
Automated theorem proving for assertions in
separation logic with all connectives
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Abstract. This paper considers Reynolds’s separation logic with all log-
ical connectives but without arbitrary predicates. This logic is not recur-
sively enumerable but is very useful in practice. We give a sound labelled
sequent calculus for this logic. Using numerous examples, we illustrate
the subtle deficiencies of several existing proof calculi for separation logic,
and show that our rules repair these deficiencies. We extend the calculus
with rules for linked lists and binary trees, giving a sound, complete and
terminating proof system for a popular fragment called symbolic heaps.
Our prover has comparable performance to Smallfoot, a prover dedicated
to symbolic heaps, on valid formulae extracted from program verification
examples; but our prover is not competitive on invalid formulae. We also
show the ability of our prover beyond symbolic heaps, our prover handles
the largest fragment of logical connectives in separation logic.

1 Introduction

Separation logic (SL) was invented to verify the correctness of programs that mu-
tate possibly shared data structures [30]. SL is an extension of Hoare logic with
logical connectives >∗, ∗,−∗ from the logic of bunched implications (BI) [29] to
capture the empty heap, heap composition, and heap extension respectively, and
a predicate 7→ to describe singleton heaps. Reynolds [34] coupled the semantics
for the above extensions with classical connectives, making Boolean BI (BBI)
the basis of separation logic, although there are earlier versions that consider
intuitionistic additive connectives [33]. Using BI logics to enable local reasoning
has proven very successful, and many variants of separation logic have been de-
veloped. For instance, separation logic for higher-order store [32], bunched typ-
ing [3], concurrency [6], owned variables [4, 31], rely/guarantee reasoning [37],
abstract data types [22], amongst many.

These separation logics require proof methods to reason about their assertion
languages, and since most separation logic variants are based on the original
SL, automated tools usually respect Reynolds’s semantics [34]. However, most
existing tools for Reynolds-like semantics SL, such as Smallfoot [1], jStar [13],
VeriStar [35], SLP [27], and Asterix [28], are all restricted to small fragments,
most notably, the symbolic heaps fragment of Berdine et al. [2]. On the other
hand, there are also existing tools that handle larger fragments than symbolic



heaps, but for non-Reynolds semantics, e.g., Lee and Park’s theorem prover [24],
and Thakur et al.’s unsatisfiability checker [36], cf. Section 4 and 6.

There is a growing demand from the program verification community to
move beyond symbolic heaps and to deal with −∗ , which is ignored in most SL
fragments. Having −∗ is a desirable feature, since many algorithms/programs
are verified using this connective, especially when expressing tail-recursive op-
erations [26], iterators [23], septraction in rely/guarantee [37] etc.. Moreover,
−∗ is useful in weakest precondition calculus for SL, which introduces −∗ “in
each statement in the program being analysed” [25]. See the introduction of [24]
and [36] for other examples requiring −∗ . In addition to −∗ , allowing arbitrary
combinations of logical connectives is also useful when describing overlaid data
structures [16], properties such as cross-split can be useful in proof search in
this setting [14]. Nevertheless, existing tools for SL with Reynolds’s semantics
do not support the reasoning for all logical connectives. Thus, an important area
of research is to obtain a practical proof system for SL with all connectives.

SL is not recursively enumerable in general [10, 5], neither is the fragment
we consider here, so there is no finite, sound and complete proof system for
this logic, and computability results are not our focus. Interested readers are
referred to [12, 11] for other fragments of SL and their decidability and complex-
ity results. Building upon the labelled sequent calculi for propositional abstract
separation logics (PASL, cf. [19]), we give a sound, w.r.t. Reynolds’s semantics,
proof method that is useful in program verification. Since we focus on SL with
heap model semantics here, although [19] is complete for PASL, it is not com-
parable to this work in terms of provability. We extend PASL with inference
rules for quantifiers, equality and the 7→ predicate. The latter involves heaps
and stores in the semantics in a very subtle way, making this study error-prone.
Some subtle mistakes in the literature are discussed in Section 4.

Capturing data structures is important since they are frequently used in
program verification. We extend our proof system with treatments for singly
linked lists based on similar rules in Smallfoot [2]. Binary trees can be handled
similarly; see [18]. We also move beyond symbolic heaps to consider arbitrary
combinations of logical connectives. We show that our proof method is complete
w.r.t. symbolic heaps. We give a sound, complete, and terminating proof search
procedure for symbolic heaps. Our implementation is competitive with Smallfoot
on valid formulae, but not on invalid formulae, taken from benchmarks extracted
from program verification problems. In addition, we demonstrate that our prover
can handle a wider range of formulae than existing tools, thus it handles the
largest fragment of SL in terms of logical connectives, and paves the way to
more sophisticated program verification using Reynolds’s SL.

2 Separation Logic

Separation logic generally refers to a combination of a programming language,
an assertion logic and a specification logic for Hoare triples [21]. Here, we focus
on the assertion logic that is compliant with Reynolds’s semantics [34].



Following Reynolds [34], we consider all values as integers, an infinite num-
ber of which are addresses. Atoms, containing nil , form a subset of values that
is disjoint from addresses. Heaps are finite partial functions from addresses to
values, and stores are total functions from finite sets of program variables to
values. These are formalised as below:

Val = Int Atoms ∪Addr ⊆ Int nil ∈ Atoms
Atoms ∩Addr = ∅ H = Addr ⇀fin Val S = Var → Val

We assume a set of program variables, ranged over by x, y, z, and a constant nil .
An expression is either a constant or a program variable. Expressions are denoted
by e. We ignore arithmetic expressions such as those allowed by Reynolds [34].

The syntax for formulae is given by:

F ::= e = e′ | e 7→ e′ | e 7→ e′, e′′ | ⊥ | F → F | >∗ | F ∗ F | F−∗ F | ∃x.F

The only atomic formulae are ⊥, >∗, (e = e′), (e 7→ e′), and (e 7→ e′, e′′). The
latter two are called the “points-to” predicates. The domain of the quantifier
is the set of values. We assume the usual notion of free and bound variables in
formulae. We prefer to write>∗ for the empty heap constant emp to be consistent
with the prior work for BBI and PASL [20, 19]. The points-to predicate e 7→ e′

denotes a singleton heap sending the value of e to the value of e′. The connectives
∗ and −∗ denote heap composition and heap extension respectively. These two
connectives are interpreted with the binary operator ◦ defined as h1◦h2 = h1∪h2

when h1, h2 have disjoint domains, and undefined otherwise. A state is a pair
(s, h) of a store and a heap.

A separation logic model is a pair (S,H) of stores and heaps, both are non-
empty as defined previously. The forcing relation between a state and the for-
mulae is formally defined in Table 1. We write [[e]]s to denote the valuation of an
expression e by looking up the value of variables in e in the store s. We fix that
[[nil ]]s = nil . We write s[x 7→ v] to denote a stack that is identical to s, except
possibly on the valuation of x, i.e., s[x 7→ v](x) = v and s[x 7→ v](y) = s(y) for
y 6= x. A formula F is true at the state (s, h) if (s, h)  F , and it is valid if
(s, h)  F for every s ∈ S, h ∈ H.

The literature contains the following useful abbreviations:

e 7→ ≡ ∃x.e 7→ x e 7→ e1, · · · , en ≡ (e 7→ e1) ∗ · · · ∗ (e+ n− 1 7→ en)

The multi-field points-to predicate e 7→ e1, · · · , en has different interpretations
in the literature. In Reynolds’s notation, the formula e 7→ e1, e2 is equivalent to
(e 7→ e1) ∗ (e+ 1 7→ e2), thus it is a heap of size two. However, in other versions
of SL, the set of heaps may be defined as finite partial functions from addresses
to pairs of values [10, 7], as shown below left:

H = Addr ⇀fin V alue× V alue H = Addr ⇀fin (Fields→ V al)

In this setting the formula e 7→ e1, e2 is a singleton heap. A more general case
can be found in the definition of symbolic heaps [2] with heaps defined as shown
above right with a slight modification to make addresses a subset of values.



s, h  ⊥ iff never s, h  >∗ iff h = ∅
s, h  e = e′ iff [[e]]s = [[e′]]s s, h  A→ B iff s, h  A implies s, h  B
s, h  e 7→ e′ iff dom(h) = {[[e]]s} and h([[e]]s) = [[e′]]s
s, h  ∃x.A iff ∃v ∈ V al such that s[x 7→ v], h  A
s, h  A ∗B iff ∃h1, h2.(h1 ◦ h2 = h and s, h1  A and s, h2  B)
s, h  A−∗ B iff ∀h1, h2.(h1 ◦ h = h2 and s, h1  A) implies s, h2  B)

Table 1. The semantics of the assertion logic of separation logic.

The syntax of SL in this paper is more expressive than the popular symbolic
heaps fragment of SL [2], which is restricted to the following syntax:

P ::= e = e′ | ¬P Π ::= > | P | Π ∧Π
S ::= e 7→ [f : e] Σ ::= >∗ | S | Σ ∗Σ

The 7→ predicate in symbolic heaps allows a list [f : e] of fields, where f is
the name of a field, and e is the content. Symbolic heaps are pairs Π ∧Σ. The
entailment of symbolic heaps is written as Π ∧Σ ` Π ′∧Σ′. Symbolic heaps also
allow formulae of the form e 7→ which does not specify the content of the heap.

3 LSSL: A Labelled Sequent Calculus for SL

Let LVar be an infinite set of label variables, the set L of labels is LVar∪{ε}, where
ε 6∈ LVar is a label constant. Labels are ranged over by h. We may sometimes
use “heap” to mean a label h or a 7→ atomic formula. A labelled formula has
the form h : F , where h is a label and F is a formula. We use ternary relational
atoms (h1, h2 . h3) to indicate that the composition of the heaps represented
by h1, h2 gives the heap represented by h3. A sequent takes the form G;Γ ` ∆
where G is a set of ternary relational atoms, Γ,∆ are sets of labelled formulae,
and ; denotes set union. Thus Γ ;h : A is the union of Γ and {h : A}. The left
hand side of a sequent is the antecedent and the right hand side is the succedent.

The labelled sequent calculus LSSL consists of inference rules taken from
LSPASL + D + CS [19] with the addition of some special id rules, a cut rule
for =, and the general rules for ∃ and =, as shown in Figure 1 and Figure 2,
and the rules for the 7→ predicate, as shown in Figure 3, which are new to this
paper. In these figures we write A,B for formulae. Although our proof system
is incomplete for SL with heap model semantics and it may not be complete
even for the quantifier-free fragment, the underlying system LSPASL +D+CS
is complete for PASL with disjointness and cross-split [19]. The inference rules
for the 7→ predicate with two fields are analogous to the rules in Figure 3.

A label substitution is a mapping from label variables to labels, which is an
identity map except for a finite subset of LV ar. We write [h′1/h1, . . . , h

′
n/hn] for

a label substitution which maps hi to h′i. Label substitutions are extended to
mappings between labelled formulae and labelled sequents in the obvious way.
An expression substitution is defined similarly, where the domain is the set of



id
G;Γ ;h : e1 7→ e2 ` h : e1 7→ e2;∆

id2G;Γ ;h : e1 7→ e2, e3 ` h : e1 7→ e2, e3;∆

G;Γ [e1/e2] ` ∆[e1/e2] G;Γ ` h : e1 = e2;∆
cut=

G;Γ ` ∆

⊥L
G;Γ ;h : ⊥ ` ∆

G[ε/h];Γ [ε/h] ` ∆[ε/h]
>∗L

G;Γ ;h : >∗ ` ∆
>∗R

G;Γ ` ε : >∗;∆

G;Γ ` h : A;∆ G;Γ ;h : B ` ∆
→ L

G;Γ ;h : A→ B ` ∆
G;Γ ;h : A ` h : B;∆

→ R
G;Γ ` h : A→ B;∆

(h1, h2 . h0);G;Γ ;h1 : A;h2 : B ` ∆
∗L

G;Γ ;h0 : A ∗ B ` ∆
(h1, h0 . h2);G;Γ ;h1 : A ` h2 : B;∆

−∗ R
G;Γ ` h0 : A−∗ B;∆

(h1, h2 . h0);G;Γ ` h1 : A;h0 : A ∗ B;∆ (h1, h2 . h0);G;Γ ` h2 : B;h0 : A ∗ B;∆
∗R

(h1, h2 . h0);G;Γ ` h0 : A ∗ B;∆

(h1, h0 . h2);G;Γ ;h0 : A−∗ B ` h1 : A;∆ (h1, h0 . h2);G;Γ ;h0 : A−∗ B;h2 : B ` ∆
−∗ L

(h1, h0 . h2);G;Γ ;h0 : A−∗ B ` ∆

G;Γ ;h : A[y/x] ` ∆
∃L

G;Γ ;h : ∃x.A ` ∆
G;Γ ` h : A[e/x];h : ∃x.A;∆

∃R
G;Γ ` h : ∃x.A;∆

G;Γθ ` ∆θ
= L

G;Γ ;h : e1 = e2 ` ∆
= R

G;Γ ` h : e = e;∆

Side conditions:
Each label being substituted cannot be ε, each expression being substituted cannot be nil.
In = L, θ = mgu({(e1, e2)}).
In ∗L and −∗ R, the labels h1 and h2 do not occur in the conclusion.
In ∃L, y is not free in the conclusion.

Fig. 1. Logical rules in LSSL.

program variables and the codomain is the set of expressions. We use θ (possibly
with subscripts) to range over expression substitutions, and write eθ for the result
of applying θ to e. Given a set of pairs of expressions E = {(e1, e

′
1), . . . , (en, e

′
n)},

a unifier for E is an expression substitution θ such that eiθ = e′iθ. We assume
the usual notion of the most general unifier (mgu) from logic programming. We
denote with mgu(E) the most general unifier of E when it exists. The formulae
(resp. relational atoms) shown explicitly in the conclusion of a rule are called
principal formulae (resp. principal relational atoms). A formula F is provable or
derivable if there is a derivation of the sequent ` h : F for an arbitrary h ∈ LVar.

A label mapping ρ is a function L → H such that ρ(ε) = ∅. We define an
extended separation logic model (S,H, s, ρ) as a separation logic model plus a
stack and a label mapping.

Theorem 1 (Soundness). For any formula F , and for any h ∈ LVar, if the
sequent ` h : F is derivable in LSSL, then F is valid in Reynolds’s semantics.

The rules 7→ L1, L2 specify that e1 7→ e2 is a singleton heap, so it cannot be
empty, nor a composite heap. These were all anticipated in [19] However, the



(h, ε . h);G;Γ ` ∆
U

G;Γ ` ∆
(h3, h5 . h0); (h2, h4 . h5); (h1, h2 . h0); (h3, h4 . h1);G;Γ ` ∆

A
(h1, h2 . h0); (h3, h4 . h1);G;Γ ` ∆

(h2, h1 . h0); (h1, h2 . h0);G;Γ ` ∆
E

(h1, h2 . h0);G;Γ ` ∆
(ε, ε . h2);G[ε/h1];Γ [ε/h1] ` ∆[ε/h1]

D
(h1, h1 . h2);G;Γ ` ∆

(ε, h2. h2);G[h2/h1];Γ [h2/h1] `∆[h2/h1]
Eq1

(ε, h1 . h2);G;Γ ` ∆
(ε, h1. h1);G[h1/h2];Γ [h1/h2] `∆[h1/h2]

Eq2
(ε, h1 . h2);G;Γ ` ∆

(h1, h2 . h0);G[h0/h3];Γ [h0/h3] ` ∆[h0/h3]
P

(h1, h2 . h0); (h1, h2 . h3);G;Γ ` ∆
(h1,h2. h0);G[h2/h3];Γ [h2/h3] ` ∆[h2/h3]

C
(h1,h2. h0); (h1, h3 . h0);G;Γ `∆

(h5, h6 . h1); (h7, h8 . h2); (h5, h7 . h3); (h6, h8 . h4); (h1, h2 . h0); (h3, h4 . h0);G;Γ `∆
CS

(h1, h2 . h0); (h3, h4 . h0);G;Γ ` ∆

Side conditions:
Each label being substituted cannot be ε, each expression being substituted cannot be nil.
In A, the label h5 does not occur in the conclusion.
In CS, the labels h5, h6, h7, h8 do not occur in the conclusion.

Fig. 2. Structural rules in LSSL.

7→ L3 rule proposed in [19], which says that any two singleton heaps with the
same address are identical, is unsound. The corresponding 7→ L3 rule in Figure 3
is correct, which states that it is fine to have two singleton heaps with the same
address, but they cannot be combined to form another heap. The rules 7→ L5

and 7→ L4 state that singleton heaps are uniquely determined by the 7→ relation.
The rule NIL states that nil is not a valid address.

Since the set of addresses is infinite, we can extend any heap with fresh
addresses, giving rise to the rule HE. The rule HC captures heap composition:
given any two heaps h1, h2, either they can be combined, giving the right premise;
or they cannot be combined, hence their domains intersect, i.e., there is some e1

whose value is in this intersection, yielding the left premise. To our knowledge,
proof systems for SL in the literature do not have rules similar to HE and HC,
which enable us to prove many formulae that no other systems can prove.

4 Comparison with Existing Proof Calculi

This section compares and contrasts our calculus with existing proof calculi for
“separation logics” and points out some subtleties in the literature.

Formula 1 says that any heap can be combined with a composite heap:

¬(((¬>∗) ∗ (¬>∗))−∗ ⊥) (1)

The key to proving this formula is to show that any heap can be extended with
a heap that contains at least two singleton mappings. This can be done using
the rule HE. We show here the key part of the derivation for the above formula.



7→ L1G;Γ ; ε : e1 7→ e2 ` ∆
(h1, h0 . h2);G;Γ ;h1 : e1 7→ e2 ` ∆

HE
G;Γ ` ∆

(ε, h0 . h0);G[ε/h1, h0/h2];Γ [ε/h1, h0/h2];h0 : e1 7→ e2 ` ∆[ε/h1, h0/h2]

(h0, ε . h0);G[ε/h2, h0/h1];Γ [ε/h2, h0/h1];h0 : e1 7→ e2 ` ∆[ε/h2, h0/h1]
7→ L2

(h1, h2 . h0);G;Γ ;h0 : e1 7→ e2 ` ∆

7→ L3
(h1, h2 . h0);G;Γ ;h1 : e 7→ e1;h2 : e 7→ e2 ` ∆

G;Γθ;h : e1θ 7→ e2θ ` ∆θ
7→ L4G;Γ ;h : e1 7→ e2;h : e3 7→ e4 ` ∆

G[h1/h2];Γ [h1/h2];h1 : e1 7→ e2 ` ∆[h1/h2]
7→ L5G;Γ ;h1 : e1 7→ e2;h2 : e1 7→ e2 ` ∆

NIL
G;Γ ;h : nil 7→ e ` ∆

(h3, h4 . h1); (h5, h6 . h2);G;Γ ;h3 : e1 7→ e2;h5 : e1 7→ e3 ` ∆ (h1, h2 . h0);G;Γ ` ∆
HC

G;Γ ` ∆

Side conditions:
Each label being substituted cannot be ε, each expression being substituted cannot be nil.
In 7→ L4, θ = mgu({(e1, e3), (e2, e4)}).
In HE, h0 occurs in conclusion, h1, h2, e1 are fresh.
In HC, h1, h2 occur in the conclusion, h0, h3, h4, h5, h6, e1, e2, e3 are fresh in the premise.

Fig. 3. Pointer rules in LSSL.

(h2, h3 . h4); (h0, h1 . h2);h0 : ((¬>∗) ∗ (¬>∗))−∗ ⊥;h1 : e1 7→ e2;h3 : e3 7→ e4 `
HE

(h0, h1 . h2);h0 : ((¬>∗) ∗ (¬>∗))−∗ ⊥;h1 : e1 7→ e2 `
HE

;h0 : ((¬>∗) ∗ (¬>∗))−∗ ⊥ `
¬R

;` h0 : ¬(((¬>∗) ∗ (¬>∗))−∗ ⊥)

To our knowledge, current proof systems for separation logic lack this kind of
mechanism. It is possible to prove this formula by changing or adding some
rules in resource graph tableaux [15], but their proof relies on the restriction
that every l in (l 7→ e) is an address. Thus their method cannot be used in a
more general situation like ours.

Formula 2 is another interesting example, it is not valid in Reynolds’s separa-
tion logic and not provable in LSSL, but is provable in Lee and Park’s system [24].

(((e1 7→ e2)∗>)−∗ ⊥)∨(((e1 7→ e3)∗>)−∗ ¬((e1 7→ e2)−∗ ⊥))∨(e2 = e3) (2)

The meaning of Formula 2 is not straightforward, but we can construct a counter-
model for it in Reynolds’s semantics by trying to derive it in LSSL. The following
sequent will occur in the backward proof search for Formula 2:

(h5, h6 . h1); (h7, h8 . h3); (h1, h0 . h2); (h3, h0 . h4);
h5 : (e1 7→ e2);h7 : (e1 7→ e3);h4 : (e1 7→ e2)−∗ ⊥ ` h0 : (e2 = e3)

It is easy to find a mapping ρ from each label to a legitimate heap, so that
everything in the antecedent is true and everything in the succedent is false. In
Lee and Park’s system, their rule Disj−∗ plays an important role in proving
Formula 2. That rule, however, is not sound in Reynolds’s semantics, because



when assuming two heaps can be combined, their rule only ensures that the two
heaps do not have a common subheap, but it is possible for two heaps to have
intersecting domains without having a common subheap in Reynolds’s semantics.

As mentioned before, our proof system is not complete. For a valid example
that cannot be proved by LSSL, consider Formula 3:

>∗ ∨ (∃e1, e2.(e1 7→ e2)) ∨ ((¬>∗) ∗ (¬>∗)) (3)

This formula is valid because any heap can only be either (1) an empty heap, or
(2) a singleton heap, or (3) a composite heap. To prove Formula 3, we can add
a 7→ R rule with four premises:

(h1, h2 . h); (h1 6= ε); (h2 6= ε);G;Γ ` h : e1 7→ e2;∆

G;Γ ;h : e1 7→ e3 ` h : e2 = e3;h : e1 7→ e2;∆

G;Γ ;h : e3 7→ e4 ` h : e1 = e3;h : e1 7→ e2;∆

G[ε/h];Γ [ε/h] ` ε : e1 7→ e2;∆[ε/h]
7→ R

G;Γ ` h : e1 7→ e2;∆

The rule 7→ R essentially negates the semantics for 7→, giving four possibilities
when e1 7→ e2 is false at a heap h: (1) h is a composite heap, so it is possible
to split it into two non-empty heaps; (2) h is a singleton heap, its address is
the value of e1, but it does not map this address to the value of e2; (3) h is a
singleton heap, but its address is not the value of e1; (4) h is the empty heap. We
will also need a new type of expression, namely inequality of labels as shown in
the first premise. The rule 7→ R is not included in our proof system for efficiency.
For more interesting formula and their derivations, see [18].

5 Inference Rules for Data Structures

Many data structures can be defined inductively by using separation logic’s
assertion language [7]. We focus here on the widely used singly linked lists. The
treatment for binary trees is similar [18]. We adopt several rules from Berdine et
al.’s method for symbolic heaps entailment [2] and extend these rules with new
ones for formulae outside the symbolic heaps fragment.

We use the definition of linked lists for provers for symbolic heaps [7, 2], i.e.,

ls(e1, e2) ⇐⇒ (e1 = e2 ∧ >∗) ∨ (e1 6= e2 ∧ ∃x.(e1 7→ x ∗ ls(x, e2)))

to facilitate comparison between our prover and the other provers. The inference
rules for singly linked lists are given in Figure 4. The rules LS6 and LS7 are for
non-symbolic heaps, they handle cases where two lists overlap. There ds(e, e′)
stands for a data structure that starts from the address e, and ends with e′. We
use ad(e) for a data structure that may contain the address of value of e, and
use G(ad(e)) in the succedent to ensure that ad(e) is non-empty.

For LS8, suppose the heap h1 is a data structure from e1 to e2, and h3 is a
data structure that mentions e3. By G(ad(e3)) in the succedent, we know that
h3 is non-empty and indeed contains the address of e3. Since (h1, h3 . h4) holds,



G;Γ [e1/e2] ` ∆[e1/e2]
LS1

G;Γ ; ε : ls(e1, e2) ` ∆
LS2

G;Γ ` ε : ls(e, e);∆
G;Γ ;h : >∗ ` ∆

LS3
G;Γ ;h : ls(e, e) ` ∆

G;Γ [nil/e];h : >∗ ` ∆[nil/e]
LS4

G;Γ ;h : ls(nil, e) ` ∆
ida

G;Γ ;h : A ` h : A;∆

G;Γθ1;h : >∗ ` ∆θ1 G;Γθ2;h : ls(e1θ2, e2θ2) ` ∆θ2
LS5

G;Γ ;h : ls(e1, e2);h : ls(e3, e4) ` ∆

(h1, h2 . h0);G;Γ ;h1 : ds(e1, e2);h0 : ls(e1, e3);h2 : ls(e2, e3) ` ∆
LS6

(h1, h2 . h0);G;Γ ;h1 : ds(e1, e2);h0 : ls(e1, e3) ` ∆

(h1, h2 . h0);G;Γ ;h1 : ds(e2, e3);h0 : ls(e1, e3);h2 : ls(e1, e2) ` ∆
LS7

(h1, h2 . h0);G;Γ ;h1 : ds(e2, e3);h0 : ls(e1, e3) ` ∆

(h1, h2 . h0); (h1, h3 . h4);G;
Γ ;h1 : ds(e1, e2);h3 : ad(e3)

` h2 : ls(e2, e3);h0 : ls(e1, e3);h : G(ad(e3));∆

LS8
(h1, h2 . h0); (h1, h3 . h4);G;Γ ;h1 : ds(e1, e2);h3 : ad(e3) ` h0 : ls(e1, e3);h : G(ad(e3));∆

IC

(h1, h2 . h0);G;Γ ;h1 : ad(e1);h2 : ad(e1)′ ` h3 : G(ad(e1));h4 : G(ad(e1)′);∆

Abbreviations and side conditions:
ds(e, e′) is either (e 7→ e′) or ls(e, e′).
ad(e) stands for one of (e 7→ e′), (e 7→ e′, e′′), ls(e, e′), or tr(e), for some e′, e′′. Similarly for ad(e)′.
G(ad(e)) is defined as G(e 7→ e′) ≡ G(e 7→ e′, e′′) ≡ ⊥, G(ls(e, e′)) ≡ (e = e′), G(tr(e)) ≡ (e = nil).
In LS5, θ1 = mgu({(e1, e2), (e3, e4)}) and θ2 = mgu({(e1, e3), (e2, e4)}).
In LS8, if e3 is nil, then (h1, h3 . h4), h3 : ad(e3) and h : G(ad(e3)) in the conclusion are optional.
In LS8, if ds(e1, e2) is (e1 7→ e2), then (h1, h3 . h4), h3 : ad(e3) and h : G(ad(e3)) in the conclusion
are optional, on the condition that h′ : (e1 = e3) occurs in the RHS of the conclusion, for some h′.

Fig. 4. Inference rules for data structures.

the address e3 is not in the domain of h1. The labelled formula h0 : ls(e1, e3)
in the succedent indicates that h0 should also make ds(e1, e2) ∗ ls(e2, e3) false,
thus by an ∗R application on this formula using (h1, h2 . h0), the branch with
h1 : ds(e1, e2) in the succedent can be closed, and we only have the other branch
with h2 : ls(e2, e3) in the succedent. There are two special cases as indicated by
the side conditions. First, if e3 is nil , then e3 can never be an address. Thus we
do not need (h1, h3.h4), h3 : ad(e3) and h : G(ad(e3)) in the conclusion. Second,
if ds(e1, e2) is a singleton heap (e1 7→ e2), then we only require that e3 does not
have the same value as e1, thus (h1, h3 . h4), h3 : ad(e3) and h : G(ad(e3)) can
be neglected as long as (e1 = e3) occurs in the succedent.

The rules IC and ida respectively generalise 7→ L3 and id. Thus IC captures
that two data structures that contain the same address cannot be composed by
∗, and ida simply forbids a heap to make a formula both true and false.

We refer to the labelled system LSSL plus the rules introduced in Figure 4
and the rules for binary trees (not shown here, but can be found in [18]) as
LSSL + DS. The soundness of LSSL + DS for Reynolds’s semantics can be
proved in the same way as previously showed for Theorem 1.



G;Γ ;h : e 7→ α, α′ ` h : e 7→ α;∆ G;Γ ; ε : e 7→ α ` ∆

G;Γ ;h : nil 7→ α ` ∆
G;Γθ;h : e1 7→ α ` ∆θ

G;Γ ;h : e1 7→ α;h : e2 7→ α′ ` ∆
θ = mgu({(e1, e2), (α, α′)})

(ε, h0 . h0);G[ε/h1][h0/h2];Γ [ε/h1][h0/h2];h0 : e1 7→ α ` ∆[ε/h1][h0/h2]

(h0, ε . h0);G[ε/h2][h0/h1];Γ [ε/h2][h0/h1];h0 : e1 7→ α ` ∆[ε/h2][h0/h1]

(h1, h2 . h0);G;Γ ;h0 : e1 7→ α ` ∆

G[h1/h2];Γ [h1/h2];h1 : e1 7→ α, α′;h1 : e1 7→ α ` ∆[h1/h2]

G;Γ ;h1 : e1 7→ α, α′;h2 : e1 7→ α ` ∆

Fig. 5. Generalised rules for 7→ with arbitrary fields in non-Reynolds’s semantics.

Recall that symbolic heaps employ slightly different semantics for the multi-
field 7→ predicate, and treat it as a singleton heap. This reading would not make
sense in our setting because our logic is based on Reynolds’s semantics. Here we
develop a branch of our system by compromising both kinds of semantics and
viewing (e1 7→ e2, e3) as a singleton heap that maps the value of e1 to the value
of e2, and the next address contains the value of e3. We give the generalised 7→
rules for non-Reynolds’s semantics in Figure 5 where α, α′ denote any number of
fields. For the non-Reynolds’s semantics, the rules in Figure 4 need to be adjusted
so that ds(e1, e2) now considers (e1 7→ e2, α) and ad(e) considers (e 7→ α). We
refer to the variant of LSSL +DS with these changes and the addition of rules
in Figure 5 as LS′SL +DS, which is complete for the symbolic heaps fragment;
see [18] for the proof.

Theorem 2. Any symbolic heap formula provable in LS′SL + DS is valid, and
any valid symbolic heap formula is provable in LS′SL +DS.

6 Proof Search and Experiment

This section describes proof search and automated reasoning based on the system
LS′SL +DS, these tactics can also be used on the variant LSSL +DS.

We have implemented our labelled calculus LS′SL + DS as a prover called
Separata+, in which several restrictions for the logical and structural rules are
incorporated without sacrificing provability. See Figure 1 and 2 for the related
inference rules in LS′SL. Some of these restrictions are also used in the prover
for PASL [19]. The rule U only creates identity relations for existing labels. The
rule A is only applicable when the following holds: if the principal relational
atoms are (h1, h2 . h0) and (h3, h4 . h1), then the conclusion does not contain
(h3, h . h0) and (h2, h4 . h), or any commutative variants of them, for any h.

In applying the cross-split rule CS, we choose the principal relational atoms
such that the parent label has the least number of children. Other strategies
to apply cross-split are possible; see e.g., [24]. Calcagno et al. [10] showed how
to deal with −∗ formulae in the quantifier-free fragment, but we do not know



whether their results hold for our SL. Nevertheless, inspired by their result, the
rules HE,HC in our prover are driven by −∗ formulae in the antecedent. We
first define a notion of the size of a formula as below:

|e 7→ e′| = |e 7→ e′, e′′| = 1 |e = e′| = 0 |⊥| = 0 |A ∗B| = |A|+ |B|
|A→ B| = max(|A|, |B|) |∃x.A| = |A| |>∗| = 1 |A−∗ B| = |B|

Given a labelled formula h : A−∗ B in the antecedent of a sequent, we allow to
use the HE rule to extend h for at most max(|A|, |B|)/2 + 1 times instead of
max(|A|, |B|) as indicated in [10], because we do not worry about completeness
w.r.t. SL here. The HC rule is restricted to only combine three types of heaps:
any singleton heaps that occur as subformulae of A−∗ B; any heaps created by
HE for A−∗ B; and any compositions of the previous two. The restrictions on
HE and HC are parameters which can be fine-tuned for specific applications.

The atomic formula e 7→ , translated to ∃x.(e 7→ x), is the only type of
formula in symbolic heaps that involves quantifier. Since nested quantifiers are
forbidden in symbolic heaps, the ∃R rule can be restricted so that it only in-
stantiates the quantified variable with an existing expression or nil . We call this
restricted version ∃R′. Although not explicitly allowed in the symbolic heaps
fragment nor in our assertion logic, some symbolic heaps provers can recognise
numbers.To match them, we check when a rule wants to globally replace a num-
ber (expression) by another number, and close the branch immediately because
two distinct numbers should not be made equal. The rule cut= is restricted to
apply only on existing expressions and the constant nil .

Our proof search procedure for LS′SL +DS builds in the above tactics, and
applies the first applicable rule in the following order:

1. Any zero-premise rule.
2. Any unary rule that involves global substitutions.
3. Any other unary non-structural rule except ∃R.
4. Any binary rule that involves global substitutions except cut=.
5. → L. 6. ∗R, −∗ L and ∃R′. 7. U,E,A,CS. 8. cut=.

Theorem 3 (Termination for symbolic heaps). The proof search procedure
for LS′SL +DS is complete and terminating for the symbolic heaps fragment.

The experiments were run on a machine with a Core i7 2600 3.4GHz processor
and 8GB memory, in Ubuntu 14.04. The code is written in OCaml. Our prover
and test suites can be found at [17].

Our first experiment compares our prover with state-of-the-art provers for
symbolic heaps using the Clones benchmark from Navarro and Rybalchenko [27],
which is generated from “real life” list manipulating programs and specifications
involved in verification. We filter out problems that contain a data structure that
we do not consider in this paper, the remaining set consists of 164 valid formulae
and 39 invalid formulae. Each Clones test set has the same type of formulae, but
the length (number of copies of subformulae) of formulae increases from Clones 1
to Clones 10. We compare our prover with Asterix, Smallfoot, and CyclistSL [8],
the last of which is designed for a ∀∃ DNF-like fragment of separation logic.



CyclistSL cannot recognise numbers, and there are 17 formulae in each Clones
test set that cannot be parsed by it (counted as not proved).

Table 2 shows the results of the first experiment. Time out is 50 seconds.
The proved column for each prover shows the number of formulae the prover
proves or disproves within the time out, the avg. time column shows the average
time used when successfully proving a formula. Unsuccessful attempts counted
in average time. Asterix outperformed all the compared provers. CyclistSL is
not complete, so it might terminate without giving a proof. It also cannot de-
termine if a formula is invalid. However, the advantage of CyclistSL is not in
its performance, but in its generality. For example, CyclistSL can be easily ex-
tended to handle other inductive definitions, this is not the case for the other
provers in comparison. Separata+ and Smallfoot have similar performance on
valid formulae, but Separata+ is not efficient on invalid formulae.

The second experiment features some formulae outside the symbolic heaps
fragment, thus we cannot find other provers to compare with, except for a recent
work by Thakur, Breck, and Reps [36]. However, their semantics assume acyclic
heaps. For example, (e1 7→ e2) ∗ (e2 7→ e1) is a satisfiable formula in Reynolds’s
semantics, but is unsatisfiable in Thakur et al’s semantics. The fragment of sep-
aration logic they consider has “septraction” A−~B, defined as ¬(A−∗ ¬B), and
only allows classical negation on atomic formulae. Table 3 shows some formulae
derived from [36, Table 3], using the definition of septraction as given above.
The other formulae from [36, Table 3] are not included, as they are unsatisifi-
able in Reynolds’s semantics. Formula T3.3 to T3.13 in Table 3 are identified as
“beyond the scope of existing tools” [36]. More specifically, Formula T3.1, T3.3
and T3.4 describe overlapping data structures; the other formulae in Table 3
demonstrate the use of list and septraction. For example, Formula T3.6 is an
instance of an elimination rule for −~ and linked list segment in [9].

Maeda, Sato, and Yonezawa [26] provide more examples that use −∗ in pro-
gram verification. Many of their inferences, e.g. [26, Section 3.1], are easily proved
by Separata+ if their syntax is carefully translated into ours, such as Formula 4,
which captures a property described in their original type system.

(ls(e0,nil)−∗ (ls(e0,nil) ∗ (ls(e0,nil)−∗ ((ls(e1,nil)−∗ ls(e2,nil)) ∗ (e1 7→ e3)∗
ls(e0,nil))) ∗ (ls(e0,nil)−∗ ls(e3,nil))))→ (ls(e0,nil)−∗ (((ls(e1,nil)

−∗ ls(e2,nil)) ∗ (e1 7→ e3) ∗ ls(e0,nil)) ∗ (ls(e0,nil)−∗ ls(e3,nil)))) (4)

To challenge our prover further, we build larger formulae generated from
Table 3, Formulae 1, 4 (and some formulae similar to 4) and some formulae in
[18], totalling 26 formulae inexpressible in symbolic heaps. We use the “clone”
method [1] to generate larger formulae, but we make the formulae “harder” by
randomly switching the order of starred subformulae. We call these test suites
“MClones”. The test results are shown in Table 4. The MClones 1 set contains 26
original formulae. The experiment method is the same as before, except that the
timeout is set to 500 seconds. The successful rate drops as the number of cloned
subformulae increases. The average time used to prove a formulae, however,
fluctuates, because we do not count the timed out attempts. In both experiments,



Test suite with 164 valid formulae Test suite with 39 invalid formulae

Test suite Separata+ CyclistSL Smallfoot Separata+ CyclistSL Smallfoot

proved avg. proved avg. proved avg. dis- avg. dis- avg. dis- avg.
time time time proved time proved time proved time

Clones 1 164 0.01 147 0.04 164 0.00 39 0.09 0 - 39 0.00
Clones 2 160 0.02 137 0.17 164 0.00 23 3.37 0 - 39 0.00
Clones 3 159 0.07 126 0.48 164 0.01 9 1.78 0 - 39 0.01
Clones 4 159 0.30 117 0.11 164 0.03 6 7.89 0 - 39 0.02
Clones 5 158 0.03 115 0.13 164 0.15 2 0.52 0 - 39 0.10
Clones 6 158 0.08 114 0.29 164 0.65 2 20.10 0 - 39 0.40
Clones 7 158 0.18 106 0.01 162 0.75 0 - 0 - 39 0.00
Clones 8 158 0.42 106 0.01 160 0.83 0 - 0 - 38 2.10
Clones 9 158 0.89 106 0.01 157 0.36 0 - 0 - 38 5.37
Clones 10 157 1.19 106 0.01 157 0.83 0 - 0 - 32 3.54

Asterix proved every test set with an average of 0.01s and 100% successful rate.
Table 2. Experiment 1: the Clones benchmark. Times are in seconds.

Formula

T3.1 ls(e1, e2) ∧ >∗ ∧ ¬(e1 = e2)
T3.2 ¬((e1 7→ e2)−∗ ¬>) ∧ ((e1 7→ e2) ∗ >)
T3.3 (ls(e1, e2) ∗ ¬ls(e2, e3)) ∧ ls(e1, e3)
T3.4 ls(e1, e2) ∧ ls(e1, e3) ∧ ¬>∗ ∧ ¬(e2 = e3)
T3.5 ¬(ls(e1, e2)−∗ ¬ls(e1, e2)) ∧ ¬>∗
T3.6 ¬((e3 7→ e4)−∗ ¬ls(e1, e4)) ∧ ((e3 = e4) ∨ ¬ls(e1, e3))
T3.7 ¬(¬((e2 7→ e3)−∗ ¬ls(e2, e4))−∗ ¬ls(e1, e4)) ∧ ¬ls(e1, e3)
T3.8 ¬(¬((e2 7→ e3)−∗ ¬ls(e2, e4))−∗ ¬ls(e3, e1)) ∧ (e2 = e4)
T3.9 ¬((e1 7→ e2)−∗ ¬ls(e1, e3)) ∧ (¬ls(e2, e3) ∨ ((> ∧ ((e1 7→ e4) ∗ >)) ∨ (e1 = e3)))
T3.10 ¬((ls(e1, e2) ∧ ¬(e1 = e2))−∗ ¬ls(e3, e4)) ∧ ¬(e3 = e1) ∧ (e4 = e2) ∧ ¬ls(e3, e1)
T3.11 ¬(e3 = e4) ∧ ¬(ls(e3, e4)−∗ ¬ls(e1, e2)) ∧ (e4 = e2) ∧ ¬ls(e1, e3)
T3.12 ¬((ls(e1, e2) ∧ ¬(e1 = e2))−∗ ¬ls(e3, e4)) ∧ ¬(e3 = e2) ∧ (e3 = e1) ∧ ¬ls(e2, e4)
T3.13 ¬(¬((e2 7→ e3)−∗ ¬ls(e2, e4))−∗ ¬ls(e3, e1)) ∧ (¬ls(e4, e1) ∨ (e2 = e4))

Separata+ proved the negation of each listed formula within 0.01 second.
Table 3. Selected formulae from [36, Table 3] translated via A−~B ≡ ¬(A−∗ ¬B).

Test suite Separata+ Test suite Separata+
proved avg. time Proved avg. time

MClones 1 26/26 2.96s MClones 6 18/26 16.44s
MClones 2 23/26 8.76s MClones 7 17/26 3.97s
MClones 3 20/26 7.00s MClones 8 15/26 2.93s
MClones 4 20/26 0.62s MClones 9 16/26 8.43s
MClones 5 20/26 22.35s MClones 10 14/26 10.71s

Table 4. Mutated clones benchmark for formulae in Table 3.



the first test suite (Clones 1 and MClones 1) contains the original formulae in
program verification. These formulae can be easily proved by Separata+.

7 Conclusion

We have presented a labelled sequent calculus LSSL for Reynolds’s SL. The
syntax allows all the logical connectives in SL including ∗,−∗ and quantifiers,
the predicate 7→ and equality. It is impossible to obtain a finite, sound and
complete sequent system for this logic, so we focused on soundness, usefulness,
and efficiency. With the extension to handle data structures, our proof method
is sound, complete, and terminating for the widely used symbolic heaps frag-
ment. Our prover Separata+ showed comparable results as that for Smallfoot
on proving valid formulae, although Separata+ does not perform well when the
formula is invalid, which may be due to our inference rules having to cover a
larger fragment. However, Separata+ can deal with many formulae that, to our
knowledge, no other provers for Reynolds’s SL can prove. Some of these formulae
are taken from existing (manual) proofs to verify algorithms/programs. These
indicate that our method would be useful, at least as a part of the tool chain,
for program verification with more sophisticated use of separation logic.
Acknowledgment. The third author is partly supported by NTU start-up grant
M4081190.020.
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