Programming in Higher-Order Logic
Lecture 5

Alwen Tiu
The Australian National University

ANU Logic Summer School
Outline

- A logical notion of modules and abstraction.
- Hereditary Harrop formulae.
- Structured operational semantics (SOS).
- Encoding SOS in \(\lambda \text{Prolog} \).
Recursion over structures with bindings

• Consider the encoding of untyped \(\lambda \) terms in Horn logic:

\[
app : tm \rightarrow tm \quad \quad \quad abs : (tm \rightarrow tm) \rightarrow tm.
\]

Suppose we want to write a predicate that recognize an untyped \(\lambda \)-term, how do we do it?

• The first problem is that of recognizing a variable: is \(x \) a \(\lambda \)-term? A related problem is recognizing an abstraction: how do we know that \(abs(\lambda x.t) \) is an encoding of an untyped \(\lambda \) term?

• In this encoding, we cannot form a formal statement that says “\(x \) is a variable” (and there is a good logical reason to this).
Recursion over binders can be captured using a form of \textit{generic} and \textit{hypothetical} judgments, e.g.:

\begin{quote}
To recognize $\text{abs}(\lambda x.t)$, we show that, given a new constant c, and assuming that c is an encoding of an untyped λ-term, the term $t[x \mapsto c]$ is an encoding of an untyped λ-term.
\end{quote}

The constant c must be a new constant, hence embodying the notion of genericity: the statement holds not by virtue of a particular value of c, but independently of it.

This notion of genericity is built-in in the sequent calculus, via the introduction rule for universal quantifier.

Formally, the above hypothetical and generic judgments can be stated as

\[
\text{term (abs (\lambda x.t))} \equiv \forall x (\text{term } x \Rightarrow \text{ term } t).
\]
Information hiding and modular programming

- Incorporating implication and universal quantification allows us to capture a notion of modules and abstraction.
- Recall the proof rules for \(\forall \) and \(\Rightarrow \) on the right-hand side of sequents:

\[
\begin{align*}
\Sigma, c : \tau; \Gamma &\rightarrow G[x \mapsto c] & \forall_{R, c \text{ new}} &\Sigma; \Gamma \rightarrow \forall_{\tau} x. G \\
\Sigma; \Gamma &\rightarrow \forall_{\tau} x. G & \Sigma; \Gamma, D &\rightarrow G & \Rightarrow_{R} &\Sigma; \Gamma \rightarrow D \Rightarrow G
\end{align*}
\]

- \(\forall \) can be used to hide the details of \(c \).
- \(\Rightarrow \) can be used to augment the “program” \(\Gamma \) with a new program \(D \) (i.e., loading a module \(D \)).
Hereditary Harrop formulae

- We consider an extension of Horn clauses which allows universal quantifier and implication in goal formulae.
- This class of formulae is called *hereditary Harrop (HH) formulae*:

\[
D ::= A_r \mid G \Rightarrow A_r \mid \forall x. D \mid D \land D
\]
\[
G ::= \top \mid A \mid G \land G \mid G \lor G \mid \forall x.G \mid \exists x.G \mid D \Rightarrow G.
\]

Here \(A \) is an atomic formula and \(A_r \) is a *rigid* atomic formula.
- The \(D \)-formulae are called program clauses and the \(G \)-formulae are goal formulae.
- We call the fragment of higher-order logic restricted to HH formulae as *HH-logic*.
An idealized interpreter for HH-logic

An idealized interpreter has three components: signature Σ, a set of Σ-formulas \mathcal{P} (program) and a Σ-formula G (goal). The state of this idealized interpreter is denoted by the sequent $\Sigma; \mathcal{P} \rightarrow G$. Desirable operational behaviors of this interpreter:

AND Reduce $\Sigma; \mathcal{P} \rightarrow B_1 \land B_2$ to $\Sigma; \mathcal{P} \rightarrow B_1$ and $\Sigma; \mathcal{P} \rightarrow B_2$.

OR Reduce $\Sigma; \mathcal{P} \rightarrow B_1 \lor B_2$ to either $\Sigma; \mathcal{P} \rightarrow B_1$ or $\Sigma; \mathcal{P} \rightarrow B_2$.

INST Reduce $\Sigma; \mathcal{P} \rightarrow \exists_{\tau} x. B$ to $\Sigma; \mathcal{P} \rightarrow B[t/x]$, for some Σ-term t.

AUGMENT Reduce $\Sigma; \mathcal{P} \rightarrow B_1 \Rightarrow B_2$ to $\Sigma; \mathcal{P}, B_1 \rightarrow B_2$.

GENERIC Reduce $\Sigma; \mathcal{P} \rightarrow \forall_{\tau} x. B$ to $\Sigma, c : \tau; \mathcal{P} \rightarrow B[c/x]$, where c is a "new constant".

TRUE The $\Sigma; \mathcal{P} \rightarrow \top$ is provable immediately.
Classical logic and modular programming

- For the Horn fragment, classical and intuitionistic provability coincide, but not so for the HH fragment.
- Goal-directed search for HH formulae is not complete w.r.t. classical logic, e.g.,
 \[(p \Rightarrow q) \lor p\]
 is a classical tautology but does not have uniform provability. That is, it is not the case that \(p \Rightarrow q\) is provable or \(p\) is provable.
- So logic programming based on classical logic does not naturally support modular programming.
Completeness of goal-directed search for HH logic

Theorem

Let $\Sigma; \Gamma \rightarrow C$ be a sequent where Γ is a set of HH program clauses and C is a HH goal formula. If $\Sigma; \Gamma \rightarrow C$ is derivable then it is derivable using the right-introduction rules and the backchaining rules.
Example: germs in a jar

Consider a program encoding the following knowledge:

- A jar is sterile if every germ in it is dead.
- A germ in a heated jar is dead.
- A particular jar is heated.

\[
\text{sterile } J : - \\
\pi x\ \text{germ}_x \Rightarrow \text{in}_xJ \Rightarrow \text{dead}_x.
\]

\[
\text{dead } X : - \\
\sigma J\ \text{heated}_J , \ \text{germ}_X , \ \text{in}_XJ.
\]

\[
\text{heated } J.
\]

Now consider the query "Is there a sterile jar?"
Example: reversing a list

Use an accumulator to implement “reverse”.

\[\text{rev1 } L \ K :- \]
\[\text{pi rv}\]
\[(\]
\[(\text{pi M} \ \text{rv nil M M}), \]
\[(\text{pi X} \ \text{pi M} \ \text{pi N} \ \text{pi R} \ \text{rv (X::M) R N :- rv M (X::R) N}) \]
\[) \]
\[=> \text{rv L nil K}. \]

The “implementation” (the predicate \text{rv}) is hidden via universal quantification and is loaded only when proving reverse.
Example: another implementation of “reverse”

Consider the following program:

\[\text{rv} \ (X::L) \ R \ :- \ \text{rv} \ L \ (X::R). \]

Start from \(\text{rv} \ L \ \text{nil}\) and do a series of backchaining to get to the formula \(\text{rv} \ \text{nil} \ K\). If this can be done then \(K\) is the reverse of \(L\). This idea is used in the following \textit{reverse} program:

\[\text{rev2} \ L \ K \ :- \]
\[\pi \ \text{rv}\]
\[\quad (\pi \ X\ \pi \ P\ \pi \ Q\ \text{rv} \ (X :: P) \ Q \ :- \ \text{rv} \ P \ (X :: Q)) \]
\[\quad => \ \text{rv} \ \text{nil} \ K \]
\[\quad => \ \text{rv} \ L \ \text{nil}. \]
Example: reasoning about reverse

We show that reverse is symmetric. Suppose that \((\text{rev2 } L \ K)\) is provable. Then

\[
\vdash \forall r. (\forall X \forall P \forall Q. r. (X :: P) \ Q \iff r. P (X :: Q)) \Rightarrow r. \text{nil} \ K \Rightarrow r. \text{nil} \ L
\]

Now, instantiate \(r\) with \(\lambda x \lambda y. \neg (r. y \ x)\).
Then we have

\[
(\forall X \forall P \forall Q. \neg (r. (X :: P) \ Q) \iff \neg (r. P (X :: Q))) \Rightarrow \neg (r. \text{nil} \ K) \Rightarrow \neg (r. \text{nil} \ L)
\]

Hence, by the contrapositive law, we have

\[
(\forall X \forall P \forall Q. r. P (X :: Q) \iff r. (X :: P) \ Q) \Rightarrow (r. \text{nil} \ L \Rightarrow r. \text{nil} \ K)
\]

We can now universally generalize on \(r\) to get to \((\text{rev2 } K \ L)\).

Note: this is “classical” reasoning, but it is valid intuitionistically (why?).
Structured operational semantics

- *Structured operational semantics* [Plotkin’81, Kahn’87] is an abstract description of computation systems, formulated as a deduction system.

- The idea is to specify the meaning of programming constructs without reference to implementation details of the underlying machineries (compiler, abstract machine, etc).

- The so-called *big step semantics* specifies the evaluation of a functional program to a value (i.e., a result of computation), e.g., the “if-then-else” construct can be specified as:

\[
\begin{align*}
& b \downarrow \text{true} \quad s \downarrow v \\
\Rightarrow & (\text{if } b \text{ then } s \text{ else } t) \downarrow v
\end{align*} \quad \begin{align*}
& b \downarrow \text{false} \quad t \downarrow v \\
\Rightarrow & (\text{if } b \text{ then } s \text{ else } t) \downarrow v
\end{align*}
\]

- These evaluation rules can be encoded as program clauses, e.g.,

\[
\forall b \forall s \forall t \forall v ((b \downarrow \text{true} \land s \downarrow v) \Rightarrow (\text{if } b \text{ then } s \text{ else } t) \downarrow v)
\]
A mini functional language

- Consider a functional language based on simply typed λ-calculus, extended with arithmetic and boolean operators, and a fixed point operator, for encoding recursion. Call this language miniFP.

- Type expressions of miniFP:

 $$\tau ::= \text{integer} \mid \text{bool} \mid \tau_1 \rightarrow \tau_2.$$

- In addition to the standard λ calculus operators, we have special operators:
 - “If-then-else” operator.
 - Equality on integers and boolean values; the greater-than relation.
 - Arithmetic operators: $+$, $-$ and \times.

- We do not allow partial applications of special operators, e.g., a term like $(+ m)$ (but we do allow $\lambda n.(+ m n)$).
The term language of miniFP

Terms:

\[
\begin{align*}
 s, t &::= C & A & B & x & \lambda x.t & (s \ t) & \text{fix } x.t & \text{if } B \text{ then } s \text{ else } t \\
 C &::= n & \text{true} & \text{false} \\
 A &::= (s + t) & (s - t) & (s \times t) \\
 B &::= \text{true} & \text{false} & (s = t) & (s > t) & (s \wedge t) & (s \vee t) & (\neg s).
\end{align*}
\]

where \(n \) is an integer (\(\ldots, -2, -1, 0, 1, 2, \ldots \)).

Not all terms formed using this grammar are allowed; we shall use a type system to restrict allowed terms.

A term is a value if it is either an integer, a boolean value, or a \(\lambda \)-abstraction.
The big-step operational semantics (1)

- The judgment $t \Downarrow v$ means t evaluates to value v.
- The "initial" rule (values evaluate to values):
 \[
 \frac{}{v \Downarrow v} \quad \text{v is a value}
 \]
- Rules for arithmetic:
 \[
 \frac{s \Downarrow m \quad t \Downarrow n}{(s \times t) \Downarrow v} \quad v = m \times n
 \]
 where \times is either $+$, $-$ or \times.
- Equality:
 \[
 \frac{s \Downarrow v_1 \quad t \Downarrow v_2}{(\Downarrow s = t)v}
 \]
 where v_1 and v_2 are both integers or both booleans, and v is true if v_1 and v_2 are of the same value, otherwise it is false.
The big-step operational semantics (2)

- Greater-than:

 \[
 \frac{s \downarrow m \quad t \downarrow n}{s > t \downarrow v}
 \]

 where \(m\) and \(n\) are integers and \(v\) is true if \(m\) is greater than \(n\), otherwise it is false.

- If-then-else:

 \[
 \frac{b \downarrow \text{true}}{(\text{if } b \text{ then } s \text{ else } t) \downarrow v} \quad \frac{b \downarrow \text{false}}{(\text{if } b \text{ then } s \text{ else } t) \downarrow v}
 \]

- Boolean operators:

 \[
 \frac{s \downarrow v_1 \quad t \downarrow v_2}{(s \ast t) \downarrow v} \quad \frac{s \downarrow v'}{\neg s \downarrow v \quad v = \neg v'}
 \]

 The binary operator \(\ast\) can be \(\land\) or \(\lor\) and the value \(v\) in this case is obtained by taking, resp., the conjunction and disjunction of \(v_1\) and \(v_2\).
The big-step operational semantics (3)

- Application:

\[
\frac{\text{s} \downarrow (\lambda x.r) \quad \text{t} \downarrow u \quad r[x \mapsto u] \downarrow v}{(s \ t) \downarrow v}
\]

- Fixed point:

\[
\frac{\text{t}[x \mapsto \text{fix } f . t] \downarrow v}{(\text{fix } f . t) \downarrow v}
\]
Example: factorial

The factorial program can be defined via fixed point:

$$\text{fix } f. (\lambda n. \text{if } (n > 0) \text{ then } (f (n - 1)) \times n \text{ else } 1).$$

Now derive the following:

$$(\text{fix } f. (\lambda n. \text{if } (n > 0) \text{ then } (f (n - 1)) \times n \text{ else } 1)) \Downarrow 6$$
Type system for miniFP

- The evaluation relation $t \Downarrow v$ may not be defined for all term t and value v, but only for those which are well-typed, e.g.,

 $$(\lambda x.x) = (\lambda x.x)$$

 cannot be evaluated.

- The type structures for miniFP are essentially those of simply typed λ-calculus, but with polymorphism for abstractions, equality and fixed points.

- The typing judgment is of the form

 $$\Gamma \vdash t : \tau$$

 where Γ is a typing environment (pairs of variables and types).
The typing rules (1)

The rules for simply typed λ-calculus, plus the following:

\[\Gamma \vdash \text{true} : \text{bool} \]
\[\Gamma \vdash \text{false} : \text{bool} \]
\[\Gamma \vdash n : \text{integer} \] (n is an integer)

\[\Gamma \vdash s : \text{bool} \quad \Gamma \vdash t : \text{bool} \]
\[\Gamma \vdash s = t : \text{bool} \]

\[\Gamma \vdash s : \text{integer} \quad \Gamma \vdash t : \text{integer} \]
\[\Gamma \vdash s = t : \text{bool} \]

\[\Gamma \vdash s : \text{integer} \quad \Gamma \vdash t : \text{integer} \]
\[\Gamma \vdash s > t : \text{bool} \]

\[\Gamma \vdash s : \text{integer} \quad \Gamma \vdash t : \text{integer} \]
\[\Gamma \vdash s \ast t : \text{integer} \quad * \in \{+,-,\times\} \]
The typing rules (1)

\[
\begin{align*}
\Gamma \vdash s : \text{bool} & \quad \Gamma \vdash t : \text{bool} \\
\Gamma \vdash s \bullet t : \text{bool} & \quad \bullet \in \{\land, \lor\} \\
\Gamma \vdash s : \text{bool} & \quad \Gamma \vdash \neg s : \text{bool}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash b : \text{bool} & \quad \Gamma \vdash s : \alpha & \quad \Gamma \vdash t : \alpha \\
\Gamma \vdash \text{if } b \text{ then } s \text{ else } t : \alpha
\end{align*}
\]

\[
\begin{align*}
\Gamma, f : \alpha \vdash t[x \mapsto f] : \alpha \\
\Gamma \vdash \text{fix } x . t : \alpha & \quad f \text{ new}
\end{align*}
\]

Exercise: show that the factorial program

\[\text{fix } f . (\lambda n . \text{if } (n > 0) \text{ then } (f (n - 1)) \times n \text{ else } 1)\]

has type \text{integer} \rightarrow \text{integer}.\]
kind tm type. % syntactic category for miniFP terms
kind ty type. % syntactic category for miniFP types

type bool ty. % boolean type
type integer ty. % integer type
type arr ty -> ty -> ty. % arrow type constructor

type tt, ff tm. % true and false
type i int -> tm. % integers

% abstraction and application
type abs (tm -> tm) -> tm. % abstraction
type @ tm -> tm -> tm. % application
infixl @ 120. % @ is infix, and associate to the left.
% equality and greater-than
type eq, gt tm -> tm -> tm.

% if-then-else
type ite tm -> tm -> tm -> tm.

% boolean
type and, or tm -> tm -> tm.
type neg tm -> tm.

% arithmetic
type sum, minus, times tm -> tm -> tm.

% fixed point operator
type fix (tm -> tm) -> tm.
Encoding of the operational semantics

% values
eval tt tt.
eval ff ff.
eval (i I) (i I).
eval (abs M) (abs M).

% applications
eval (M @ N) V :- eval M (abs F), eval N T, eval (F T) V.

% fixed points
eval (fix F) V :- eval (F (fix F)) V.

% special constants
eval (sum M N) (i V) :-
 eval M (i V1), eval N (i V2), V is V1 + V2.
eval (minus M N) (i V) :-
 eval M (i V1), eval N (i V2), V is V1 - V2.
eval (times M N) (i V) :-
 eval M (i V1), eval N (i V2), V is V1 * V2.

......
Encoding of the type system

- In encoding the typing judgment $\Gamma \vdash t : \tau$, we encode implicitly the typing environment Γ as hypotheses in a sequent.

 \[
 \text{type typeof tm} \rightarrow \text{ty} \rightarrow \text{o}.
 \]

- For example, the typing judgment $x : \alpha, y : \beta \vdash t : \tau$ corresponds to provability of the sequent

 \[
 \text{typeof } x \alpha, \text{typeof } y \beta \rightarrow \text{typeof } t \tau
 \]

- Rules that augment the typing environment, e.g.,

 \[
 \begin{aligned}
 \Gamma, x : \alpha & \vdash t : \beta \\
 \overline{\Gamma \vdash \lambda x.t : \alpha \rightarrow \beta}
 \end{aligned}
 \]

 are encoded via hypothetical and generic judgment, e.g.,

 \[
 \text{typeof } (\text{abs } M) (\text{arr } A B) : - \pi x \backslash \text{typeof } x A \Rightarrow \text{typeof } (M x) B.
 \]
Example: factorial

type prog string -> tm -> o.

% Factorial
prog "fact"
(fix fact\ abs n\
ite (gt n (i 0))
 (times n (fact @ (minus n (i 1))))
 (i 1)
).

An example query:

[minifp] ?- prog "fact" F, eval (F @ (i 5)) V.

The answer substitution:
V = i 120
F = fix (W1\ abs (W2\ ite (gt W2 (i 0)) ...
Example: another factorial program

% Tail-recursive factorial: the recursive call to "fact" is the % "last" call.

prog "trec-fact"
(fix fact \ abs n \ abs m\
 ite (eq n (i 0))
 m
 (fact @ (minus n (i 1)) @ (times n m))
).

An example query:

[minifp] ?- prog "trec-fact" F, eval (F @ (i 5) @ (i 1)) V.

The answer substitution:
V = i 120
F = fix (W1 \ abs (W2 \ abs (W3 \ ite (eq W2 (i 0))))

Alwen Tiu (ANU)
Lecture 5
ANU Logic Summer School 29 / 36
Tail-recursion

- A tail-recursive program is a recursive program where the recursive call happens after all other function calls.

- More precisely:
 - A program is tail-recursive if it contains no recursive calls.
 - A program that consists solely of a recursive call (with possibly modified arguments) is tail-recursive.
 - A program is tail-recursive if its body consists of a conditional (if-then-else) where the test contains no recursive calls and where the left and right branches satisfy the tail-recursiveness requirement.

- Tail-recursive programs can be turned into iterative programs with no need to save call stacks.
Example: recognizing tail-recursion

type trec (tm -> tm) -> o.

trec (f \ f).
trec (f \ M).
trec (f \ abs (M f)) :- pi x \ trec (f \ M f x).
trec (f \ (M f) @ N) :- trec M.
trec (f \ ite B (P f) (Q f)) :- trec P, trec Q.

tailrec (fix F) :- trec F.
Example: meta-reasoning about logic programs

Theorem (Type Preservation)

If $\vdash \text{eval } P \ V$ and $\vdash \text{typeof } P \ T \ \text{then } \vdash \text{typeof } V \ T$.

Proof.

By structural induction on uniform proofs and cut elimination.
Summary

- **Logic programming as goal-directed search**: Completeness of goal-directed search as a defining criteria.
- **λ-tree syntax**: A uniform notation for representing syntactic structures.
- Meta-reasoning about properties of programs can benefit from the meta theory of logic, e.g., cut elimination, substitution lemma.
Other extensions

- Using *linear logic* as the logical foundation.
- Encoding a notion of *resources* via linear implication and linear conjunction (the \otimes operator). Example: the Lolli programming language [Miller & Hodas], based on intuitionistic linear logic.
- Concurrent goals: using multiple-conclusion sequents to model concurrent computation. Example: the Forum programming language [Miller].
Focussed proofs and encoding of computation

- Uniform proofs are a special case of focussed proofs.
- The basic idea is to structure proofs into two phases: the asynchronous phase and the synchronous phase.
- All of linear/intuitionistic/classical logic admit a complete focussed proof search strategy.
- Focussed proofs may not be goal-directed, but one still retain the correspondence:

 \[
 \text{Computation} = \text{Focussed proof search}
 \]

- As in the case with goal-directed search, representation of (models of) computation as focussed proofs allows for a logical analysis of computation using logical tools.
Reasoning about computation

- Mechanized reasoning about (logic) programming languages:
 - Bedwyr (INRIA, U. Minnesota, ANU): an automated reasoning tool for proving simple properties of Horn logic programs.
 - Abella (U. Minnesota): an interactive theorem prover that can reason about properties of λProlog programs.
- Meta-logical frameworks for reasoning about computation: need expressive proof principles, e.g., induction and co-induction, support for datatypes for binders, etc.