THE PREDICTABLE DEGREE PROPERTY AND A PARAMETRIZATION OF ANNIHILATORS OF A BEHAVIOR OVER A FINITE RING

Margreta Kuijper1 Raquel Pinto2 Jan Willem Polderman3

1Department of Electrical and Electronic Engineering
University of Melbourne

2Department of Mathematics
University of Aveiro

3Department of Applied Mathematics
University of Twente

LinSys 2007, Canberra
SYSTEMS OVER FINITE ALGEBRAS—WHY?

- ↔ coding theory:
 - convolutional codes as linear systems over a finite algebra
 - Rosenthal a.o. ’96; Gluesing a.o. ’06; Fornasini & Pinto ’04
 - Massey a.o. ’89; Johannesson a.o. ’98
 - decoding of Reed-Solomon codes = iterative modeling of behaviors over a finite algebra, see Kuijper & Willems ’97; Kuijper & Polderman ’04

- ↔ sequence theory:
 - complexity of sequences of elements from a finite algebra ↔ minimal partial realization of impulse response
SYSTEMS OVER FINITE ALGEBRAS—WHY?

- \(\leftrightarrow \) coding theory:
 - convolutional codes as linear systems over a finite algebra
 - Rosenthal a.o. '96; Gluesing a.o. '06; Fornasini & Pinto '04
 - Massey a.o. '89; Johannesson a.o. '98
 - decoding of Reed-Solomon codes = iterative modeling of behaviors over a finite algebra, see Kuijper & Willems '97; Kuijper & Polderman '04

- \(\leftrightarrow \) sequence theory:
 - complexity of sequences of elements from a finite algebra \(\leftrightarrow \) minimal partial realization of impulse response
SYSTEMS OVER FINITE ALGEBRAS—WHY?

• \(\leftrightarrow\) coding theory:

 • convolutional codes as linear systems over a finite algebra

 • Rosenthal a.o. ’96; Gluesing a.o. ’06; Fornasini & Pinto ’04

 • Massey a.o. ’89; Johannesson a.o. ’98

 • decoding of Reed-Solomon codes = iterative modeling of behaviors over a finite algebra, see Kuijper & Willems ’97; Kuijper & Polderman ’04

• \(\leftrightarrow\) sequence theory:

 • complexity of sequences of elements from a finite algebra\(\leftrightarrow\) minimal partial realization of impulse response
SYSTEMS OVER FINITE ALGEBRAS—WHY?

• \leftrightarrow coding theory:

 • **convolutional codes** as linear systems over a finite algebra

 • *Rosenthal a.o. ’96; Gluesing a.o. ’06; Fornasini & Pinto ’04*

 • *Massey a.o. ’89; Johannesson a.o. ’98*

 • decoding of Reed-Solomon codes = iterative modeling of behaviors over a finite algebra, see *Kuijper & Willems ’97; Kuijper & Polderman ’04*

• \leftrightarrow sequence theory:

 • complexity of sequences of elements from a finite algebra \leftrightarrow minimal partial realization of impulse response
SYSTEMS OVER FINITE ALGEBRAS—WHY?

• \leftrightarrow coding theory:

 • **convolutional codes** as linear systems over a finite algebra
 • *Rosenthal a.o.* ’96; *Gluesing a.o.* ’06; *Fornasini & Pinto* ’04
 • *Massey a.o.* ’89; *Johannesson a.o.* ’98

 • **decoding** of Reed-Solomon codes = iterative modeling of behaviors over a finite algebra, see *Kuijper & Willems* ’97; *Kuijper & Polderman* ’04

• \leftrightarrow sequence theory:

 • **complexity** of sequences of elements from a finite algebra\leftrightarrow minimal partial realization of impulse response
SYSTEMS OVER FINITE ALGEBRAS—WHY?

- **<--> coding theory:**
 - **convolutional codes** as linear systems over a finite algebra
 - Rosenthal a.o. ’96; Gluesing a.o. ’06; Fornasini & Pinto ’04
 - Massey a.o. ’89; Johannesson a.o. ’98
 - **decoding** of Reed-Solomon codes = iterative modeling of behaviors over a finite algebra, see Kuijper & Willems ’97; Kuijper & Polderman ’04

- **<--> sequence theory:**
 - **complexity** of sequences of elements from a finite algebra <-> minimal partial realization of impulse response
• Example over field \(\mathbb{Z}_{11} \): \(B = \text{span} \left\{ \left[\begin{array}{c} 9 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 1 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \end{array} \right], \ldots \right\} \)

• has kernel representation \(A(\sigma)w = 0 \) with

\[
A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 2\xi \end{bmatrix}
\]

• \(A \) is not row reduced since leading row coefficient matrix

\[
A^{\text{lrc}} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}
\]

• Any other representation \(R(\sigma)w = 0 \) of \(B \) with \(R(\xi) \) of full row rank is given by \(R(\xi) = U(\xi)A(\xi) \) with \(U(\xi) \) unimodular

• Row reduction procedure of Wedderburn ’34; Wolovich ’74 yields

\[
U(\xi)A(\xi) = \begin{bmatrix} \xi & 0 \\ 1 & 2\xi \end{bmatrix} \text{ for } U(\xi) = \begin{bmatrix} 9 & \xi \\ 0 & 1 \end{bmatrix}
\]

• Thus minimal row degrees are 1, 1.
• Example over field \(\mathbb{Z}_{11} \): \(\mathcal{B} = \text{span} \{ \begin{bmatrix} 9 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \ldots \} \)

• has kernel representation \(A(\sigma)w = 0 \) with

\[
A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 2\xi \end{bmatrix}
\]

• \(A \) is not row reduced since leading row coefficient matrix \(A^{\text{lrc}} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \)

• Any other representation \(R(\sigma)w = 0 \) of \(\mathcal{B} \) with \(R(\xi) \) of full row rank is given by \(R(\xi) = U(\xi)A(\xi) \) with \(U(\xi) \) unimodular

• Row reduction procedure of Wedderburn ’34; Wolovich ’74 yields

\[
U(\xi)A(\xi) = \begin{bmatrix} \xi & 0 \\ 1 & 2\xi \end{bmatrix}
\]

for \(U(\xi) = \begin{bmatrix} 9 & \xi \\ 0 & 1 \end{bmatrix} \)

• Thus minimal row degrees are 1, 1.
• Example over field \mathbb{Z}_{11}: $B = \text{span}\left\{\left(\begin{array}{c} 9 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \end{array}\right), \ldots\right\}$

• has kernel representation $A(\sigma)w = 0$ with

$$A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 2\xi \end{bmatrix}$$

• A is not row reduced since leading row coefficient matrix

$$A^{\text{lrc}} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$$

• Any other representation $R(\sigma)w = 0$ of B with $R(\xi)$ of full row rank is given by $R(\xi) = U(\xi)A(\xi)$ with $U(\xi)$ unimodular

• Row reduction procedure of Wedderburn ’34; Wolovich ’74 yields

$$U(\xi)A(\xi) = \begin{bmatrix} \xi & 0 \\ 1 & 2\xi \end{bmatrix} \text{ for } U(\xi) = \begin{bmatrix} 9 & \xi \\ 0 & 1 \end{bmatrix}$$

• Thus minimal row degrees are 1, 1.
• Example over field \mathbb{Z}_{11}: $\mathcal{B} = \text{span} \{ \left(\begin{array}{c} 9 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \end{array} \right), \ldots \}$.

• has kernel representation $A(\sigma)w = 0$ with

$$A(\xi) = \left[\begin{array}{cc} 0 & \xi^2 \\ 1 & 2\xi \end{array} \right]$$

• A is not row reduced since leading row coefficient matrix

$$A^{\text{lrc}} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 2 \end{array} \right]$$

• Any other representation $R(\sigma)w = 0$ of \mathcal{B} with $R(\xi)$ of full row rank is given by $R(\xi) = U(\xi)A(\xi)$ with $U(\xi)$ unimodular

• Row reduction procedure of Wedderburn '34; Wolovich '74 yields

$$U(\xi)A(\xi) = \left[\begin{array}{cc} \xi & 0 \\ 1 & 2\xi \end{array} \right]$$

for $U(\xi) = \left[\begin{array}{cc} 9 & \xi \\ 0 & 1 \end{array} \right]$.

• Thus minimal row degrees are 1, 1.
• Example over field \mathbb{Z}_{11}: $\mathcal{B} = \text{span}\left\{ \left(\begin{array}{c} 9 \\ 0 \\ 0 \\ \vdots \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ \vdots \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \vdots \end{array} \right), \ldots \right\}$

• has kernel representation $A(\sigma)w = 0$ with

$$A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 2\xi \end{bmatrix}$$

• A is not row reduced since leading row coefficient matrix

$$A^{\text{lrc}} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$$

• Any other representation $R(\sigma)w = 0$ of \mathcal{B} with $R(\xi)$ of full row rank is given by $R(\xi) = U(\xi)A(\xi)$ with $U(\xi)$ unimodular

• Row reduction procedure of Wedderburn ’34; Wolovich ’74 yields

$$U(\xi)A(\xi) = \begin{bmatrix} \xi & 0 \\ 1 & 2\xi \end{bmatrix} \quad \text{for} \quad U(\xi) = \begin{bmatrix} 9 & \xi \\ 0 & 1 \end{bmatrix}$$

• Thus minimal row degrees are 1, 1.
• Example over field \(\mathbb{Z}_{11} \): \(\mathcal{B} = \text{span} \left\{ \begin{bmatrix} 9 \\ 0 \\ 0 \\ \vdots \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix}, \ldots \right\} \)

• has kernel representation \(A(\sigma)w = 0 \) with

\[
A(\xi) = \begin{bmatrix}
0 & \xi^2 \\
1 & 2\xi
\end{bmatrix}
\]

• \(A \) is not row reduced since leading row coefficient matrix

\[
A^{\text{lrc}} = \begin{bmatrix}
0 & 1 \\
0 & 2
\end{bmatrix}
\]

• Any other representation \(R(\sigma)w = 0 \) of \(\mathcal{B} \) with \(R(\xi) \) of full row rank is given by \(R(\xi) = U(\xi)A(\xi) \) with \(U(\xi) \) unimodular

• Row reduction procedure of Wedderburn ’34; Wolovich ’74 yields

\[
U(\xi)A(\xi) = \begin{bmatrix}
\xi & 0 \\
1 & 2\xi
\end{bmatrix} \quad \text{for} \quad U(\xi) = \begin{bmatrix}
9 & \xi \\
0 & 1
\end{bmatrix}
\]

• Thus minimal row degrees are 1, 1.
• Dropping rank constraint: any other representation $R(\sigma)w = 0$ of B is given by $R(\xi) = U(\xi) \begin{bmatrix} A(\xi) \\ 0 \end{bmatrix}$ with $U(\xi)$ unimodular
Row reduced R with row degrees d_1, \ldots, d_k has

PREDICTABLE DEGREE PROPERTY:

$$\text{row degree of } a(\xi)R(\xi) = \max_{1 \leq i \leq k} (d_i + \deg a_i(\xi))$$

Then is key player in **parametrization** of annihilators of $B = \ker R(\sigma)$:

THEOREM A vector $V(\xi)$ of row degree d is an annihilator of B if and only if there exists $Q(\xi) = \begin{bmatrix} q_1(\xi) & \cdots & q_k(\xi) \end{bmatrix}$ such that
Row reduced R with row degrees d_1, \ldots, d_k has

PREDICTABLE DEGREE PROPERTY:

row degree of $a(\xi)R(\xi) = \max_{1 \leq i \leq k} (d_i + \deg a_i(\xi))$

Then is key player in **parametrization** of annihilators of $\mathcal{B} = \ker R(\sigma)$:

Theorem A vector $V(\xi)$ of row degree d is an annihilator of \mathcal{B} if and only if there exists $Q(\xi) = \begin{bmatrix} q_1(\xi) & \cdots & q_k(\xi) \end{bmatrix}$ such that

1. $V(\xi) = Q(\xi)R(\xi)$
2. $\deg q_i(\xi) \leq d_i$ for $i = 1, \ldots, k$

Furthermore, $Q(\xi)$ is unique.
Row reduced R with row degrees d_1, \ldots, d_k has

PREDICTABLE DEGREE PROPERTY:

row degree of $a(\xi)R(\xi) = \max_{1 \leq i \leq k} (d_i + \deg a_i(\xi))$

Then is key player in **parametrization** of annihilators of $\mathcal{B} = \ker R(\sigma)$:

Theorem A vector $V(\xi)$ of row degree d is an annihilator of \mathcal{B} if and only if there exists $Q(\xi) = \begin{bmatrix} q_1(\xi) & \cdots & q_k(\xi) \end{bmatrix}$ such that

1. $V(\xi) = Q(\xi)R(\xi)$
2. $\deg q_i(\xi) = d - d_i$, for $i = 1, \ldots, k$

Furthermore, $Q(\xi)$ is unique.
Row reduced R with row degrees d_1, \ldots, d_k has

PREDICTABLE DEGREE PROPERTY:

$$\text{row degree of } a(\xi)R(\xi) = \max_{1 \leq i \leq k} (d_i + \deg a_i(\xi))$$

Then is key player in **parametrization** of annihilators of $B = \ker R(\sigma)$:

Theorem A vector $V(\xi)$ of row degree d is an annihilator of B if and only if there exists $Q(\xi) = \begin{bmatrix} q_1(\xi) & \cdots & q_k(\xi) \end{bmatrix}$ such that

1. $V(\xi) = Q(\xi)R(\xi)$
2. $\deg q_i(\xi) \leq d - d_i$ for $i = 1, \ldots, k$.

Furthermore, $Q(\xi)$ is unique.
Row reduced R with row degrees d_1, \ldots, d_k has

PREDICTABLE DEGREE PROPERTY:

\[
\text{row degree of } a(\xi)R(\xi) = \max_{1 \leq i \leq k} (d_i + \deg a_i(\xi))
\]

Then is key player in parametrization of annihilators of $\mathcal{B} = \ker R(\sigma)$:

THEOREM A vector $V(\xi)$ of row degree d is an annihilator of \mathcal{B} if and only if there exists $Q(\xi) = \begin{bmatrix} q_1(\xi) & \cdots & q_k(\xi) \end{bmatrix}$ such that

1. $V(\xi) = Q(\xi)R(\xi)$
2. $\deg q_i(\xi) \leq d - d_i$ for $i = 1, \ldots, k$.

Furthermore, $Q(\xi)$ is unique.
Row reduced R with row degrees d_1, \ldots, d_k has

PREDICTABLE DEGREE PROPERTY:

\[
\text{row degree of } a(\xi)R(\xi) = \max_{1 \leq i \leq k} (d_i + \deg a_i(\xi))
\]

Then is key player in parametrization of annihilators of $\mathcal{B} = \ker R(\sigma)$:

THEOREM A vector $V(\xi)$ of row degree d is an annihilator of \mathcal{B} if and only if there exists $Q(\xi) = \left[q_1(\xi) \ \cdots \ q_k(\xi) \right]$ such that

1. $V(\xi) = Q(\xi)R(\xi)$
2. $\deg q_i(\xi) \leq d - d_i$ for $i = 1, \ldots, k$.

Furthermore, $Q(\xi)$ is unique.
Row reduced R with row degrees d_1, \ldots, d_k has

PREDICTABLE DEGREE PROPERTY:

\[
\text{row degree of } a(\xi)R(\xi) = \max_{1 \leq i \leq k} (d_i + \deg a_i(\xi))
\]

Then is key player in parametrization of annihilators of $\mathcal{B} = \ker R(\sigma)$:

THEOREM A vector $V(\xi)$ of row degree d is an annihilator of \mathcal{B} if and only if there exists $Q(\xi) = \begin{bmatrix} q_1(\xi) & \cdots & q_k(\xi) \end{bmatrix}$ such that

1. $V(\xi) = Q(\xi)R(\xi)$
2. $\deg q_i(\xi) \leq d - d_i$ for $i = 1, \ldots, k$.

Furthermore, $Q(\xi)$ is unique.
- Same example over ring \mathbb{Z}_{27}: $\mathcal{B} = \text{span} \left\{ \left(\begin{array}{c} 9 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \end{array} \right), \ldots \right\}$

- note that \mathbb{Z}_{27} has zero divisors, such as 3, 9

- \mathcal{B} has kernel representation $A(\sigma)w = 0$ with

$$A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \end{bmatrix}$$

- Any other representation $R(\sigma)w = 0$ of \mathcal{B} with $R(\xi)$ of full row rank is given by $R(\xi) = U(\xi)A(\xi)$ with $U(\xi)$ unimodular

- Attempt to make $R(\xi)$ row reduced: take $U(\xi) = \begin{bmatrix} -18 & \xi \\ 0 & 1 \end{bmatrix}$, yielding $R = \begin{bmatrix} \xi & 0 \\ 1 & 18\xi \end{bmatrix}$

- BUT... U not unimodular, so does not yield correct \mathcal{B}. Indeed R models $\left(\begin{array}{c} 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 3 \end{array} \right), \left(\begin{array}{c} 0 \\ 3 \end{array} \right), \ldots$ which is not in \mathcal{B}
• Same example over ring \mathbb{Z}_{27}: $\mathcal{B} = \text{span}\left\{\left(\begin{array}{c} 9 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \end{array}\right), \ldots\right\}$

• note that \mathbb{Z}_{27} has zero divisors, such as 3 , 9

• \mathcal{B} has kernel representation $A(\sigma)w = 0$ with

$$A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \end{bmatrix}$$

• Any other representation $R(\sigma)w = 0$ of \mathcal{B} with $R(\xi)$ of full row rank is given by $R(\xi) = U(\xi)A(\xi)$ with $U(\xi)$ unimodular

• Attempt to make $R(\xi)$ row reduced: take $U(\xi) = \begin{bmatrix} -18 & \xi \\ 0 & 1 \end{bmatrix}$, yielding $R = \begin{bmatrix} \xi & 0 \\ 1 & 18\xi \end{bmatrix}$

• BUT... U not unimodular, so does not yield correct \mathcal{B}. Indeed R models $\left(\begin{array}{c} 0 \\ 1 \end{array}\right), \left(\begin{array}{c} 0 \\ 3 \end{array}\right), \left(\begin{array}{c} 0 \\ 3 \end{array}\right), \ldots\right)$ which is not in \mathcal{B}
• Same example over ring \mathbb{Z}_{27}: $B = \text{span} \left\{ \left(\begin{array}{c} 9 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \end{array} \right), \ldots \right\}$

• note that \mathbb{Z}_{27} has zero divisors, such as $3, 9$

• B has kernel representation $A(\sigma)w = 0$ with

$$A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \end{bmatrix}$$

• Any other representation $R(\sigma)w = 0$ of B with $R(\xi)$ of full row rank is given by $R(\xi) = U(\xi)A(\xi)$ with $U(\xi)$ unimodular

• Attempt to make $R(\xi)$ row reduced: take $U(\xi) = \begin{bmatrix} -18 & \xi \\ 0 & 1 \end{bmatrix}$, yielding $R = \begin{bmatrix} \xi & 0 \\ 1 & 18\xi \end{bmatrix}$

• BUT... U not unimodular, so does not yield correct B. Indeed R models $\left(\begin{array}{c} 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 3 \end{array} \right), \left(\begin{array}{c} 0 \\ 3 \end{array} \right), \ldots$ which is not in B
- Same example over ring \mathbb{Z}_{27}: $B = \text{span}\left\{ \left(\begin{bmatrix} 9 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ldots \right) \right\}$

- note that \mathbb{Z}_{27} has zero divisors, such as 3 , 9

- B has kernel representation $A(\sigma)w = 0$ with

 $$A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \end{bmatrix}$$

- Any other representation $R(\sigma)w = 0$ of B with $R(\xi)$ of full row rank is given by $R(\xi) = U(\xi)A(\xi)$ with $U(\xi)$ unimodular

 - Attempt to make $R(\xi)$ row reduced: take $U(\xi) = \begin{bmatrix} -18 & \xi \\ 0 & 1 \end{bmatrix}$, yielding $R = \begin{bmatrix} \xi & 0 \\ 1 & 18\xi \end{bmatrix}$

 - BUT... U not unimodular, so does not yield correct B. Indeed R models $\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \ldots \right)$ which is not in B
• Same example over ring \mathbb{Z}_{27}: $\mathcal{B} = \text{span}\{\left(\begin{array}{c} 9 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \end{array}\right), \ldots\}\}$

• note that \mathbb{Z}_{27} has zero divisors, such as 3, 9

• \mathcal{B} has kernel representation $A(\sigma)\mathbf{w} = 0$ with

$$A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \end{bmatrix}$$

• Any other representation $R(\sigma)\mathbf{w} = 0$ of \mathcal{B} with $R(\xi)$ of full row rank is given by $R(\xi) = U(\xi)A(\xi)$ with $U(\xi)$ unimodular

• Attempt to make $R(\xi)$ row reduced: take $U(\xi) = \begin{bmatrix} -18 & \xi \\ 0 & 1 \end{bmatrix}$,

yielding $R = \begin{bmatrix} \xi & 0 \\ 1 & 18\xi \end{bmatrix}$

• BUT... U not unimodular, so does not yield correct \mathcal{B}. Indeed R models $\left(\begin{array}{c} 0 \\ 1 \end{array}\right), \left(\begin{array}{c} 0 \\ 3 \end{array}\right), \left(\begin{array}{c} 0 \\ 3 \end{array}\right), \ldots\}$ which is not in \mathcal{B}
• Same example over ring \mathbb{Z}_{27}: $\mathcal{B} = \text{span} \left\{ \begin{pmatrix} 9 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ldots \right\}$

• note that \mathbb{Z}_{27} has zero divisors, such as 3, 9

• \mathcal{B} has kernel representation $A(\sigma)w = 0$ with

\[
A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18 \xi \end{bmatrix}
\]

• Any other representation $R(\sigma)w = 0$ of \mathcal{B} with $R(\xi)$ of full row rank is given by $R(\xi) = U(\xi)A(\xi)$ with $U(\xi)$ unimodular

• Attempt to make $R(\xi)$ row reduced: take $U(\xi) = \begin{bmatrix} -18 & \xi \\ 0 & 1 \end{bmatrix}$, yielding $R = \begin{bmatrix} \xi & 0 \\ 1 & 18 \xi \end{bmatrix}$

• BUT... U not unimodular, so does not yield correct \mathcal{B}. Indeed R models $\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \ldots \right\}$ which is not in \mathcal{B}
• Dropping rank constraint: any other representation $R(\sigma)w = 0$ of \mathcal{B} is given by $R(\xi) = U(\xi) \begin{bmatrix} A(\xi) \\ 0 \end{bmatrix}$ with $U(\xi)$ unimodular

WANTED:
Theory of row reduced polynomial matrices over \mathbb{Z}_p

= OPEN PROBLEM, posed in e.g. $FZ'97$

We present a solution
• Dropping rank constraint: any other representation $R(\sigma)w = 0$ of \mathcal{B} is given by $R(\xi) = U(\xi) \begin{bmatrix} A(\xi) & 0 \end{bmatrix}$ with $U(\xi)$ unimodular

WANTED:
Theory of row reduced polynomial matrices over \mathbb{Z}_p^r

= OPEN PROBLEM, posed in e.g. FZ’97

We present a solution
• Dropping rank constraint: any other representation \(R(\sigma)w = 0 \) of \(\mathcal{B} \) is given by \(R(\xi) = U(\xi) \begin{bmatrix} A(\xi) \\ 0 \end{bmatrix} \) with \(U(\xi) \) unimodular.

WANTED:
Theory of row reduced polynomial matrices over \(\mathbb{Z}_{p^r} \)

\[= \text{OPEN PROBLEM, posed in e.g. } FZ'97 \]
• Dropping rank constraint: any other representation $R(\sigma)w = 0$ of \mathcal{B} is given by $R(\xi) = U(\xi) \begin{bmatrix} A(\xi) \\ 0 \end{bmatrix}$ with $U(\xi)$ unimodular

WANTED:
Theory of row reduced polynomial matrices over \mathbb{Z}_p^r

= OPEN PROBLEM, posed in e.g. FZ’97

We present a solution
Outline of new theory:

- work with redundant kernel reps, obtained via

\[R(\xi) = U(\xi) \begin{bmatrix} A(\xi) \\ 0 \end{bmatrix} \text{ with } U(\xi) \text{ unimodular} \]

- impose specific structure on \(R(\xi) \): the composed form
- composed form is less restrictive than “adapted form” from FZ’97
- impose rank condition on \(R^{lrc} \)

Inspired by theory of “\(p \)-generator sequences” for constant vectors in \(\mathbb{Z}_p^q \), as in Vazirani a.o. ’96
Outline of new theory:

- work with redundant kernel reps, obtained via

\[R(\xi) = U(\xi) \begin{bmatrix} A(\xi) \\ 0 \end{bmatrix} \text{ with } U(\xi) \text{ unimodular} \]

- impose specific structure on \(R(\xi) \): the \textit{composed form}
- composed form is less restrictive than \textit{adapted form} from FZ’97
- impose rank condition on \(R^{\text{lrc}} \)

Inspired by theory of “\(p \)-generator sequences” for constant vectors in \(\mathbb{Z}_p^q \), as in Vazirani a.o. ’96
Outline of new theory:

- work with redundant kernel reps, obtained via

\[R(\xi) = U(\xi) \begin{bmatrix} A(\xi) \\ 0 \end{bmatrix} \text{ with } U(\xi) \text{ unimodular} \]

- impose specific structure on \(R(\xi) \): the composed form
- composed form is less restrictive than “adapted form” from FZ’97
- impose rank condition on \(R_{\text{lrc}} \)

Inspired by theory of “\(p \)-generator sequences” for constant vectors in \(\mathbb{Z}_p^q \), as in Vazirani a.o. ’96
Outline of new theory:

- work with redundant kernel reps, obtained via

\[R(\xi) = U(\xi) \begin{bmatrix} A(\xi) \\ 0 \end{bmatrix} \text{ with } U(\xi) \text{ unimodular} \]

- impose specific structure on \(R(\xi) \): the composed form
- composed form is less restrictive than “adapted form” from FZ’97
- impose rank condition on \(R^{lrc} \)

Inspired by theory of “\(p \)-generator sequences” for constant vectors in \(\mathbb{Z}_p^q \), as in Vazirani a.o. ’96
Outline of new theory:

- work with redundant kernel reps, obtained via

\[R(\xi) = U(\xi) \begin{bmatrix} A(\xi) \\ 0 \end{bmatrix} \text{ with } U(\xi) \text{ unimodular} \]

- impose specific structure on \(R(\xi) \): the composed form
- composed form is less restrictive than “adapted form” from FZ’97
- impose rank condition on \(R^{\text{lrc}} \)

Inspired by theory of “\(p \)-generator sequences” for constant vectors in \(\mathbb{Z}_p^q \), as in Vazirani a.o. ’96
Outline of new theory:

- work with redundant kernel reps, obtained via

 \[R(\xi) = U(\xi) \begin{bmatrix} A(\xi) \\ 0 \end{bmatrix} \mathrm{ with } \ U(\xi) \mathrm{ unimodular} \]

- impose specific structure on \(R(\xi) \): the composed form
- composed form is less restrictive than “adapted form” from FZ’97
- impose rank condition on \(R^{lrc} \)

Inspired by theory of “\(p \)-generator sequences” for constant vectors in \(\mathbb{Z}_p^q \), as in Vazirani a.o. ’96
Theory of p-generator sequences for $\mathbb{Z}_p^q[\xi]$

- Commutative algebra: concept of “generating system along a composition chain” Matsumura ’86
- Rephrased as “p-generator sequence” in Vazirani a.o. ’96 for constant vectors in \mathbb{Z}_p^q
- We now introduce same concepts for polynomial vectors in $\mathbb{Z}_p^q[\xi]$

Definition Let $v_1(\xi), \ldots, v_k(\xi)$ be vectors in $\mathbb{Z}_p^q[\xi]$ and let $a_j(\xi)$ be polynomials with coefficients in $\{0, 1, \ldots, p - 1\} \subset \mathbb{Z}_p$. Then the vector

$$\sum_{j=1}^{k} a_j(\xi)v_j(\xi)$$

is called a p-linear combination of $v_1(\xi), \ldots, v_k(\xi)$. The set of all p-linear combinations of $v_1(\xi), \ldots, v_k(\xi)$ is called the p-span of $\{v_1(\xi), \ldots, v_k(\xi)\}$.
Theory of p-generator sequences for $\mathbb{Z}_{q}^{r}[\xi]$

- **Commutative algebra:** concept of “generating system along a composition chain”
 Matsumura ’86

- rephrased as “p-generator sequence” in Vazirani a.o. ’96 for constant vectors in \mathbb{Z}_{q}^{r}

- we now introduce same concepts for polynomial vectors in $\mathbb{Z}_{q}^{r}[\xi]$

Definition Let $v_1(\xi), \ldots, v_k(\xi)$ be vectors in $\mathbb{Z}_{q}^{r}[\xi]$ and let $a_j(\xi)$ be polynomials with coefficients in $\{0, 1, \ldots, p - 1\} \subset \mathbb{Z}_{p^r}$. Then the vector

$$
\sum_{j=1}^{k} a_j(\xi)v_j(\xi)
$$

is called a **p-linear combination** of $v_1(\xi), \ldots, v_k(\xi)$. The set of all p-linear combinations of $v_1(\xi), \ldots, v_k(\xi)$ is called the **p-span** of $\{v_1(\xi), \ldots, v_k(\xi)\}$.
Theory of \(p \)-generator sequences for \(\mathbb{Z}_p^q [\xi] \)

- *Commutative algebra*: concept of “generating system along a composition chain”
 Matsumura ’86

- rephrased as “\(p \)-generator sequence” in *Vazirani a.o. ’96* for constant vectors in \(\mathbb{Z}_p^q \)

- we now introduce same concepts for polynomial vectors in \(\mathbb{Z}_p^q [\xi] \)

Definition Let \(\nu_{1}(\xi), \ldots, \nu_{k}(\xi) \) be vectors in \(\mathbb{Z}_p^q [\xi] \) and let \(a_{j}(\xi) \) be polynomials with coefficients in \(\{0, 1, \ldots, p - 1\} \subset \mathbb{Z}_p^r \). Then the vector

\[
\sum_{j=1}^{k} a_{j}(\xi) \nu_{j}(\xi)
\]

is called a **\(p \)-linear combination** of \(\nu_{1}(\xi), \ldots, \nu_{k}(\xi) \). The set of all \(p \)-linear combinations of \(\nu_{1}(\xi), \ldots, \nu_{k}(\xi) \) is called the **\(p \)-span** of \(\{\nu_{1}(\xi), \ldots, \nu_{k}(\xi)\} \).
Theory of \(p \)-generator sequences for \(\mathbb{Z}_p^q[\xi] \)

- *Commutative algebra*: concept of “generating system along a composition chain” *Matsumura ’86*
- rephrased as “\(p \)-generator sequence” in *Vazirani a.o. ’96* for *constant* vectors in \(\mathbb{Z}_p^q \)
- we now introduce same concepts for *polynomial* vectors in \(\mathbb{Z}_p^q[\xi] \)

Definition Let \(v_1(\xi), \ldots, v_k(\xi) \) be vectors in \(\mathbb{Z}_p^q[\xi] \) and let \(a_j(\xi) \) be polynomials with coefficients in \(\{0, 1, \ldots, p - 1\} \subset \mathbb{Z}_p^r \). Then the vector

\[
\sum_{j=1}^{k} a_j(\xi)v_j(\xi)
\]

is called a *\(p \)-linear combination* of \(v_1(\xi), \ldots, v_k(\xi) \). The set of all \(p \)-linear combinations of \(v_1(\xi), \ldots, v_k(\xi) \) is called the *\(p \)-span* of \(\{v_1(\xi), \ldots, v_k(\xi)\} \).
Theory of p-generator sequences for $\mathbb{Z}_{pr}[\xi]$

- **Commutative algebra:** concept of “generating system along a composition chain” *Matsumura ’86*
- rephrased as “p-generator sequence” in *Vazirani a.o. ’96* for constant vectors in \mathbb{Z}_{pr}^q
- we now introduce same concepts for *polynomial* vectors in $\mathbb{Z}_{pr}^q [\xi]$

Definition Let $v_1(\xi), \ldots, v_k(\xi)$ be vectors in $\mathbb{Z}_{pr}^q [\xi]$ and let $a_j(\xi)$ be polynomials with coefficients in $\{0, 1, \ldots, p - 1\} \subset \mathbb{Z}_{pr}$. Then the vector

$$\sum_{j=1}^{k} a_j(\xi)v_j(\xi)$$

is called a **p-linear combination** of $v_1(\xi), \ldots, v_k(\xi)$. The set of all p-linear combinations of $v_1(\xi), \ldots, v_k(\xi)$ is called the **p-span** of $\{v_1(\xi), \ldots, v_k(\xi)\}$.
Definition Let $v_1(\xi), \ldots, v_k(\xi)$ be vectors in $\mathbb{Z}_p^q[\xi]$. Then they are said to be **p-linearly independent** if there does not exist a nontrivial p-linear combination of $v_1(\xi), \ldots, v_k(\xi)$ that equals zero.
Definition An ordered sequence of vectors $(v_1(\xi), v_2(\xi), \cdots, v_k(\xi))$, with $v_i(\xi) \in \mathbb{Z}_{p^r}^q [\xi]$, is said to be a \textbf{p-generator sequence} if

1) for $1 \leq i \leq k - 1$, the vector $pv_i(\xi)$ can be written as a p-linear combination of $v_{i+1}(\xi), \ldots, v_k(\xi)$ and

2) $pv_k(\xi)$ equals the zero vector.

Important Property of p-Generator Sequence:

$$p-\text{span} \,(v_1(\xi), v_2(\xi), \cdots, v_k(\xi)) = \text{span} \,(v_1(\xi), v_2(\xi), \cdots, v_k(\xi))$$

is a submodule of $\mathbb{Z}_{p^r}^q$.
Definition An ordered sequence of vectors \((v_1(\xi), v_2(\xi), \cdots, v_k(\xi))\), with \(v_i(\xi) \in \mathbb{Z}_{p^r}[\xi]\), is said to be a \textit{p-generator sequence} if

1) for \(1 \leq i \leq k - 1\), the vector \(pv_i(\xi)\) can be written as a \textit{p}-linear combination of \(v_{i+1}(\xi), \ldots, v_k(\xi)\) and

2) \(pv_k(\xi)\) equals the zero vector.

Important Property of \(p\)-Generator Sequence:

\[p-\text{span} \ (v_1(\xi), v_2(\xi), \cdots, v_k(\xi)) = \text{span} \ (v_1(\xi), v_2(\xi), \cdots, v_k(\xi))\]

is a submodule of \(\mathbb{Z}_{p^r}^q\).
DEFINITION An ordered sequence of vectors
$(v_1(\xi), v_2(\xi), \cdots, v_k(\xi))$, with $v_i(\xi) \in \mathbb{Z}_{p^r}^q[\xi]$, is said to be a p-generator sequence if

1) for $1 \leq i \leq k - 1$, the vector $pv_i(\xi)$ can be written as a p-linear combination of $v_{i+1}(\xi), \ldots, v_k(\xi)$ and

2) $pv_k(\xi)$ equals the zero vector.

IMPORTANT PROPERTY OF p-GENERATOR SEQUENCE:

p-span $(v_1(\xi), v_2(\xi), \cdots, v_k(\xi)) = \text{span} (v_1(\xi), v_2(\xi), \cdots, v_k(\xi))$

is a submodule of $\mathbb{Z}_{p^r}^q$.

DEFINITION An ordered sequence of vectors \((v_1(\xi), v_2(\xi), \cdots, v_k(\xi))\), with \(v_i(\xi) \in \mathbb{Z}_{p^r}^q[\xi]\), is said to be a **\(p\)-generator sequence** if

1) for \(1 \leq i \leq k - 1\), the vector \(pv_i(\xi)\) can be written as a \(p\)-linear combination of \(v_{i+1}(\xi), \ldots, v_k(\xi)\) and

2) \(pv_k(\xi)\) equals the zero vector.

IMPORTANT PROPERTY OF \(p\)-GENERATOR SEQUENCE:

\[
p-\text{span} \ (v_1(\xi), v_2(\xi), \cdots, v_k(\xi)) = \text{span} \ (v_1(\xi), v_2(\xi), \cdots, v_k(\xi))
\]

is a submodule of \(\mathbb{Z}_{p^r}^q\).
Definition A kernel representation $R(\sigma)w = 0$ is in composed form if the rows of $R(\xi)$ are a p-generator sequence, up to row permutation.

Example as before in ring \mathbb{Z}_{27}:

- $A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \end{bmatrix}$ is not in composed form.

- $\begin{bmatrix} A(\xi) \\ pA(\xi) \\ p^2A(\xi) \\ p^r-1A(\xi) \end{bmatrix} = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \\ 0 & 3\xi^2 \\ 3 & 0 \end{bmatrix}$ is in composed form.

- Another composed rep. $R(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \\ 9 & 0 \end{bmatrix}$.
Definition A kernel representation \(R(\sigma)w = 0 \) is in composed form if the rows of \(R(\xi) \) are a \(p \)-generator sequence, up to row permutation.

Example as before in ring \(\mathbb{Z}_{27} \):

- \(A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \end{bmatrix} \) is not in composed form.

- \(\begin{bmatrix} A(\xi) \\ pA(\xi) \\ p^2A(\xi) \\ \vdots \\ p^{r-1}A(\xi) \end{bmatrix} = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \\ 0 & 3\xi^2 \\ 3 & 0 \\ 9 & 9\xi^2 \end{bmatrix} \) is in composed form.

- Another composed rep: \(R(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 0 & 3\xi^2 \\ 14 & 9\xi \\ \xi & 0 \\ 3 & 0 \\ 9 & 0 \end{bmatrix} \)
Definition A kernel representation $R(\sigma)w = 0$ is in composed form if the rows of $R(\xi)$ are a p-generator sequence, up to row permutation.

Example as before in ring \mathbb{Z}_{27}:

- $A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \end{bmatrix}$ is not in composed form.

- $\begin{bmatrix} A(\xi) \\ pA(\xi) \\ p^2A(\xi) \\ \vdots \\ p^{r-1}A(\xi) \end{bmatrix} = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \\ 0 & 3\xi^2 \\ 3 & 0 \\ 0 & 9\xi^2 \\ 9 & 0 \end{bmatrix}$ is in composed form.

- Another composed rep: $R(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 0 & 3\xi^2 \\ 14 & 9\xi \\ \xi & 0 \\ 3 & 0 \\ 9 & 0 \end{bmatrix}$
Definition A kernel representation $R(\sigma)w = 0$ is in composed form if the rows of $R(\xi)$ are a p-generator sequence, up to row permutation.

Example as before in ring \mathbb{Z}_27:

- $A(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \end{bmatrix}$ is not in composed form.

- $\begin{bmatrix} A(\xi) \\ pA(\xi) \\ p^2A(\xi) \\ \vdots \\ p^{r-1}A(\xi) \end{bmatrix} = \begin{bmatrix} 0 & \xi^2 \\ 1 & 18\xi \\ 0 & 3\xi^2 \\ 3 & 0 \\ 0 & 9\xi^2 \\ 9 & 0 \end{bmatrix}$ is in composed form.

- Another composed rep: $R(\xi) = \begin{bmatrix} 0 & \xi^2 \\ 0 & 3\xi^2 \\ 14 & 9\xi \\ \xi & 0 \\ 3 & 0 \\ 9 & 0 \end{bmatrix}$
Definition (KPP '07) Let M be a submodule of $\mathbb{Z}_p^q[\xi]$, written as a p-span of a p-generator sequence $(v_1(\xi), v_2(\xi), \ldots, v_k(\xi))$. Then $(v_1(\xi), v_2(\xi), \ldots, v_k(\xi))$ is called a **reduced p-basis** for M if the vectors $v_1^{\lrc}, v_2^{\lrc}, \ldots, v_k^{\lrc}$ are p-linearly independent in \mathbb{Z}_p^q.

Leads to concepts of

- p-dimension of M: $p-\dim (M) = k$
- p-degrees of M: given by $\deg v_1(\xi), \deg v_2(\xi), \ldots, \deg v_k(\xi)$

Algorithm (KPP '07)

Input data: module $M := \text{span} (w_1(\xi), \ldots, w_g(\xi))$ with $w_i(\xi) \in \mathbb{Z}_p^q[\xi]$

Output data: reduced p-basis $(v_1(\xi), \ldots, v_k(\xi))$
Definition (KPP '07) Let M be a submodule of $\mathbb{Z}_{p^r}^q[\xi]$, written as a p-span of a p-generator sequence $(v_1(\xi), v_2(\xi), \ldots, v_k(\xi))$. Then $(v_1(\xi), v_2(\xi), \ldots, v_k(\xi))$ is called a **reduced p-basis** for M if the vectors $v_1^{lrc}, v_2^{lrc}, \ldots, v_k^{lrc}$ are p-linearly independent in $\mathbb{Z}_{p^r}^q$.

Leads to concepts of

- p-dimension of M: $p-$dim $(M) = k$
- p-degrees of M: given by $\deg v_1(\xi), \deg v_2(\xi), \ldots, \deg v_k(\xi)$

Algorithm (KPP '07)

Input data: module $M := \text{span} (w_1(\xi), \ldots, w_g(\xi))$ with $w_i(\xi) \in \mathbb{Z}_{p^r}^q[\xi]$

Output data: reduced p-basis $(v_1(\xi), \ldots, v_k(\xi))$
Definition *(KPP ’07)* Let M be a submodule of $\mathbb{Z}_q^{\mathbb{P}_r}[\xi]$, written as a p-span of a p-generator sequence $(v_1(\xi), v_2(\xi), \ldots, v_k(\xi))$. Then $(v_1(\xi), v_2(\xi), \ldots, v_k(\xi))$ is called a **reduced p-basis** for M if the vectors $v_1^{\text{lrc}}, v_2^{\text{lrc}}, \ldots, v_k^{\text{lrc}}$ are p-linearly independent in $\mathbb{Z}_q^{\mathbb{P}_r}$.

Leads to concepts of

- **p-dimension of M**: $p-$dim $(M) = k$
- **p-degrees of M**: given by $\deg v_1(\xi), \deg v_2(\xi), \ldots, \deg v_k(\xi)$

Algorithm *(KPP ’07)*

Input data: module $M := \text{span} (w_1(\xi), \ldots, w_g(\xi))$ with $w_i(\xi) \in \mathbb{Z}_q^{\mathbb{P}_r}[\xi]$

Output data: reduced p-basis $(v_1(\xi), \ldots, v_k(\xi))$
Definition (KPP ’07) Let M be a submodule of $\mathbb{Z}_q^r[\xi]$, written as a p-span of a p-generator sequence $(v_1(\xi), v_2(\xi), \cdots, v_k(\xi))$. Then $(v_1(\xi), v_2(\xi), \cdots, v_k(\xi))$ is called a **reduced p-basis** for M if the vectors $v_1^{\text{lrc}}, v_2^{\text{lrc}}, \ldots, v_k^{\text{lrc}}$ are p-linearly independent in \mathbb{Z}_q^r.

Leads to concepts of

- **p-dimension of M**: $p-\dim (M) = k$
- **p-degrees of M**: given by $\deg v_1(\xi), \deg v_2(\xi), \ldots, \deg v_k(\xi)$

Algorithm (KPP ’07)

Input data: module $M := \text{span} (w_1(\xi), \ldots, w_g(\xi))$ with $w_i(\xi) \in \mathbb{Z}_q^r[\xi]$

Output data: reduced p-basis $(v_1(\xi), \ldots, v_k(\xi))$
Definition (KPP ’07) Let $R(\xi)$ be a matrix in $\mathbb{Z}_{p^r}^{k \times q}[\xi]$ with row degrees d_1, \ldots, d_k. Let

$$a(\xi) = \begin{bmatrix} a_1(\xi) & \cdots & a_k(\xi) \end{bmatrix}$$

be a nonzero polynomial vector with coefficients in

$\{0, 1, \ldots, p - 1\} \subset \mathbb{Z}_{p^r}$ for $i = 1, \ldots, k$. Then $R(\xi)$ is said to have the **p-predictable-degree property** if the row degree of $a(\xi)R(\xi)$ equals

$$\max_{1 \leq i \leq k} (d_i + \deg a_i)$$

Theorem (KPP ’07) Let $R(\xi)$ be a matrix in $\mathbb{Z}_{p^r}^{k \times q}[\xi]$. Then $R(\xi)$ has the p-predictable-degree property iff the rows of R^{lrc} are p-linearly independent.
Definition (KPP '07) Let $R(\xi)$ be a matrix in $\mathbb{Z}_{p^r}^{k \times q}[\xi]$ with row degrees d_1, \ldots, d_k. Let

$$a(\xi) = \begin{bmatrix} a_1(\xi) & \cdots & a_k(\xi) \end{bmatrix}$$

be a nonzero polynomial vector with coefficients in $\{0, 1, \ldots, p - 1\} \subset \mathbb{Z}_{p^r}$ for $i = 1, \ldots, k$. Then $R(\xi)$ is said to have the **p-predictable-degree property** if the row degree of $a(\xi)R(\xi)$ equals

$$\max_{1 \leq i \leq k} \left(d_i + \deg a_i \right)$$

Theorem (KPP '07) Let $R(\xi)$ be a matrix in $\mathbb{Z}_{p^r}^{k \times q}[\xi]$. Then $R(\xi)$ has the p-predictable-degree property iff the rows of R^{lrc} are p-linearly independent.
Example as before in ring \mathbb{Z}_{27}:

\[
A(\xi) = \begin{bmatrix}
0 & \xi^2 \\
1 & 18\xi
\end{bmatrix} \rightarrow \text{Algorithm} \quad R(\xi) = \\
\begin{bmatrix}
0 & \xi^2 \\
0 & 3\xi^2 \\
14 & 9\xi \\
\xi & 0 \\
3 & 0 \\
9 & 0
\end{bmatrix}
\]
Theorem *(PARAMETRIZATION; KPP ’07)* Let $\mathcal{B} = \ker R(\sigma)$ with row degrees d_1, \ldots, d_k and

- $R(\xi)$ in composed form
- $R(\xi)$ has p-predictable-degree property

Then vector $V(\xi)$ is an annihilator of \mathcal{B} of row degree d if and only if there exists a vector $Q(\xi) = \begin{bmatrix} q_1(\xi) & \cdots & q_k(\xi) \end{bmatrix}$ in $\mathbb{Z}_p^k[\xi]$ such that

1. $V(\xi) = Q(\xi)R(\xi)$
2. $\deg q_i(\xi) \leq d - d_i$ for $i = 1, \ldots, k$
3. the coefficients of $q_i(\xi)$ are restricted to $
\{0, 1, \ldots, p - 1\} \subset \mathbb{Z}_p$ for $i = 1, \ldots, k$.

Furthermore, $Q(\xi)$ is unique.
Theorem (Parametrization; KPP '07) Let \(B = \ker R(\sigma) \) with row degrees \(d_1, \ldots, d_k \) and

- \(R(\xi) \) in composed form
- \(R(\xi) \) has \(p \)-predictable-degree property

Then vector \(V(\xi) \) is an annihilator of \(B \) of row degree \(d \) if and only if there exists a vector \(Q(\xi) = \begin{bmatrix} q_1(\xi) & \cdots & q_k(\xi) \end{bmatrix} \) in \(\mathbb{Z}_{p^r}[\xi] \) such that

1. \(V(\xi) = Q(\xi)R(\xi) \)
2. \(\deg q_i(\xi) \leq d - d_i \) for \(i = 1, \ldots, k \)
3. the coefficients of \(q_i(\xi) \) are restricted to \(\{0, 1, \ldots, p - 1\} \subseteq \mathbb{Z}_{p^r} \) for \(i = 1, \ldots, k \).

Furthermore, \(Q(\xi) \) is unique.
Theorem *(PARAMETRIZATION; KPP ’07)* Let $\mathcal{B} = \ker R(\sigma)$ with row degrees d_1, \ldots, d_k and

- $R(\xi)$ in composed form
- $R(\xi)$ has p-predictable-degree property

Then vector $V(\xi)$ is an annihilator of \mathcal{B} of row degree d if and only if there exists a vector $Q(\xi) = \left[q_1(\xi) \cdots q_k(\xi) \right]$ in $\mathbb{Z}_{p^r}^k[\xi]$ such that

1. $V(\xi) = Q(\xi)R(\xi)$
2. $\deg q_i(\xi) \leq d - d_i$ for $i = 1, \ldots, k$
3. the coefficients of $q_i(\xi)$ are restricted to $\{0, 1, \ldots, p - 1\} \subset \mathbb{Z}_{p^r}$ for $i = 1, \ldots, k$.

Furthermore, $Q(\xi)$ is unique.
Theorem *(Parametrization; KPP ’07)* Let $\mathcal{B} = \ker R(\sigma)$ with row degrees d_1, \ldots, d_k and

- $R(\xi)$ in composed form
- $R(\xi)$ has p-predictable-degree property

Then vector $V(\xi)$ is an annihilator of \mathcal{B} of row degree d if and only if there exists a vector $Q(\xi) = \left[q_1(\xi) \cdots q_k(\xi) \right]$ in $\mathbb{Z}_{p^r}[\xi]$ such that

1. $V(\xi) = Q(\xi)R(\xi)$
2. $\deg q_i(\xi) \leq d - d_i$ for $i = 1, \ldots, k$
3. the coefficients of $q_i(\xi)$ are restricted to $\{0, 1, \ldots, p - 1\} \subset \mathbb{Z}_{p^r}$ for $i = 1, \ldots, k$.

Furthermore, $Q(\xi)$ is unique.
Theorem *(PARAMETRIZATION; KPP ’07)* Let $\mathcal{B} = \ker R(\sigma)$ with row degrees d_1, \ldots, d_k and

- $R(\xi)$ in composed form
- $R(\xi)$ has p-predictable-degree property

Then vector $V(\xi)$ is an annihilator of \mathcal{B} of row degree d if and only if there exists a vector $Q(\xi) = \left[q_1(\xi) \cdots q_k(\xi) \right]$ in $\mathbb{Z}_p^k[\xi]$ such that

1. $V(\xi) = Q(\xi)R(\xi)$
2. $\deg q_i(\xi) \leq d - d_i$ for $i = 1, \ldots, k$
3. the coefficients of $q_i(\xi)$ are restricted to $\{0, 1, \ldots, p - 1\} \subset \mathbb{Z}_p$ for $i = 1, \ldots, k$.

Furthermore, $Q(\xi)$ is unique
CONCLUSIONS:

- Row reducedness defined for $k \times q$ polynomial matrices $R(\xi)$ with coefficients in \mathbb{Z}_p^r, as
 - in composed form AND
 - p-dim (rows of R^{lrc}) = k
- solves open problem
- gives parametrization result that extends field result

FUTURE WORK:

- apply to minimal polynomial interpolation problems over \mathbb{Z}_p^r
- develop dual theory for image representations $w = G(\sigma)u$ of systems over \mathbb{Z}_p^r
- apply to convolutional codes over \mathbb{Z}_p^r given by encoder $w = G(\sigma)u$ or syndrome former $H(\sigma)w = 0$.
CONCLUSIONS:

- Row reducedness defined for $k \times q$ polynomial matrices $R(\xi)$ with coefficients in \mathbb{Z}_{p^r}, as
 - in composed form AND
 - p-dim (rows of R^{lrc}) = k

- solves open problem
- gives parametrization result that extends field result

FUTURE WORK:

- apply to minimal polynomial interpolation problems over \mathbb{Z}_{p^r}
- develop dual theory for image representations $w = G(\sigma)u$ of systems over \mathbb{Z}_{p^r}
- apply to convolutional codes over \mathbb{Z}_{p^r} given by encoder $w = G(\sigma)u$ or syndrome former $H(\sigma)w = 0$.
Conclusions:

- Row reducedness defined for \(k \times q \) polynomial matrices \(R(\xi) \) with coefficients in \(\mathbb{Z}_{p^r} \), as
 - in composed form AND
 - \(p\)-dim (rows of \(R^{\text{lrc}} \)) = \(k \)
- solves open problem
- gives parametrization result that extends field result

Future Work:

- apply to minimal polynomial interpolation problems over \(\mathbb{Z}_{p^r} \)
- develop dual theory for image representations \(w = G(\sigma)u \) of systems over \(\mathbb{Z}_{p^r} \)
- apply to convolutional codes over \(\mathbb{Z}_{p^r} \) given by encoder \(w = G(\sigma)u \) or syndrome former \(H(\sigma)w = 0 \).
Conclusions:

- Row reducedness defined for $k \times q$ polynomial matrices $R(\xi)$ with coefficients in \mathbb{Z}_{p^r}, as
 - in composed form AND
 - p-dim (rows of R_{lrc}) = k
- solves open problem
- gives parametrization result that extends field result

Future Work:

- apply to minimal polynomial interpolation problems over \mathbb{Z}_{p^r}
- develop dual theory for image representations $w = G(\sigma)u$ of systems over \mathbb{Z}_{p^r}
- apply to convolutional codes over \mathbb{Z}_{p^r} given by encoder $w = G(\sigma)u$ or syndrome former $H(\sigma)w = 0$.
CONCLUSIONS:

• Row reducedness defined for $k \times q$ polynomial matrices $R(\xi)$ with coefficients in \mathbb{Z}_{p^r}, as
 • in composed form AND
 • p-dim (rows of R_{lrc}) = k
• solves open problem
• gives parametrization result that extends field result

FUTURE WORK:

• apply to minimal polynomial interpolation problems over \mathbb{Z}_{p^r}
• develop dual theory for image representations $w = G(\sigma)u$ of systems over \mathbb{Z}_{p^r}
• apply to convolutional codes over \mathbb{Z}_{p^r} given by encoder $w = G(\sigma)u$ or syndrome former $H(\sigma)w = 0$.
CONCLUSIONS:

- Row reducedness defined for $k \times q$ polynomial matrices $R(\xi)$ with coefficients in \mathbb{Z}_{p^r}, as
 - in composed form AND
 - p-dim (rows of R^{lrc}) = k
- solves open problem
- gives parametrization result that extends field result

FUTURE WORK:

- apply to minimal polynomial interpolation problems over \mathbb{Z}_{p^r}
- develop dual theory for image representations $w = G(\sigma)u$ of systems over \mathbb{Z}_{p^r}
 - apply to convolutional codes over \mathbb{Z}_{p^r} given by encoder $w = G(\sigma)u$ or syndrome former $H(\sigma)w = 0$.
CONCLUSIONS:

- Row reducedness defined for $k \times q$ polynomial matrices $R(\xi)$ with coefficients in \mathbb{Z}_p^r, as
 - in composed form AND
 - p-dim (rows of R^{lrc}) = k
- solves open problem
- gives parametrization result that extends field result

FUTURE WORK:

- apply to minimal polynomial interpolation problems over \mathbb{Z}_p^r
- develop dual theory for image representations $w = G(\sigma)u$ of systems over \mathbb{Z}_p^r
- apply to convolutional codes over \mathbb{Z}_p^r given by encoder $w = G(\sigma)u$ or syndrome former $H(\sigma)w = 0$.