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Abstract

We begin by showing how to faithfully encode the Classical Modal
Display Logic (CMDL) of Wansing into the Calculus of Structures (CoS) of
Guglielmi. Since every CMDL calculus enjoys cut-elimination, we obtain
a cut-elimination theorem for all corresponding CoS calculi. We then
show how our result leads to a minimal cut-free CoS calculus for modal
logic S5. No other existing CoS calculi for S5 enjoy both these properties
simultaneously.
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1 Introduction

Gentzen’s sequent calculus [12] has proved useful for studying various aspects of
logics like decidability, consistency, definability and even automated deduction.
The main result to prove is usually cut-elimination since most other interesting
properties follow from this result. Cut-free sequent calculi can be found for
many logics, including non-classical logics like modal and substructural logics.
But traditional sequent calculi lack the modularity inherent in Hilbert calculi:
that is, extending an existing cut-free sequent calculus for a logic L into a cut-
free sequent calculus for a conservative extension L; of L is rarely as straight-
forward as simply adding another axiom or rule. A method that often works is
to add the extra axiom, inspect the cuts that then become essential, and then
replace the axiom by a new rule that absorbs these essential cuts and which is
therefore as powerful as the axiom. But this is not a general solution.

Various extensions of Gentzen’s sequent calculi have sought to alleviate the
problem of modularity while still retaining cut-elimination. Here we briefly
discuss the four main ones:

Hypersequents: The hypersequents of Pottinger [22] and Avron [1] extend the
notion of a traditional sequent I' F A with semantic meaning = AT' —
\V/ A into a hypersequent Ty - Ay | To F Ay | --- | T, B A, with
semantic meaning 3i.1 < ¢ < n & = ATL; — VA;. Numerous logics
like relevant logics and modal logics can be given a satisfactory treatment
in this framework, although some care is needed to ensure cut-elimination.

Display Logic: The display logic (we prefer the term display calculi) of Bel-
nap [3] adds structural proxies for every logical connective and also adds
a small collection of reversible “display postulates” which allow us to con-
vert any sequent X (Z) F Y, where structure X contains an occurrence
of a structure Z, into an equivalent sequent either of the form Z + Y’,
or X'  Z, depending upon the number of negative structural connec-
tives which govern the occurrence of Z. The resulting sequent is said to
“display” the occurrence of Z, whence the name display logic. The most
remarkable feature of display calculi is a single uniform cut-elimination
theorem which applies whenever the rules of the display calculus obey
eight easily checked conditions defined by Belnap. Numerous logics like
substructural logics and modal logics can be given a uniform (cut-free)
treatment in this framework too [32, 15, 23], but as Avron points out, the
cut-elimination result is not nearly as useful since it does not imply a true
“subformula property”.

Labelled Sequent Calculi: These calculi explicitly bring the traditional bi-
nary or ternary Kripke-frame semantics of non-classical logics into the
syntax of sequents by allowing us to build sequents from labelled formulae
of the form x : A, which informally captures that A is “true” at world z.
Modular treatments of modal [11, 16, 21] and substructural logics [2, 31]
easily follow, by utilising extra “formulae” of the form R(x,y) or R(z,y, z).



Such calculi can even be used for automated deduction, but the underlying
Kripke conditions often become unwieldy and the need to keep the whole
underlying Kripke model at all times means that these methods rarely
meet the known space-complexity for the logics concerned. Moreover, this
avenue is not open to us if our logic does not possess a natural Kripke-style
semantics.

Calculus of Structures (CoS): These calculi collapse the distinction between
logical and structural connectives, work best for logics with an involutive
negation, and allow rules to be applied anywhere to rewrite one structure
into another. This built-in substitution principle is usually a consequence
of cut-elimination in the other formalisms, so the cut rule of deep inference
calculi reduces to a form of AA —=A — L. The most surprising feature of
deep inference is that it can provide cut-free calculi for logics for which it
is impossible to provide a cut-free Gentzen sequent formulation [30]. Deep
inference calculi have been given for some traditional modal logics [25] and
also for intuitionistic logic [29]. However, direct cut-elimination proofs for
CoS calculi have only been studied for classical logic and extensions of
linear logic. The cut-elimination theorems for CoS calculi for modal and
intuitionistic logics in the literature are proved indirectly via translations
to other calculi. For example, the cut-elimination theorem for the deep
inference calculus for modal logic S5 relies on the cut-elimination theorem
for a hypersequent calculus for the same logic [27].

As stated previously, both hypersequents and labelled sequents allow us to
give a uniform treatment of many modal logics, as long as we are willing to
prove cut-elimination on an individual basis. Recent results of Bruennler [5]
have shown two ways to capture many traditional modal logics uniformly, in a
cut-free manner, without recourse to labels, and without recourse to indirect
cut-elimination arguments. But, as far as we know, the classical modal display
calculi (CMDL) of Wansing [32] captures the broadest range of modal and tense
logics in a uniform and cut-free manner, particularly in the guise formulated by
Kracht [20].

Here we show that deep inference can be used to give a modular treatment
of all modal and tense logics from the CMDL framework. The resulting deep
inference calculi are cut-free, and enjoy properties like locality, the finite choice
property and even atomic contraction, but our proof of cut-elimination still
relies on the general cut-elimination theorem of display calculi.

As an application of our results we investigate three cut-free formulations of
the modal logic S5 in CoS. Specifically, Stouppa [27] has recently given a cut-free
CoS calculus for S5 which essentially corresponds to its Hilbert axiomatisation
as KT45. But it is known that S5 can also be axiomatised as KT4B and as
KT5. Thus Stouppa’s calculus is not minimal. We use our analysis of CMDL
in CoS to find two cut-free CoS calculi, corresponding to KT4B and KT5
respectively. As far as we know, this is the first truly minimal cut-free CoS
calculus for S5.



The paper is set out as follows. We assume that the reader is familiar with
either CoS or CMDL but briefly overview each in Section 2 and Section 3. Sec-
tion 4 describes the formulation of CMDL in CoS as the calculus SMS. Section 5
shows that SMS enjoys soundness, completeness, and cut-elimination. Section 8
shows how to extend SMS to capture all properly displayable “primitive” modal
and tense logics. Section 6 shows that all these extensions enjoy various im-
portant properties like locality, finite choice property, atomic contraction, and
cut-admissibility. Section 10 concludes with a discussion of generalisations and
future work.

2 Overview of the calculus of structures

The calculus of structures (CoS) [17] is a particular formalism that employs deep
inference rules, where rules can be applied to arbitrary subexpressions in a given
logical expression. Deep inference is an old concept in proof theory, which dates
back to Schiitte’s work [24] in the 1970s. Systems in the calculus of structures
can be seen as rewrite systems. A rule scheme in CoS typically has the form

S{1}
" s(ry

where p is the name of the rule, R and T are formulae (or more generally logical
expressions) and S{ } is a formula-context. In general, S{ } can be an arbitrary
context, but in the current paper we restrict S{ } to strictly positive contexts:
that is, the hole does not appear under any negation. We shall work only with
logics which have involutive negations, hence the negations can be pushed to
the atomic level, giving a formula in negation normal form.

Basically, every valid implication R D T can be turned into a rule in CoS
as above so that the CoS calculus is essentially a “right sided” calculus. The
guiding principles for selecting a set of rules out of the possibly infinite choices
are locality and the finite choice property of the rule as described next.

Locality means that in applying the rule in backward proof search, one does
not have to inspect the entire context or the entire formula involved. The rules
for modalities in sequent calculus are usually non-local in this respect, since they
require that the context is of certain forms. For example, the traditional rule
for introducing [J into the right hand side of a sequent requires the conclusion
to be of the form >, O0A + Oy, I, where 3 contains no C-formulae, requiring us
to partition the left hand side into two disjoint sets.

The finite choice property is reminiscent of the “subformula property” in
sequent calculus. A rule p has the finite choice property if, for every formula F,
there are only a finite number of instances of p such that the conclusion of the
rule matches the formula.

There are two basic rules that are common to all classical systems in the
calculus of structures [17, 6, 28], the so-called interaction rules shown below,



where A is the negation of A, and both are in negation normal form:

| S{T} . S{ANA}

Siav Ay TR

Notice that in classical logic, the rules correspond to the theorem T D> AV A and
its contrapositive A A A D L. These rules are counterparts of the identity and
cut rules in sequent calculus. That is, the single-sided version  p, —p, 3 of the
identity rule T',p = p, A corresponds to accepting T D p V —p since the identity
rule always stops backward proof search, while the single-sided premises - A, %
and F 4,3 of the single-sided cut rule with conclusion - ¥ can instead be seen
as a backward application of the (Ar) rule to the equivalent conclusion + X, 1,
which corresponds to accepting AA A D L.

The rules in CoS usually come in pairs of down-rules and up-rules which
satisfy some duality property. More precisely, given a down rule p | as shown
below left, the corresponding up rule p T is obtained by its “contrapositive” as
shown below right:

| S{T} , S{R}
7 S{Ry !
The down rules are rules which have the locality and finite choice properties,
and are the ones we wish to retain. The up-rules, such as the i ] rule above,
are needed to simulate the cut rules (see Section 4) and are admissible for
provability. The up-rules usually do not satisfy the finite choice property. For
example, the i1 rule is non-finite, since we can instantiate A with any formula
and still have the conclusion of the rule instance match 1. The cut-elimination
theorem in CoS is therefore the ability to eliminate the up-rules.

3 Classical Modal Display Logic

Display Logic is a generalised sequent calculus framework due to Nuel Belnap
[3]. The following characteristics are fundamental to all display calculi [15, 14].
For modal logic, we follow the notation of Kracht [20] rather than Belnap or
Wansing [32] since we rely on results from Kracht, except that we use slightly
different notation for the two past-time modalities, and we make a small but
insignificant change to their introduction rules.

Structural Connectives. Display calculi utilise one extra structural con-
nective for every pair of dual or residual logical connectives. The structural
connective is overloaded just as Gentzen overloaded the structural connective
comma to mean conjunction when appearing on the left of turnstile and disjunc-
tion when appearing on the right of turnstile. Depending upon the monotonic
or anti-monotonic properties of the dual/residual logical connectives it captures,
the new structural connective has “positive” positions and/or “negative” posi-
tions.
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Figure 1: Some display postulates in CMDL

CMDL structures X are built from CMDL formulae F and CMDL structural
constant I according to the grammar below:

F = T|L|p|FVF|FAF|-F|RF|6F|0OF|OF
X = F|I|+«X|eX|XoX

Structure Z occurs negatively in *Z, and occurs positively in each of ¢Z and
(YoZ)and (ZoY). A proper structure is a structure which is not a formula.

Display Sequents. A display sequent X F Y consists of two arbitrary struc-
tures X and Y built up from formulae using the formation rules for these extra
structural connectives. Substructure Z is an antecedent [succedent] part of
X FY if it occurs positively [negatively] in X or negatively [positively] in Y.

Display Postulates and Display Property. Display calculi also require a
basic collection of reversible sequent rules called the “display postulates” which
allow us to dis-assemble and re-assemble arbitrary CMDL structures. The defin-
ing property is that for any proper structure Z occurring in a sequent X F Y,
there is a display-equivalent sequent Z + Y’ or X’ + Z depending only upon
whether Z is an antecedent part or succedent part of the sequent, respectively.
The resulting sequent is said to display Z, whence the name display logic.

CMDL contains the display postulates given in Figure 1. The following
theorem then holds.

Theorem 1 (Display Property) For every antecedent [succedent] part Z of
sequent X Y, there is a sequent Z &Y' [X' F Z] which is obtainable by the
application of the display postulates only. Structure Z is said to be displayed in
the resulting sequent.

Logical Rules Maintaining Display Property. Rules for introducing each
logical connective into the left or right of turnstile maintain the display property
by introducing the new connective into a formula which is either the whole of
the left hand side or the whole of the right hand side of a sequent. We give some
logical rules from CMDL in Figure 2 as illustrations. Notice that the structure
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Figure 2: Some logical rules in CMDL
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Figure 3: Some structural rules in CMDL

o is a proxy for a de Morgan dual pair (A, V), but the structure e is a proxy for
a residuated pair (#,0), and the structure # is a proxy for —. Notice also that
the cut rule captures only the transitivity of the turnstile. All substitutional
aspects of cut are taken care of by the display property.

A good test of sanity for the rules is the following lemma.

Lemma 2 For every formula F, the sequent F' + F is cut-free derivable in
CMDL.

Modularity Via Further Structural Rules. Further structural rules like
associativity, commutativity, contraction and weakening can be added sepa-
rately in a modular fashion.

CMDL has a classical basis, so we have commutativity, associativity, weak-
ening and contraction as shown in Figure 3, amongst others which we have
ommitted for brevity (see [20] for details).

Cut Elimination. The most amazing feature of all display calculi is that one
single cut-elimination procedure works for all display calculi whose rules obey
eight easily-checked conditions stipulated by Belnap and machine-checked by
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Figure 4: System SMS

Dawson and Goré [8, 9]. There is also a general methodology for constructing
a display calculus for many different logics [14].
All rules of CMDL obey these eight conditions, hence we have:

Theorem 3 (Cut Elimination) If a sequent X = Y s derivable in CMDL
then it is derivable without the cut rule.

4 Modal tense logic in CoS

In this section we present a formulation of CMDL in the calculus of structures.
We shall work only with formulae in which negations appear only at the atomic
level, since negation in CMDL is involutive and can be pushed to the atomic
level. Note also that there is no connective for implication so implications have
to be translated away with A D B considered an abbreviation of -A V B. The
logical expressions in CoS are also called structures, and are generated by the
following grammar, where a denotes a propositional variable and @ denotes its
negation:

Ru=t|f|ala|[RR]|(RR)|MR|eR|OR|OR

The CoS constants t and f correspond to the constants T and 1. The CoS
structural connective [ | and () denote disjunction and conjunction, respectively,
with comma once again overloaded depending upon its context. The modalites
retain their meaning in CoS structures. Note that the use of bracketing notation
to present structures is just for typographical purpose to make the proof figures
more readable. The dual of a structure R, denoted by R, is the structure
obtained by interchanging each structural connective with its dual and each
atom with its dual. A structure context is a structure with a hole. Structure

contexts are denoted with S{ }. We omit the outermost braces if they would



immediately enclose brackets or parentheses, writing S[R,f] for S{[R,f]} for
example. Structures are considered modulo the equational theory below:

Units: [R,f] =R (R,t) =R

t =0t =Wt = [t,t] f=0f = &f = (f,f)
Associativity: [R,[T,U]] = [[R,T],U] (R,(T,U)) =((R,T),U)
Commutativity: [R,T] = [T, R] (R,T)=(T,R)
Congruence: If R =T then S{R} = S{T}.

Definition 4 The rules for system SMS are given in Figure 4. System MS
is obtained by removing all the up-rules from SMS, leaving MS as the set
{il,s,c],w |, kf |, kp |, rpf |,rpp |}. The subsystem {i|,s,c|,w |} is called
KSg and corresponds to propositional classical logic [7, 6] (when restricted to
propositional structures, naturally). A derivation in a logical system S in the
calculus of structures is a sequence of instances of rules from S. Derivations are
denoted with IT or A. The graphical notation

R
Alls
T

denotes a derivation A from R to T in a system S. A proof in S of a structure R
is a derivation in S from t to R. We sometimes omit the derivation name (e.g.,
A in the above derivation) or system name from the graphical representation
of a derivation when they are not relevant or can be inferred from the context.
We also use the notation II g R to denote that II is a proof of R in system S,
and ks R to denote that R is provable in system S.

The cut rule in (one-sided) sequent calculus can be derived in SMS as follows
(modulo structural equivalence):

(T AL [AA))
o bAd [T (A4, [A,A))]
) 5 S —
cut ~ . [ 7A7(A7A)]
FT,A i
(A
N

Definition 5 Two logical systems S; and S are equivalent if they prove the
same set of structures: that is, for every R we have s, R if and only if k5, R.

Definition 6 The dual of a rule scheme
S{T}
’S{R}

is obtained by exchanging the premise and the conclusion of p, and exchanging
every structural connective in R and T with its dual. For instance, the rules p;



and po are dual to each other, as are ps and py4:

S[OR,OT] S{O(R,T)} S[MR, W] S{#(R,T)}
PUsoR. T P sor,0r) P SmRT]Y " S(eR, 6T)

A system S is symmetrically closed if for every rule p; € S, its dual is also in S.
The symmetric closure of a system S is a system obtained by adding to S the
duals of its rules.

For example, system SMS is symmetrically closed, and it is obtained by ap-
plying symmetric closure to MS. The cut-elimination theorem for SMS, as we
shall see, essentially says that the symmetric closure SMS of system MS is no
more powerful than the system MS itself, in terms of provability.

5 Soundness, Completeness and Cut-elimination
for SMS

We assume familiarity with display calculi, particularly the Classical Modal
Display Logic (CMDL) of Wansing [32] as studied by Kracht [20] and Goré [13].

We make use of some derived display postulates, stated in the following
lemma. Its proof is straightforward by applications of basic display postulates
and structural rules.

Lemma 7 The following rules are cut-free derivable in CMDL:

(eX)o (eY) - Z XF (oY) o (e2) XFxexY rexX Y
" ——————— T2 T3 T4
o(XoY)FHZ XFEe(YoZ) roexX FY X+ xeoxY
(xexX)o(xexY)F Z XFE(xexY)o (xexZ)
Ts5 Te6

xex(XoY)FZ XFxex(YoZ)

Definition 8 Translations between CoS structures and CMDL formulae. We
consider only CMDL formulae which are in negation normal form: that is, all
negations are pushed to the atomic level. Given a CMDL formula F', we denote
with F its negation which is in negation normal form. Given a CoS structure R,
we denote with R the CMDL formula obtained from R by replacing t with T, f
with L, and replacmg substructures Ry, Ry] with Ry VR, _and (R1, Ro) with
Ry A Rg Conversely, given a CMDL formula F, we we define a CoS structure F

as follows:

T =t L :f a =a a4 =a
—s —s —s —S
AVB_=[A_B.] AANB_=(A_B)
s s’ s s s’ s
ASB_=[A,B] A =14
= s —s’—s —s —s

%S = Dés %s = Oés LAS = .és Ms = ’és

10



To translate CMDL sequents to CoS structures, we first translate their for-
mula counterparts. That is, we first use a translation from CMDL sequents to
CMDL formulae as follows [32] where P is a CMDL formula:

T(XFY)=7n(X) DY)

71(P) = P To(a) = P
T1 (I) = T TQ(I) = 1
n(xX) = —7o(X) To(xX) = -1 (X)
(XoY) = n(X)An(Y) (X oY) = mn(X)Vn(Y)
7'1(.X) = ’(X) TQ(OX) = DTQ(X)

The translation from a CMDL sequent to a CoS structure is then defined as

XY _=7(XFY)
SS S

The following lemma just confirms that the two translations are inverses of
each other, and follows from their definitions.

Lemma 9 For every CoS structure R, we have R =R

Lemma 10 (Soundness.) If CoS structure R is provable in SMS then CMDL
sequent I'= R_is provable in CMDL.

Proof Let II be a proof of R in SMS. We prove the lemma by induction on
the length of II.

Suppose R is of the form S{7"} and II ends with a rule p so that IT is of
the form shown below left. The CMDL proof of R, i.e. S{T"}, is constructed by
applying the cut rule shown below right.

i ISR, S(RY,F ST,
S{R) . 1+ S{T'},
Ps(r'y

The left premise of the cut is provable in CMDL by induction hypothesis. To
prove the right premise, it is sufficient to show that R’ - F T . is provable,
which can be done by a straightforward induction on the size of the context
S{ }. Thus, it is enough to show that each rule in SMS corresponds to a valid
implication in CMDL.

Below we show the CMDL proofs for several CoS rule schemes involving
modalities. Moreover, we show only the derivation of the down-rules; the deriva-
tions of the up-rules can be obtained using a symmetric argument, since the
implications defining the rules are the contrapositives of the implications defin-
ing the down-rules. The translation function is omitted in the proofs below to
simplify the presentation. Derivations for the rule schemes for kf | and kp |

S{O[R, 1]} S{E[R,T]}

Ml Sor, o1 PLSTeR, mT]

11
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Figure 5: Soundness of kf | and kp |

are shown in Figure 5. Derivations for
S{O[mR, T} S{M[OR,T]}
r _
S[R,OT] PP SR, T
are given in Figure 6. QED

Lemma 11 (Necessitation) If R is provable in SMS or MS then BR and
LR are provable in SMS or MS respectively.

Proof Let II be a CoS proof of R, and let IT' be a CoS derivation obtained
from II by adding a [J to every structure 7" in II. The CoS proof of (IR is then:

t

Ot

1’

OR

To get a CoS proof of MR, apply the same construction but with B replacing
0. QED

Lemma 12 If X BY is cut-free provable in CMDL then X Y __ is provable
in MS.

12
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T4

Figure 6: Soundness of rpf | and rpp |

Proof Let IT be a CMDL proof of X +

Y. The lemma is proved by induction
on the height of II. We distinguish several cases based on the last rule in II.
These cases fall under the more general categories of the identity rule, structural
rules and logical rules. We omit some trivial cases like the identity rule, the
structural rules for associativity of o, commutativity of o, and the rules for the
unit I. The cases shown are representative of the kind of transformations needed

to simulate CMDL proofs inside CoS. We omit the translation function

simplify the presentation.

Structural rules:

1. Suppose II ends with the rule instance of dp as shown below left. Applying
the 7 function to e X F Y’ and X I eY” gives the CMDL formulac ¢4 > B

and A D OB for some A and B.

By the induction hypothesis, there is a proof A in MS of the CoS structure
(WA, B] since this is 44 D B_. We need to show that there is a proof of

[A,0B] ie. AD 0B, in MS. By the necessitation Lemma 11, there is a
proof A’ of (J[MA, B]. The proof of [A,[0B] is therefore constructed as

below right:

N

oXFY
P X ey

13
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2. Suppose II is as shown below left. This case is similar to the previous
one, but with the roles of ¢ A D B and A D OB reversed and with rpp |

replacing rpf |.
t
|

L X Eey | W(0A, B]
—_— r - =
PexFy P T A mB

Logical rules:

1. Suppose II with conclusion X' oY’ F P A Q is as shown below left. The
CMDL sequents X' - P and Y/ F Q and X' oY’ = P A Q translate
respectively to the CoS structures [R,T] and [V,U] and [[R, V], (T,U)]
for some R,T,V and U. By the induction hypotheses, we have deriva-
tions A; and Ay such that Ay - [R,T] and Ay F [V,U]. The proof for
[[R,V],(T,U)] is constructed as shown below right where A} is obtained
by nesting As in the hole in the context [R, (T,{ })]:

t
Ay
& 2 IR
/\TX -r Y FQ 7[R7(T’t)]
X' oY FPAQ

Ay
[R(T V0]
SR V(0]
[[R,V],(T,U)]

The case with the left introduction rule for V and D can be treated simi-
larly. The cases involving the right introduction for Vv, the right introduc-
tion for D and the left introduction for A are trivial since in these cases
the premise and the conclusion of the introduction rules are translated to
equivalent CoS structures.

2. The cases where II ends with one of the modal rules Cr, $/, lr and ¢!
are trivial, since in these cases the premise and the conclusion of the last
rule translate to equivalent CoS structures. Our “insignificant” changes
to the CMDL introduction rules of Kracht are particularly useful here.

3. Suppose II is as shown below left. The premise and the conclusion in the
last rule translate to [R,T'] and [OR,OT] respectively. By the induction
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hypothesis and Lemma 11, there is a proof A of O[R,T]. The proof of
[OR,0OT] is constructed as below right:

t
;; N
z P+ X' O[R,T]
OPF X' [OR,0OT]

4. Suppose II ends with Or, i.e.,

N/

X'+-P
T*Q*X’I—OP

In this case, the premise and the conclusion sequents translate to the CoS
structures [R,T] and [OR, QT for some R and T. Notice that these are
the same structure schemes to those in the [ case, except with R and T’
interchanged. We therefore apply the same construction to get a proof of
[OR, OT].

5. Suppose II ends with 4r as shown below left: The premise and the con-
clusion of the last rule translate to structures [R,T] and [MR, 4T']. The
proof for [MR, #T] is then constructed from the induction hypothesis and
the necessitation Lemma 11 (which give A ) as shown below right:

t
;; a|
X'FP B[R T]

"eX'F oP kol igrn e

6. If IT ends with B then follow the same construction as in the case with
¢ QED

Theorem 13 The following statements are equivalent, for any CoS structure

R.
1. R is provable in SMS. 2. RF is provable in CM DL.

3. R_is cut-free provable in CMDL. 4. R is provable in MS.

Proof Lemma 10 gives us that (1) implies (2). The cut-elimination result,
Theorem 3, for CMDL gives us the equivalence between (2) and (3). Lemma 12
shows that (3) implies (4). And since MS is a subsystem of SMS, we have (4)
implies (1). QED
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Conservativity theorem. We now consider the question of whether MS is a
conservative extension of basic modal logic K. Formalizations of K and several
of its extensions in CoS have been studied in [25, 26]. In particular, the basic
modal logic K is shown to correspond to the system KSg U {kf |}.

Definition 14 System KSgk is KSg U {kf |} and SKSgk is the symmetric
closure of KSgk.

Theorem 15 Systems KSgk and SKSgk are equivalent.
Proof See [26]. QED

Definition 16 A modal structure/formula is a structure/formula with no oc-
currences of M and ¢.

Theorem 17 (Conservativity) A modal structure R is provable in MS if and
only if R is provable in KSgk.

Proof Let us denote with Kt the (theorems of the) Hilbert style formulation
of tense logic. It is well-known that Kt is a conservative extension of modal
logic K, but the following semantic argument proves this claim.

We note that Kt is determined by the class of all Kripke models with bi-
directional frames (W, Ry, Ry) where Ry = R, ', while K is determined by
exactly the same class of frames when viewed as just (W, R;). So every modal
formula which has a K-model has exactly the same Kt-model. Therefore, every
modal formula which is provable in Kt is provable in K.

We use this fact to prove the conservativity property of MS, as illustrated
in the following diagram:

(1)

MS CMDL
i@)
(©) Kt
l(fﬁ)
KSgk < SKSgk
e gx=u K

Each arrow corresponds to an implication: (1) is justified by Theorem 13, (2) by
the result of Wansing [32], (3) is as described by the semantic argument above,
(4) and (5) are the results of Stouppa [26], and (6) is trivial since KSgk is a
subsystem of MS. QED

6 Local rules

One of the features of the calculus of structures is that the inference rules can
be made local: that is, in applying the rules backward, we need to check only a
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bounded amount of information about the structures involved. The interaction
rule is non-local, since in order to apply the rule, we need to check that two
structures are dual to each other, which requires inspecting these structures
completely. Similarly, the contraction rule is also non-local, since in this case
we have to check that two structures are syntactically equal.

The above notion of locality has become quite standard across formulations
of different logical systems in CoS: classical logic [6], linear logic [17, 28], modal
logic [26] and intuitionistic and intermediate logics [29]. We show that the
formulation of tense logic in CoS is not an exception. The techniques and
rules shown in the following, in particular the ones that concern modalities, are
essentially those of Stouppa [26], with a very straightforward extension to cover
the tense modalities. This is because the reduction of the rules to their local
counterparts is independent of the residuation rules, i.e., the rules rpf | and
rpp /] and their duals.

Definition 18 A rule p is derivable in a system S if for every instance of p,
there is a derivation from the premise of p to its conclusion in S.

Atomic interaction rules. With the help of the switch rule s, the modal
rules kf |, kp |, and their duals, we can show that the general interaction rules
i| and iT can be replaced by their atomic counterparts shown below:

S{t} . S(a,a)

Al oal REEITI!

Lemma 19 The rule i] is derivable in {s,kf |, kp |,ai|}. Dually, the rule i
is derivable in {s,kf 1,kpT,ail}.

Proof See [26]. QED
Local weakening. The general weakening rules can be reduced to more re-

stricted forms, which are local. These restricted weakening rules are as below
where a denotes an atomic formula:

S{a} S{et} S{ot}
aw | (e} uwf | (e} uwp T ()

S{f} S{f} S{f}
wlsar "Moms  "Ploon

Lemma 20 The rule w| is derivable in {aw |,uwf |, uwp |}. The rule w1 is
deriwable in {aw 1, uwf T, uwp1}.

Proof See [26]. QED
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Atomic contraction. We now show that the contraction and the co-contraction

rules can be restricted to their atomic forms shown below:

Slaal . Sta)

acl s S(a,a)

provided we add the so-called medial and co-medial rules:

S[(R,U),(T,V)] S[DR,DT] S{O(R,T)}
SR T OV]) TV SORTY T S(OROT)
ot SORDY o SIWRT) L S(R(R.T))

S(OR,OT) S(#R, #T) S(MR,WT)
mol S[OR, 0T g S[MR W) S[#R, 4T

SORT]Y T S(MR, T} S{e[R,T]}

The proof of the following lemma is similar to previous lemmata concerning
the interaction and weakening rules: that is, by establishing a set of reductions
of general (co-)contraction rules to smaller contractions, with the help of the
(co-)medial rules. But first we need to show that the medial rules are sound.

Lemma 21 The medial rules m, m] |, m{ |, mM | and mé | are derivable
in {c],w|}. Dually, the co-medial rules are derivable in {cT,w1}.

Proof We show the derivations for the down-rules; the derivations for the
up-rules can be obtained by dualizing the derivations of the down rules. The
rule m is derived as below left where w |* denotes several applications of the
w | rule. The rule m[]] is derived as below:

B S[(R,U), (T, V)] _ S[OR.OT]

wl*_ S[([R.£], [U,£]), ([£,T], [£,V])] WL*_ S[O[R,£],0[f,T]]

S[([R,T],[U,V]),([R,T],[U,V])] . S[O[R,T],0[R, T]]
S([R,T],[U,V]) S{O[R, T}

The derivations for m¢{ |, mM | and m¢ | are similar to the derivation of m{ |
above, except that we replace (] with, respectively, ¢, ll and ¢. QED

Lemma 22 The contraction rule ¢ | is derivable in {ac |, m, mO |, m{ |,
mB |, mé |}. Dually, the co-contraction rule ¢ is derivable in {acT, m, m7,

mO T, mET, mé T}

Proof By induction on the size of the contracted structure. We apply the
following reductions to instances of contraction, to reduce them to contraction
on smaller size. The derivation of co-contraction is done dually.
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S{t} S([R,T],U) S[(R,U), (T, V)]

Wowa  *SER@U) SRV

Sla,al S{f} S{f} S{f}
el YWlse "Homem "Plson
S{O[R,T]} S{M[R,T]} S{O[MR,T]} S{M[OR,T]}

Ml Soror Pl sener; PN srorn PP ST

S[OR,OT) S[OR,OT] S[MR,MT] S[®R, #T)
SOR Ty SO Ty SR T T S{8[R, T]}

Figure 7: MSa: A local system for tense logic.

SURTLRTY | S(RTL(RD] SIOROR
SR, T S(R,T) S{OR}
Y ¥ ¢
SURTLIRTY)  SURT), (RT)
o SIRRLET] " S(RALLT) mO g2 oo
CJ,S[[R,RLT] lS([R’R]v ) CLS{T’R}
S[R,T] S(R,T)

The reduction rules for structures with modalities follow the general pattern
above, where () represents one of the modalities (I, ¢, B or 4. The concrete
derivation for each of the cases [J, {, B and ¢ is obtained by replacing () by
the corresponding modality. QED

We are now ready to present a fully local CoS system for CMDL, which is
obtained by reducing the non-local rules to their local counterparts according
to the previous discussions.

Definition 23 System MSa is given in Figure 7. System SMSa is the sym-
metric closure of MSa.

Theorem 24 Systems MS, MSa, SMS and SMSa are equivalent.

Proof Straightforwardly from Theorem 13, Lemma 19, Lemma 20, Lemma 21
and Lemma 22. QED
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7 Capturing primitive extensions of CMDL

In this section we consider extensions of CMDL with axiom schemes of the form
AD B where A and B are primitive formulae, that is, formulae that are formed
using propositional variables and the connectives T, A, V, ¢ and ¢. In CMDL,
these axiom schemes are formalised as structural rules as follows [20].

Given a primitive axiom A D B, we transform A and B into the equivalent
formulae shown below, using standard equivalences, and where all C; and D;
are composed only from variables, T, A, { and ¢:

AE\/Ci BE\/Dj (1)

i<m i<n

The formulae C; and D; are then translated to structures using the following
function [20]:

o(T) = I
olp) = p
o(PANQ) = o(P)oo(Q)
a(OP) = xexo(P)
oc(éP) = o7 (P)

The axiom A D B is then turned into structural rules of the form shown below,
one for each &k < m:
oD)FY -+ o(Dp)FY

It can be shown that 71 (c(C;)) = C; and 71 (0(D;)) = D;. For each primitive
axiom F, we denote with d(F') the display rules obtained from F by following
the above transformations. We overload the notation for sets of axioms, i.e.,
given a set of primitive axioms Az, the notation d(Ax) denotes the set of display
rules obtained from each axiom in Ax.

To simulate the display rules d(A D B) in CoS, we employ a similar trans-
formation from axioms to structural rules. Since our CoS rules are restricted to
rules under positive context only, we shall work with the contrapositive forms of
the axioms, and care has to be taken in handling negations in the contrapositive
forms.

Let A’ be the formula scheme A (i.e., the negation normal form of =A) but
with the negations on the schematic variables removed. Similarly, define B’, C/
and D} from B, C; and Dj, respectively. The axiom A D B is translated into
the calculus of structures as below, one for each k < m:

S(&Sv"' ’%S)
S{CL.}

Note that in the CoS system SMS we restrict attention to structures in
negation normal form. Since schematic variables can be instantiated with arbi-
trary structures, applying the rules with negations on the schematic variables
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will produce structures which are not in negation normal form. This is why we
need to remove the negations on the schematic variables.

We use the notation p(F) to denote a CoS rule obtained from the axiom F,
and p(Azx) the set of CoS rules obtained from the set of axioms Ax.

To show the soundness of the CoS rule, first observe that the following
equivalences hold:

i<m i<n

This can be shown to follow from the equivalences in (1) by taking their contra-
positive forms. We note that since primitive formulae do not have negations, the
negation normal forms of their negations will have all their variables negated.
Now if we instantiate every variable x in the above equivalences with its nega-
tion —z, then the resulting formulae will have all the variables double-negated,
hence are equivalent to the following formulae which are both negation free:

A= /\Cl' B’E/\D;- (2)
i<m i<n

With the same observations, we conclude that B’ D A’ follows from A D B. The
soundness of the rule then follows from a series of cuts on the following lemmata:

L Nj<, DjD B 2. B'OA
3. A D Nien G 4. Nic Ci D Gy

Theorem 25 Let Ax be a set of primitive axioms and let R be a CoS structure.
Then the following statements are equivalent.

1. R is provable in SMS U p(Ax).

2. R_ is provable in CM DL U d(Az).

3. R_is cut-free provable in CM DL U d(Ax).
4. R is provable in MS U p(Ax).

Proof The proof is similar in most cases to the proof of Theorem 13. We also
rely on the cut-elimination of CMDL extended with d(Ax) [20]. For the cases
with primitive rules, it is obvious from the discussions above that the rule d(F’)
corresponds to p(F') for each primitive axiom F € Ax. QED

The curious reader may be wondering about the fifteen normal modal logics
obtained by extending K with the axioms D, T, 4, 5 and B. That is, what
happens if we add the five corresponding primitive axioms to our CoS calculi,
but restrict ourselves to the modal language only? Using a semantic argument
due to Wansing, it is easy to show that doing so gives the corresponding modal
logic exactly. Thus, in particular, we also have cut-free CoS calculi for all of these
fifteeen normal modal logics. However, note that these calculi are extensions of
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MS, hence, they contain the residuation rules rpp | and rpf |. Therefore in
a derivation of a modal formula, there could be occurrences of tense formulae
in the derivation.! In this sense, the extensions of MS with modal axioms,
although capturing exactly the corresponding modal logics, are not pure. We
would like to show that the residuation rules are admissible for extensions of
MS with modal axioms, when restricted to the modal language. Whether this
is achievable in general is still an open question. However, in the case of S5, it
is easy to find pure, complete and cut-free CoS calculi because of symmetry, as
shown in the next section.

8 S5 As A Primitive Extension of CMDL

We now show several examples of primitive extensions of CMDL which corre-
spond to S5. Note that since CMDL is richer than normal modal logic, we need
to restrict the extended systems to their modal fragments and show that they
are sound and complete with respect to the usual formulations of S5 in Hilbert
systems. The traditional formulations of axioms of S5 may not be primitive, we
therefore need to find the corresponding primitive axioms in CMDL. We choose
the modal-tense formulations that are most straightforward, from a semantical
point of view, and then refine them to pure modal axioms. At the end of this
section we will show that all these formulations in the calculus of structures are
equivalent to a Hilbert system for S5.

8.1 S5=KT4B

We consider the axiomatization of S5 which extends the basic normal modal
logic K with the axioms T, 4 and B shown below:

T:PDOOP 4:00P D OP B:POOOP

Notice that the axiom B is not primitive. An equivalent primitive axiom in
tense logic which captures symmetric frames is

B : 0P = 6P

That is, a world w makes QP true iff there exists some v € W with wRv and v
makes P true. But if R is symmetric, then wRv iff vRw. Hence w makes ¢P
true iff it makes QP true.

The axioms T, 4 and B’ are translated to the following rules in CoS recalling
that in translating the rules, we take the contrapositive forms of the axioms:

S{OR} S{OR} S{mR} S{OR}
S{R} dal S{OOR} b1l S{OR} bz S{mR}

t]

n display calculi, the tense connectives are disguised as structural connectives, giving the
impression of a purely modal derivation.
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All these rules have their corresponding up-rules obtained by taking their con-
trapositive forms. As usual, we refer to the dual rules with the same names but
with the arrows reversed.

By extending MS with the above rules, we are now able to prove the axioms
B and 5 : OOP > OP as below:

t
t T Ot
Ot T oot
| T oot kflll O0[P, P]
K| O0[P, P] 0[P, 0P
O[OP, O P b‘; DO[¢P,00P)
cpt | LIBP-0F] ot D07 W07
[P,00P] [O0P,0P)

Notice that the derivations make use of non-trivial interactions between the
tense fragment and the modal fragment of MS, i.e., via the use of the residuation
rules rpf | and the by | rule.

However, the only occurrences of these rules seem to be needed when they
appear in succession. This suggested the bigger-step rule rb | shown below
left which combines the two and which is purely modal. The corresponding
primitive axiom B’ for this rule is shown below right:

S{O[OR,T]}
S|R,0T) B":RAOT D O(ORAT).

In the following we show that this alternative formulation B” is indeed equiva-
lent to B. More precisely, we show that the system obtained by extending MS
with the axioms T, 4 and B” captures S5.

Definition 26 System MSt4b is MSU{¢t |,4, |,rb|}. System SMS¢4b is the
symmetric closure of MSt¢4b.

System SMSt4b enjoys cut-elimination, as a consequence of Theorem 25.
Theorem 27 System SMStdb and system MStdb are equivalent.
We now show that MSt4b is also conservative over its modal fragment.

Definition 28 System Sb5a is a subsytem of MSt4b, given by the rules in Fig-
ure 8. System SSba is the symmetric closure of Sba.

Definition 29 Let R be a CoS structure. We denote with EM the CoS struc-
ture obtained from R by changing every occurrence of B in R to [J and every
occurrence of ¢ to ¢. The function . is extended to CoS structure contexts by

having { } ={ }.
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S{t} S([R,T],U) S[R, R] S{f}

YSma Csieaoy Vst Ysw
kflS{D[R,T]} . S{OR} S{OR} . S{O[OR, T}
S[OR,0OT] S{R} “* S{OOR} S[R,0T)

Figure 8: System Sba, a modal subsystem of MSt4b.

Lemma 30 If Fnisan R then Fssa R

Proof Let IT be a proof of R in MS4th. We construct a proof IT' of EM in
Sbha by simply replacing instances of kp | in IT with kf |, and instances of rpf |
and rpp | in I with rb | . QED

Theorem 31 Let R be a modal CoS structure. Then the following statements
are equivalent.

1. R is provable in SIMSt4b. 2. R is provable in MSt4b.
3. R is provable in Sha. 4. R is provable in SSHa.

Proof This follows straightforwardly from Theorem 27 and Lemma 30. QED

8.2 S5=KT5

We now consider the axiomatizations of S5 using the axioms K, T and 5. A
simple primitive formulation of 5 in tense logic is:

5 : 4OP D OP.

To see this, suppose that some world z makes QP true. Thus x has a prede-
cessor y which has a successor z, and z makes P true. Thus y has both x and z
as successors. The euclidean condition corresponding to axiom 5 demands that
z is a successor of x. That is, x must make ¢ P true too.

By viewing the above scenario from y instead of x, we find a primitive modal
axiom for 5 as below left, which translates to the CoS rule shown below right:

S{O[R,OT]}
57 OP A OQ D O(P A OQ). " TSOR, OT)

We will use this axiom 5” and its r5 | rule in the following discussion.

Definition 32 System MSt5 is MS U {t |,r5 |}. System SMSt5 is the sym-
metric closure of MSt5.
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S{t} S([R,T],U) S[R, R] S{f}

Ysma o Csmaro) s “Vlsiwy
w SIORTY | SOR) - S(OROT])
S[OR, OT] S{R} S[OR, 0T

Figure 9: System S5b: a modal subsystem of MSt5.

Theorem 33 Systems SMSt5 and MSt5 are equivalent.

Definition 34 System S5b, whose rules are given in Figure 9, is a modal sub-
system of MSt5. System SS5b is the symmetric closure of S5b.

Lemma 35 If R is provable in MSt5 then R is provable in S5b.

Proof The proof is similar to the proof of Lemma 30. The non-trivial cases
are those concerning the residuation rules. We show here a derivation in S5b
of the “M-image” of the residuation rule rpf |:

., S1{0EU, v
s{Oo[mu,v]} S smmo ov

f t] — " -
P o] ~ S0, 0OV']

Here S'{ } denotes S{ } andU'=U and V' =V . Therulerpp| maps to
the same derivation. QED
The following theorem is a simple corollary of Lemma 35 and Theorem 33.

Theorem 36 Let R be a modal CoS structure. Then the following statements
are equivalent.

1. R is provable in SMSt5. 2. R is provable in MSt5.

3. R is provable in S5b. 4. R is provable in SS5b.

8.3 S5=KT45

We now consider the formulation of S5 using the axioms K, T', 4 and 5. In this
section we review the existing system for KT45 in CoS due to Stouppa and
Stewart [25, 26], which has been shown to be sound and complete with respect
to Hilbert’s system for KT45 and to have cut elimination. The purpose of this
section is to show that our formulations of S5 in the previous sections, i.e., SHa
and SHb are equivalent to their system.

Definition 37 System S5c is given in Figure 10. System SS5c is the symmetric
closure of Shc.
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S{t} S([R,T],U) S[R, R] S{f}

WS Csmao) Vst Visim
S{O[R, T]} S{OR} S{OOR} S{O0R)
Mlsoron Y em sprm lsor

Figure 10: System Sb5c of Stouppa and Stewart [27]

Theorem 38 System S5c and SS5¢ are equivalent [27].

Theorem 39 Let R be a modal CoS structure. Then the following statements
are equivalent.

1. R s provable in Sba. 2. R 1is provable in S5b. 3. R s provable in Sbhc.

Proof

1= 2: We show that the rules of S5a are all derivable in SS5b, and therefore
every proof in Sha can be transformed into a proof in SS5b, and hence
into S5b by Theorem 36. The only cases to consider are the 4, | and rb |
rules:

S{OT}

. s(@Oot,07)
N oo, o, om)
L Son imS(D[DT,D(}T],DT)
“T s{oOTy S([00T,00T),0T)
S([00T, 0T],07)
2S[00T, (o7, 07)]

S{OOT)

EICE A
S[U,OV] W

2 = 3: We show that every rule of S5b is derivable in S5c. The only case to
consider is r5 |:

sEwovy kflm
S[OU,0V] CW
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3 = 1: We show that every rule in Sbc is derivable in SS5a, and as in the first
case (1 = 2) we use the cut-elimination theorem for SS5a to get a proof
in S5a. The non-trivial cases are the 4. | and 5. | rules

S{OOT} s{oOU}
T S{oT} T os{ou}

Both can be derived by using cuts (i|) as in the first case (1 = 2): that is
using the cuts (OOT, OOT) and (OOU, OOU). It is then enough to show
that the following structures, which correspond to the axioms JA D OOA
and OLJA D A defining the rules 4. | and 5. |, are provable in Sba:

B t

T Ot
ilii
gt 0[oT, OU]
41 [OT, 0T “* O[oU, 00U
“* 10T, 00T " ooT, au)

QED

9 Related and Future Work

The closest existing work to ours is Stewart and Stouppa’s formulation of S5,
and some of its subsystems, in the calculus of structures [25]. We have seen
their formulation of S5 as the system S5c in Section 8.3. As in our case, their
formulation of S5 relies on an external calculus for the cut-elimination result:
in their case, it is the hypersequent formulation of S5 [1]. Stouppa [26] states
that the formulation of S5 using only the axioms T and 5 is an open problem,
since their translation from hypersequents to the calculus of structures makes
essential use of the 4 axiom. We have solved this problem by a detour through
a primitive extension of CMDL, as detailed in Section 8.2, thereby justifying
our claim of minimality.

Kashima [19] formalised tense logic and some of its extensions using two
types of sequent calculi enriched with structural connectives £'{.} and £{.} for
the connectives [J and B, respectively, similar to the single but overloaded struc-
tural connective e in display calculi. Kashima’s first type of calculus contains
explicit “turn” rules to capture residuation as is done by the dp-rules for e
in CMDL. His second type of calculus replaces these “turn” rules by utilising
“deep inference” to apply rules at an arbitrary depth in a sequent. Kashima
presents extensions of tense logic with rules corresponding to transitivity, reflex-
ivity, connectedness (Va.Vy.z Ry V yRx V x = y) and totality (Vz.Vy.2RyV yRx)
of the underlying Kripke frames. It is known that a purely modal/tense Hilbert
axiomatisation cannot capture connectedness or totality, so no primitive exten-
sion of CMDL can handle these extensions. But it is also known that Hilbert
axiomatisations of nominal tense logics can capture these conditions [4]. Thus
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it should be possible to obtain cut-free CoS calculi for these extensions by us-
ing primitive extensions of the display calculi for nominal tense logics given by
Demri and Goré [10]. For the modal fragment, the second form of Kashima’s
sequent calculus was later rediscovered independently by Briinnler [5], under
the name “deep-sequent” calculus. Briinnler [5] presents the basic modal log-
ics obtained by K, T, D, 4, 5 and B, formalised using deep-sequent calculi.
Briinnler states a conjecture that these axioms can be turned into structural
rules in his calculus, from which one can obtain cut-free calculi for all exten-
sions of classical logic with any subset of these axioms. Some of these structural
rules, when translated properly into CoS rules, correspond to some of the rules
for the axioms we show in Section 8, in particular, the rules t | and r5|. Robert
Hein [18] has independently come up with essentially the same set of rules for
the axioms and the same conjecture for CoS, although as far as we know, the
conjecture has not been proven.
We now list some avenues for further work:

Direct cut elimination for CoS: Our cut-elimination theorem for our modal and
tense CoS calculi relies on that for display calculi. It still remains open to
prove cut elimination directly in CoS.

Conservativity: Prove the conservativity property for MS and its modal prim-
itive extensions. More precisely, given a proof of a modal structure, we
would like to be able to construct a proof of the same structure without
using the residuation rules rpf | and rpp|. This property, if proven, can
be used to obtain a purely modal cut-free system for any modal primitive
extensions of CMDL, among which are the various fragments obtained by
extensions with K, T, D, B, 4 and 5.

Fifteen Basic Modal Logics: Get a generic result for all the systems obtained
by extensions with K, T,D, B, 4 and 5. This is a consequence of the
conservativity property given above.

Improvements to Brinnler’s Calculi: Briinnler’s calculi [5] are not truly modu-
lar since it is not possible to just add and delete “axioms” at will as with
Hilbert calculi. We would like to investigate whether our technique, via
CMDL extensions, can lead to improvements to Briinnler’s systems.

Kracht’s Second Theorem: We now use the notation x <y for R(x,y) and x>y
for R(y,x). Kracht’s first theorem [20] shows that the class of all prop-
erly displayable tense logics corresponds exactly to the class of first-order
formulae of the form Vz(V)(3)M where M is a matrix built from terms of
the form z = y and z <y with the help of A and Vv, and (V) and (3) are se-
quences of so-called “two-way restricted quantifiers” (Vy>x), (Vy<tz) and
(Jyr>z), (Jy < z) in such a way that in every subformula x <y and x = y
in M, at least one of x and y is “hereditarily universal”, which means
that it is not bound by an existential quantifier. Kracht claims in his
second theorem that the class of properly displayed modal logics captures
the same class, but this is known to be incorrect: the logic corresponding
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to the non-primitive axiom OUp D OOOp falls into the Va(V)(3)M class,
so the modal notion of primitivity for an axiom is too restrictive in for-
bidding occurrences of [ outright. An open question is to find the exact
first-order characterisation of modal (rather than tense) display calculi.

10 Conclusion

We have shown that all tense logics properly displayable in the CMDL frame-
work can be encoded in the calculus of structures. Using the cut-elimination
result for CMDL, we have shown that these CoS calculi are cut free. Using
Kracht’s technique, we have also shown how to derive cut-free CoS calculi for
arbitrary primitive extensions of CMDL.

We have applied our method to give cut-free formulations of several systems
for S5 in CoS by extending CMDL with the modal primitive axioms for S5,
translating the resulting cut-free systems into CoS calculi, and proving the re-
quired conservativity results for these systems. More precisely, in the last step,
we show that any modal structure that is provable in the CoS system using the
residuation rules rpf | and rpp |, is also provable in the subsystem without
these rules. Our technique relies on the symmetry of R in S5 since we take
a given proof of a structure with past-time modalities (¢ and B), and find a
proof for the same structure with these modalities replaced by the future-time
modalities (¢ and ). As far as we know, this is the first solution to the problem
of finding a minimal and cut-free CoS calculus for S5.

Our work was motivated by the desire to improve the modularity of modal
“sequent” calculi. The calculus of structures seems a suitable framework for such
a task for a number of reasons. First, the ability to translate axioms almost
directly into CoS rules gives CoS calculi a modularity not (immediately) enjoyed
by traditional modal sequent calculi. Second, unlike Hilbert calculi, CoS calculi
enjoy a form of analyticity via the finite choice and locality properties of the rules
that makes them more suitable for proof search, although the search itself may
be highly non-deterministic. Third, CoS calculi are also more general than many
non-standard sequent calculi, including intuitionistic calculi and hypersequent
calculi, and as we demonstrate in this paper, are at least as general as (nominal)
modal/tense display calculi.

The main drawback of modal CoS calculi, however, is that we know of no di-
rect proofs of cut elimination for any modal CoS calculi since our cut-elimination
proofs rely completely on the cut elimination results for modal display calculi.
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