Abstract Logic programming

- What is a *logic programming language*? How is it different from *theorem proving*?

- The premise behind logic programming is that the operational aspects of programming constructs coincides with the logical interpretation. For example: in Prolog, when a user query a goal $A \land B$, given a program P, he/she expects the interpreter to attempt proving A and B (with the same program P).

- Note that the program P is consulted only when the goal is *atomic*, i.e., no logical connectives appear in it.

- We take the abstract view of logic programming as *goal-directed proof search*.

Programming = Logic + ...

- In early days of logic programming, Bob Kowalski wrote the following equation

 \[\text{Algorithm} = \text{Logic} + \text{Control} \]

- This has been greatly elaborated in subsequent years to something like

 \[\text{Programming} = \text{Logic} + \text{Control} + \text{I/O} + \text{Modules} \]
 \[+ \text{Concurrency} + \text{Object-oriented} + \ldots. \]

- An important research goal in the specification of programming language is to try to achieve

 \[\text{Programming} = \text{Logic} \]

 This would require a rethink on both the ‘programming’ part and the ‘logic’ part. Not all programming activities require logic. And we shouldn’t just stick to classical logic.
Specifying computation as proof search

- In specifying computation in a logic programming language, we specify
 - a signature Σ containing the non-logical constants that the computation will involve.
 - a logic program P, which is a multiset of Σ-formulas that specifies the meaning of the constants in Σ, and
 - a query or goal G, which is a Σ-formula.

- Computation is the process of attempting to prove the sequent $\Sigma : P \rightarrow G$. If successful, the resulting proof could be returned, e.g., in forms of answer substitutions.
Problems with proof search

Given a sequent, there are potentially many directions to explore:

- We can use the cut rule.
- Structural rules: unrestricted contraction/weakening.
- Left/right introduction rules.
- Finding instantiations of variables in quantifier rules.
- Initial rule.

Some obvious reduction in search space:

- By cut-elimination, we need not consider the cut rule.
- Structural rules can be absorbed into initial and introduction rules.

More difficult problems:

- Variable instantiations: use *unification* algorithm.
- Left/right choices of intro rules: *goal-directed* proof search.
An idealized interpreter

An idealized interpreter has three components: signature Σ, a set of Σ-formulas \mathcal{P} (program) and a Σ-formula G (goal). The *state* of this idealized interpreter is denoted by the sequent $\Sigma : \mathcal{P} \rightarrow G$. Desirable operational behaviors of this interpreter:

AND Reduce $\Sigma : \mathcal{P} \rightarrow B_1 \land B_2$ to $\Sigma : \mathcal{P} \rightarrow B_1$ and $\Sigma : \mathcal{P} \rightarrow B_2$.

OR Reduce $\Sigma : \mathcal{P} \rightarrow B_1 \lor B_2$ to either $\Sigma : \mathcal{P} \rightarrow B_1$ or $\Sigma : \mathcal{P} \rightarrow B_2$.

INST Reduce $\Sigma : \mathcal{P} \rightarrow \exists \tau x.B$ to $\Sigma : \mathcal{P} \rightarrow B[t/x]$, for some Σ-term t.

AUGMENT Reduce $\Sigma : \mathcal{P} \rightarrow B_1 \supset B_2$ to $\Sigma : \mathcal{P}, B_1 \rightarrow B_2$.

GENERIC Reduce $\Sigma : \mathcal{P} \rightarrow \forall \tau x.B$ to $\Sigma, c : \tau : \mathcal{P} \rightarrow B[c/x]$, where c is a “new constant”.

TRUE The $\Sigma : \mathcal{P} \rightarrow \top$ is provable immediately.

Note: these reductions do not consider the logic program or the signature at all. *Behaviors of logical connectives cannot be modified by logic programs*.
Completeness problems

We cannot use arbitrary formulas as programs if we want to retain the goal-directed search behavior. The following sequents have no goal-directed proofs:

- $\Sigma : p \lor q \rightarrow q \lor p$
- $\Sigma : (ra \land rb) \supset q \rightarrow \exists i x (rx \supset q)$

What restrictions should be made about program formulas to guarantee completeness of goal-directed proof search?
Uniform provability

- A cut-free intuitionistic proof is a \textit{uniform proof} if every sequent in the proof with a non-atomic succedent is the conclusion of a right-introduction rule.

- Let \vdash be a provability relation in some logic. Let \mathcal{D} be a set of formulas denoting program clauses and let \mathcal{G} be a set of formulas denoting goal formulas in an intended logic programming. The triple $\langle \mathcal{D}, \mathcal{G}, \vdash \rangle$ is an \textit{abstract logic programming language} if and only if for every finite subset \mathcal{P} of \mathcal{D} and for every $G \in \mathcal{G}$, $\Sigma; \mathcal{P} \vdash G$ if and only if $\Sigma : \mathcal{P} \rightarrow G$ has a uniform proof.
Horn clauses

Syntax of first-order Horn clauses:

\[G ::= \top | A | G \land G | G \lor G | \exists_{\tau}x.G \]
\[D ::= A | G \supset A | D \land D | \forall_{\tau}x.D \]

D-formulas are called *program clauses* and *G*-formulas are called *goal formulas*. Let \(\vdash_{IL} \) denote intuitionistic provability. Then \(\langle D, G, \vdash_{IL} \rangle \) is an abstract programming language.
Actually, for this fragment, classical and intuitionistic provability coincides.
The right-intro rules with backchaining rules are complete for intuitionistic logic (for the horn fragment).
Hereditary harrop formulas

\[G ::= \top \mid A \mid G \land G \mid G \lor G \mid \exists \tau x. G \mid D \supset G \mid \forall \tau x. G \]

\[D ::= A \mid G \supset D \mid D \land D \mid \forall \tau x. D \]

\[\langle D, G, \vdash_{IL} \rangle \] is an abstract programming language.

The presence of implication in HH-goals allows one to encode the notion of modules.
Higher-order Horn clauses

We can extend both Horn and hereditary Harrop fragments with higher-order quantifications, but the shape of program clauses must be restricted: Let \mathcal{H}_2 denote the set of λ-normal terms that do not contain \supset or \bot. Let A_r denote a rigid atom in \mathcal{H}_2.

$$G ::= \top | A | G \land G | G \lor G | \exists_\tau x. G | D \supset G | \forall_\tau x. G$$

$$D ::= A_r | G \supset A_r | D \land D | \forall_\tau x. D$$

Notice that the head of program clauses must be a rigid atomic formula in \mathcal{H}_2. Both higher-order horn clauses and higher-order hereditary formulas are abstract logic programming languages.
Reasoning about logic programs

Cut and cut elimination can be used to relate provability in logic programming languages.
Suppose \(\vdash_L \) denote provability in the fragment of language under consideration. Let \(\vdash_{L'} \) be a superset of \(\vdash_L \) (e.g., a richer logic with induction, etc.). Suppose we can prove in \(L' \) that \(P' \vdash_{L'} P \) for some program \(P \). Then we know that whenever \(P \vdash_{L'} G \), by cut we have \(P' \vdash_{L'} G \), and by cut elimination, we have \(P' \vdash_L G \).
What this means is that a proof of, say, program equivalence in the richer logic \(L' \) coincides with the operational equivalence of the logic programs.
EXAMPLES

- Modular programming
- Abstract data types
- Higher-order programming
- Hypothetical judgments
- Encoding operational semantics of languages