and that minimum
may be found by convex minimization techniques. However,
it is not clear that the minimum will be the global minimum
of C'(R) on SO(3). Nor is it clear whether the minimum
can lie on the boundary of the closed ball. We settle these
questions now with the following general theorem, our main
contribution. The proof uses the SO(3)-version of the law of
cosines.

Theorem 5 (Location of global minima): Let C be a con-
vex subset of SO(3) and let the rotations R;, i = 1,...,n,
n > 2 be contained in the closure of C. Let f be any function
strictly increasing on the interval [0,7]. Then any global
minimum Ry = argminpegos) 2o f(d2(Ri, R)) lies
in the relative interior of C.

Since d? is obviously a monotonic function of d/, we im-
mediately get the following strong existence and uniqueness
result for the global Karcher mean.

Corollary 1: Let R; be two or more rotations satisfying
ds(R;,S) < § < =w/2 for some rotation S and for all
i, then the unique global Ly-mean with respect to d, lies
in the open ball B(S,4) and moreover the cost function
C(R) = Y. ,d/(R;,R)? is strictly convex on the larger
ball B(S,n/2).

Note that means on manifolds can in general lie “far away”
from the point set being averaged, so the above corollary
places SO(3) into the category of “nice geometries”; see
Corcuera and Kendall [1] for a detailed discussion of this
issue, but note that the notion of convexity used in that paper
is subtly different from the two notions we have used in this
paper.

For the situation of Corollary 1, Manton [10] has provided
the following convergent algorithm where the inner loop of
the algorithm is computing the average in the tangent space
and then projecting back onto the manifold SO(3) via the
exponential map.

1: Set R := R;. Choose a tolerance ¢ > 0.
2: loop
33 Compute Y := 15" log (RTR;).

n

4:  if ||Y]| < ¢ then

5: return R

6: end if

7. Update R := Rexp(Y).
8: end loop

Algorithm 1: Computing the angular Lo-mean on SO(3)

In fact, this algorithm is shown to be an instance of
simple Riemannian gradient descent and it is shown that
an implementation with arbitrary numerical accuracy would
terminate only within a d -distance of 6! tan(5)e of the
mean [10, Theorem 5]. For a Newton-type algorithm to
compute this mean see [8].

The other distance measures can be discussed in a similar
fashion and partly new results can be achieved this way. They
will be reported elsewhere.

V. CAMERA RIG CALIBRATION

This section contains an excerpt of results published in [2].
Rotation averaging algorithms have many potential applica-
tions in the community of computer vision, especially to
multi-camera systems. Here we show a potential application
to the calibration of a non-overlapping multi-camera rig.
Non-overlapping multi-camera rigs are of particular interest
in practice. As the component cameras have little or no
overlap in their fields of views, the effective overall field
of view is wider, leading to efficient data acquisition.

A. Problem Formulation

We consider a camera rig consisting of two cameras,
denoted left and right, fixed rigidly with respect to each other
and individually calibrated. The camera rig undergoes rigid
motion and captures several image pairs (cf. Figure 3).

We denote the coordinate frames of the cameras at time
by MF and ME.

. (L tE r_ (R tf
MZ-—(OT 1 and M;" = T 1)

The first three rows of these matrices represent the projection
matrices of the corresponding cameras, where image points
are represented in coordinates normalized by the calibration
matrix.

We denote the relative motion of M{* with respect to M
by a transformation ML, so that MLF = MIt ME-L
Since this relative motion remains fixed throughout the
motion, we observe that MLf = ME ML~ for all i. Next,
the relative motion of MjL with respect to ML is denoted
by M = M} MFE=!. Similarly, Mf = M* M. Using
the relation M2 = ML% ME, we find

M5 = MM ML PR (1)

for all ¢, 7. Now, we denote

L. tL. R tR- ]
ﬂfL 1 3 Z‘[R i 7
v (OTJ f) and Miy = (0T f)'

Observe that the relative rotations R;;, L;; and relative
translations tﬁ, tiLj may be computed via the essential matrix
for the (4,j) image pairs.

Writing the transformation ME% as

S s
LR __
= (1),

we deduce from (1) the equations
Rij = SL;S™ 2)
th = Sthi+ - Lij)s (3)

Calibration strategy Our prescribed task is to find the
relative orientation of the right and left cameras, namely the
transformation M ', Our method uses the following general
framework.

1) Compute the relative rotations and translations

(Rij, tf%) and (Lij, t};) for many pairs (i, ) using the
essential matrix.



Fig. 3.

2) Compute the relative rotation S from (2).
3) Solve linearly for s using (3).

Both these equations may be solved linearly. The rotation
equation may be written as SL;; = R;;S, which is linear
in the entries of S. In solving for the translation s, we note
that the relative translations tiLj and tf-;: are known only up
to scale factors A;; and p;;. Then (3) may be written more
exactly as )\ijtﬁ = [bi StiLj + (I — L;;)s, where everything is
known except for s and the scale factors A;; and p;;. Three
image pairs are required to solve these equations and find s.

The strategy outlined here is workable, but relies on
accurate measurements of the rotations L;; and R;;. In
the following we will explain our strategies for rotation
averaging that will lead to significantly improved results
in practice. Although we have implemented the complete
calibration algorithm, including estimation of the translation
s, for the rest of this paper, we will consider only rotation
estimation.

B. Averaging Rotations

The relative rotation estimates R;; and L;; obtained from
individual estimates using the essential matrix will not be
consistent. In particular, ideally, there should exist rotations
L;, R; and S such that L;; = L,L; ' and R;; = R;R; " =
SLijS*I. If these two conditions are satisfied, then the
relative rotation estimates R;; and L;; are consistent. In
general they will not be, so we need to adjust them by a
process of rotation averaging.

The cost function that we minimize is the residual error
in all the rotation measurements [2;; and L;;, defined by

. 1 —1o—
min > d(Lij, LL7 )P + d(Rij, SL;L;7 ST (4)
(i,))EN
There seems to be no direct method of minimizing this cost

function under any of the distances we considered. Therefore,
our strategy is to minimize the cost function by using rotation

Unknown camera
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images from -
left camera

images from
right camera

The calibration problem for a non-overlapping multi-camera rig.

averaging to update each L; in turn, then conjugate rotation
averaging to find S.

Conjugate rotation averaging here refers to a different
rotation averaging problem than the one described above.
Given n pairs of rotations (R;, L;), the conjugate averaging
problem is to find a rotation S such that R; ~ S—'L;S for
all 7. The appropriate minimization problem is then to find

argmin d(R;, S™1L;S)P.
e ; ( )

An interpretation of this problem is that we are trying to
find the fixed relative rotation S of two rigidly connected
coordinate frames for which several corresponding rotation
estimates L; (for the “left” frame) and R; (for the “right”
frame) are available. This problem is sometimes referred to
as the hand-eye coordination problem. See [2] for further
details.

Initial values for each L; are easily found by propagating
from a given rotation Ly assumed to be the identity, and
then obtaining the initial S through conjugate averaging.
Obviously, there is a gauge freedom in the solution, in that if
S is any rotation, then the sets of rotations R;,i =1,...,n
and R;S,i =1,...,n give the same result. This can be fixed
by specifying one of the rotations to be the identity matrix.
Our algorithm will not only obtain the camera rig rotation
but also the rotations L; and R; for the left and right camera
at each frame. The complete rotation estimation procedure
follows (Algorithm 2). At each step of this algorithm, the
total cost decreases, and hence converges to a limit. We
do not at present claim a rigorous proof that the algorithm
converges to even a local minimum, though that seems likely
under most reasonable conditions. In particular, the sequence
of estimates must contain a convergent subsequence, and the
limit of this subsequence must be at least a local minimum
with respect to each L; and S individually.



1: Choose a tolerance € > 0.

2: Let Ly = I, determine L; as the mean of all the
rotations L;lej where L; has already been set.

3: Estimate .S from the equation R;;S = SL;; as a
conjugate rotation averaging problem.

4: loop
5. Update each L; in turn by averaging all L;;L;,
SilRijSLi.

6:  Recompute and update S from the equation
RijS = SLJ‘LZI.

7. if the cost function has decreased by less then ¢
since the last iteration then

8: return S
9: end if
10: end loop

Algorithm 2: Iterative Rotation Averaging

C. Experiments

To evaluate the performance of the proposed algorithms,
we conducted experiments on both synthetic data and real
images. As a real example of a two-camera rig system, we
have used a pair of wide-angle cameras to capture sequences
of images. Images are captured at each camera illustrated
in Figure 4. Feature points on the images are extracted
using SIFT [9] and tracked through image sequences. These
tracked features are transformed to image vectors on the unit
sphere given the individual intrinsic calibrations. Outliers in
the tracked features are removed using RANSAC [3] to fit
the essential matrix using the normalized 8 point algorithm.
Pairwise relative pose is obtained through decomposition of
the essential matrix, and two frames bundle adjustment is
utilized to refine the estimate, thus obtaining the relative
rotations L;; and R;;. Finally, Algorithm 2 is applied to
calibrate the camera rig, obtaining the relative rotation S
and relative translation ¢.

(a) (b)

Fig. 4. Images captured by camera rig with non-overlapping view

The image sequences captured by the left camera and the
right camera contain 200 frames individually. As some pairs
of image frames do not supply a successful relative motion
estimation, we ultimately obtained 11199 pairs of relative
motion estimates. Since both relative motion estimates L
and R;; should have equal angle rotations, we use this
criterion along with a minimum rotation angle requirement

to select the best image pairs for further processing. Thus,
we obtained 176 pairs of synchronized motions.

The convergence process is shown in Figure 5 where we
illustrate the relation between log(cost(it) — cost(e)) and
iteration number it. Here, cost(e) is the convergence value.
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Fig. 5. Convergence process on real camera rig image sequences. (a)
Angular LY. (b) Angular L2. (¢) Quaternion LY. (d) Quaternion L?. (e)
Chordal L'. (f) Chordal L2.

VI. CONCLUSIONS

We have introduced a variant of the concept of geodesic
convexity called weak convexity and applied it to the dis-
cussion of distance measures on SO(3) and derived cost
functions such as the one appearing in the definition of
the Karcher mean. Our main contribution is a new and
strong theorem on the location of global minima of such
cost functions. This result significantly strengthens previous
results that only considered local minima. We discussed an
application of rotation averaging to camera rig calibration,
an interesting problem in computer vision.
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