
  

Abstract—Embedded application environments require both 
high performance and low power. Architectures exploiting 
instruction-level parallelism (ILP) at compile time, such as very 
long instruction word (VLIW) and transport triggered archite- 
cture (TTA), may satisfy the requirements. They can be further 
enhanced by using asynchronous circuits to significantly reduce 
power consumption. As such, we are interested in asynchronous 
processors with architectures exploiting ILP at compile time. 
However, most of the current asynchronous processors are based 
on RISC-like architectures. When designing asynchronous VLIW 

or TTA processors, the distribution of control introduces some 
serious problems, and errors may occur because of the variable 
latencies of operations. This paper investigates the asynchronous 
processor with architecture exploiting ILP at compile time. In 
order to overcome these problems, we propose a data source 
selecting (DSS) scheme to guarantee instructions run correctly 
on asynchronous VLIW and TTA processors. Concretely, an 
asynchronous pipelined processor based on TTA is designed. The 
micro-architecture of the proposed asynchronous TTA processor 
is presented and an asynchronous processor named Tengyue is 
implemented using 180nm technology. The experimental results, 
for a range of benchmarks and working modes, show that the 
implemented asynchronous TTA processor with DSS scheme 
support runs correctly and power dissipation is reduced to about 
43% to 65% of the equivalent synchronous processor. 

I. INTRODUCTION 
As the complexity of embedded applications is growing 

rapidly, systems in the embedded domain are required to be of 
high performance to meet real-time requirements. Exploiting 
ILP is an attractive approach to satisfying the high perfor- 
mance requirements, and two approaches are typically used: 
traditional CPU, such as superscalar processor, can exploit the 
ILP at run time, and we abbreviate this type of architectures to 
EIRT (exploiting ILP at run time) architectures; while others, 
such as VLIW and TTA based processors, exploit the ILP at 
compile time and they are abbreviated to EICT (exploiting ILP 
at compile time) architectures in this paper. Furthermore, low 
power consumption is also required for mobile embedded 
environments. In order to improve energy-efficiency, a lot of 
techniques are proposed to overcome the power problem at 
different levels ranging from circuits to applications [1]. 

The clock related components have become the largest 
power consuming part in a processor, and these components 
include the clock generator, the clock distribution tree, clock 
drivers, latches and the clock loading due to all the clocked 
elements [2]. Friedman [3] reported that the clock distribution 

 

network consumed more than 25% of the total power in many 
applications. Approximately 70% of the power is burned by 
the clock distribution and latches in the POWER 4 processor 
[4]. In the Alpha 21264, 32% of the chip power is attributed to 
the global clock network [5]. In embedded SuperHTM proc- 
essor core, the clock-tree and Flip-Flops take 35% of the total 
power [6]. In the VLIW processor core of TMS320C6416T, 
the clock distribution network contribution percentage to the 
total power consumption is about 76% for some simple algor- 
ithms [7]. Instead of being driven periodically by a global 
clock, asynchronous circuits work on demand and stop when 
not needed. For this reason, a design utilizing asynchronous 
circuits produces an effectively power-efficient architecture. 
Moreover, an asynchronous circuit exhibits average-case 
performance rather than the worst-case performance of a 
synchronous circuit. 

In the past two decades, many asynchronous processors 
have emerged. The first asynchronous processor was designed 
at Caltech in 1988 [8], and it was followed by FAM (fully 
asynchronous microprocessor) [9], NSR (non-synchronous 
RISC) [10], STRiP (self-timed RISC processor) [11], Amulet 
[12], TITAC [13], MiniMIPS [14], ARM996HS [15], and so 
on. Almost all of the above asynchronous processors are based 
on RISC architectures. Nowadays, VLIW and TTA are being 
widely used in the embedded domain for their hardware 
simplicity [16], [17]. However, the design methods used for 
asynchronous RISC-like architectures cannot be directly appl- 
ied to asynchronous EICT architectures. 

In EICT architectures, data and control hazards are over- 
come at compile time. The compiler knows the latency of each 
operation, and the latency information is used to schedule 
instructions. Processors run the scheduled program instruction 
by instruction and need not to do dependence detection at run 
time. However, EICT architectures cannot tolerate variable 
latencies of operations. When we implement an EICT arch- 
itecture based processor using asynchronous circuits, the 
centralized control becomes distributed because the global 
clock is replaced by local handshake signals. The naive 
replacement of the global clock in a synchronous processor 
with local handshake signals to produce an asynchronous 
processor may result in incorrect behaviors. By removing the 
global clock, it is no longer possible to use the cycle count to 
measure the variable latencies of operations. That is to say, 
there has always been a conflict between the indefinite 

DSS: Applying Asynchronous Techniques to Architectures 
Exploiting ILP at Compile Time 

Wei Shi, Zhiying Wang, Hongguang Ren, Ting Cao*, Wei Chen, Bo Su, and Hongyi Lu 
School of Computer,  *Department of computer science 

National University of Defense Technology,  *Australian National University 
{shiwei,zywang,ren,chenwei,subo,hylu}@nudt.edu.cn  *ting.cao@anu.edu.au 

978-1-4244-8935-0/10/$26.00 ©2010 IEEE 321



latencies of asynchronous circuits and the accurate cycle count 
of operations demanded by the compiler. This paper proposes 
a DSS scheme to guarantee programs run correctly on asyn- 
chronous EICT architectures. In the DSS scheme, the results 
of operations are buffered and then correct results are picked 
as inputs of the corresponding operations. In order to elaborate 
the DSS scheme, the design of an asynchronous pipelined 
processor based on TTA employing the DSS scheme is 
presented. 

The paper is organized as follows. Section II introduces the 
TTA and asynchronous circuit design method. Section III 
presents the asynchronous TTA with DSS scheme. The detail 
implementation of the asynchronous TTA is explained in 
Section IV. The delay, area and power consumption of the 
proposed asynchronous TTA processor are compared to its 
synchronous counterpart in Section V. Conclusions are given 
in Section VI. 

II. PRELIMINARIES 

A. The Synchronous Transport Triggered Architecture 

In this paper, we take TTA as an example of EICT archi- 
tectures to elaborate the DSS scheme. This is because TTA 
can be regarded as an extreme example of EICT architectures. 
Actually, some hardware mechanisms such as simplified 
scoreboard may also be used by VLIW in some situations, but 
there are not any hardware mechanisms to do dependence 
detection and hazard elimination in TTA. 

TTA proposed by H. Corporaal [18] can be viewed as a 
superset of the traditional VLIW architecture. However, TTA 
has unique characteristics compared to conventional processor 
architectures. One of the main features of a TTA processor is 
that all the actions are actually side-effects of transporting data 
from one place to another. When the data is written into a 
special register, called a trigger register, execution is triggered. 
Consequently, a TTA processor only has move instructions. A 
long instruction in TTA usually consists of several slots, each 
of which contains a short move transport instruction. These 
move instructions are dispatched to control data transports 
through the interconnection network and different functional 
units will be triggered. All the functional units work in parallel 
which will significantly improve performance. An example of 
the format of a TTA instruction is shown in Fig. 1, which 
contains several move slots and a long immediate number slot. 
For each move slot, there are 3 sub-domains: guard domain 
which specifies the condition for data transport; source 

domain, identifying the source of the data; destination domain, 
which specifies the target of the transport. 

There are usually 5 kinds of components in a TTA based 
processor. Those components are the instruction fetch unit, 
instruction decode unit, interconnection network, register files 
and functional units. All of the register files and functional 
units are connected by the interconnection network through 
sockets. Data transports are performed through these sockets, 
and these sockets are controlled by the decode unit. Each 
functional unit contains one or more operand registers, a 
unique trigger register, and one or more result registers. When 
data is written into the trigger register, the functional unit is 
triggered to perform computation using the data in both 
operand registers and trigger register, and then output results 
are written into the result registers. The pipeline of TTA 
usually contains 4 stages: instruction fetch (IF), instruction 
decode (ID), transport (MV) and execution (EXE). The EXE 
stage can be further divided into several pipeline stages. 

B. Asynchronous Design Flow 

Synchronous-to-asynchronous circuit conversion methodol- 
ogy [19], which converts synchronous circuits into asynchr- 
onous ones using existing EDA tools and flows, is an efficient 
design approach for asynchronous circuits. Furthermore, the 
de-synchronization method proposed in [20] is very popular. 
In this paper, we use a simple design flow which is similar to 
the de-synchronization methodology to implement a TTA 
based asynchronous processor. In our design flow, the global 
clock network is replaced by local handshake circuits, and the 
Flip-Flops in data paths commonly remain the same as the ori- 
ginal synchronous processor. The local controller of a control 
path uses redundant four-phase latch control (RFLC) protocol 
which is combined with 2 simple four-phase latch controllers. 
The synchronous circuit and its asynchronous equivalent are 
shown in Fig. 2(a) and Fig. 2(b) respectively. 

III. ASYNCHRONOUS TRANSPORT TRIGGERED 
ARCHITECTURE 

A. Problems of the Asynchronous Design for TTA 

Data dependence in a program limits the parallelism we can 
exploit. As such, dependence detection and hazard elimination 
are considered critical for all the pipelined architectures. Sev- 
eral approaches such as dynamic scheduling, dynamic branch 
prediction, loop unrolling, and compiler pipeline scheduling 
have been employed in synchronous pipelines [21]. 

k n

 
 

Fig. 1.  TTA long instruction format. 

a

b  
Fig. 2.  Synchronous circuit and its asynchronous equivalent. 

322



There are some hardware mechanisms to deal with hazards 
in RISC-like architectures, and ILP can be exploited at run 
time. Chang [22] presented methods of dependence detection 
and hazard elimination for asynchronous RISC processors. 
Unlike traditional RISC architectures, dependence detection 
and hazard elimination for EICT architectures are mainly 
performed by compilers. Based on accurate delay information 
(in cycles), the compiler knows when instructions in synch- 
ronous pipelines are executed and when the results of those 
instructions can be used. Thus, the hardware just needs to run 
the program in pre-scheduled manner. To avoid any hazards, 
the compilation process for TTA addresses the following three 
issues. Firstly, instructions which definitely will be executed 
are inserted into the branch delay slots to overcome the control 
hazard. Secondly, move instructions which have the same 
destination will be scheduled into different long instructions to 
avoid a structure hazard. Lastly, in order to avoid a data hazard, 
the compiler arranges instructions according to the execution 
cycles of each functional unit. In asynchronous TTA, since 
there is no global clock, it is unreasonable to define the delay 
of an asynchronous functional unit by cycle count. As a result, 
the behavior of the instructions running on an asynchronous 
TTA processor would not be the same as the behavior that the 
compiler expects, i.e. the uncertainty of the actual execution 
time of the functional units and the certainty of the originally 
compiled codes may lead to incorrect results in an asynch- 
ronous TTA.  

In an asynchronous TTA processor, the global lock signal is 
another problem we must solve. When a data cache miss 
occurs, the TTA processor core is usually locked by the global 
lock signal to preserve existing states, and since no global 
clock exists in an asynchronous TTA this mechanism is no 
longer possible. As an example, Fig. 3(a) shows the behavior 
of several instructions on a synchronous TTA. Instruction 1 
will trigger functional unit n, while instruction 2 will trigger 
functional unit n and the load/store unit. The result of the 
instruction 1 on functional unit n and the data loaded by the 
load/store unit will be used by instruction 5. Functional unit n 
is implemented in a 3 stage pipeline. In this example, we 
assume that the data which is wanted by the load/store unit is 
not in the data cache, and the whole processor core will be 
locked until the data is retrieved from memory. While in an 
asynchronous TTA processor, the whole processor core can 
not be locked for the lack of a global clock reference. Instr- 
uctions after the instruction 5 can be blocked, but instructions 
before instruction 5 will continue. When the data is read from 
memory, the block will be eliminated. However, the result r1 
of instruction 1 on functional unit n has already been replaced 
by the result r2 of instruction 2 at the time of instruction 5 
entering MV stage, and errors occur. The corresponding 
behavior of the asynchronous processor core is shown in Fig. 
3(b). 

B. Asynchronous TTA 

According to the analysis in Section III.A, the asynchronous 
behavior of an EICT architecture may lead to an erroneous 

result. In order to solve this problem, a novel approach called 
DSS scheme is proposed. The newly proposed scheme is res- 
ponsible for selecting correct results for asynchronous EICT 
architectures to guarantee that instructions run correctly on the 
asynchronous processor. Fig. 4 shows the improved asynchr- 
onous TTA block diagram which adopts the DSS scheme. 

In IF stage, instructions are fetched from instruction cache. 
In ID stage, instructions are decoded. The value of condition 
domain, which controls the execution of the transport, is 
decided by the result of comparison unit. In MV stage, the 
results of functional units and data from the register file are 
delivered to destination registers. In EXE stage, different fun- 
ctional units implemented in asynchronous pipelines execute 
the operations and calculate the results. However, results of 
asynchronous functional units may be produced earlier or later 
than expected. This is because there is not a global reference 
clock, and it will cause decoding errors in ID stage and also the 
transporting of incorrect data to destination registers in MV 
stage. When the data is produced later, the delay of the delay 
elements in the ID and MV stages can be increased to avoid 
errors. Actually, in a synchronous TTA, the same method has 
been used to guarantee the correctness, i.e. extending the 
global clock cycle to make sure that all the functional units can 
finish the work in time. When the data is produced earlier, the 
situation becomes more complicated, and the DSS scheme is 
used in this circumstance. Firstly, we append an instruction 
index for each instruction to be executed in asynchronous 
pipelines. Secondly, a new stage is added at the end of each 
asynchronous functional unit to latch results. Lastly, DSS 
circuits are added to the ID and MV stages. A result buffer is 
used to protect the earlier result from being overwritten by 
the latter one before it has been accessed. Using instruction 
indexes, DSS circuits can select the correct results from the 
result buffers of functional units and send them to destination 
registers. More details are presented in Section IV. 

　
nfu

ld

nfu

nfu

nfu

nfu

nfu
ld

　
nfu

ld

nfu

nfu

nfu

nfu

nfu
ld

　

 
Fig. 3.  Behaviors of synchronous and asynchronous TTA. 

323



IV. LOGIC AND MICROARCHITECTURE DESIGN 

A. Asynchronous TTA Pipeline Structure 

The pipeline structure of an asynchronous TTA processor is 
shown in Fig. 5. The whole pipeline can be divided into 
several smaller scale pipelines, and each pipeline can be 
implemented using the asynchronous circuit design method 
described in Section II.B. One of the small-scale pipelines 
contains three stages which are IF, ID, MV and the structure is 
shown in the left part of Fig. 5. Because the branch target 
address in MV stage is fed back to IF stage, there exists a 
feedback signal in the control path from MV to IF. Each 
functional unit in EXE stage can be regarded as an individual 
pipeline, and it is very easy to design its asynchronous 
equivalent. In Fig. 5, two blocks are added between the MV 
and EXE stage. In EXE stage only functional units with valid 
trigger signals are activated. Thus, trigger signals are inte- 
grated into the control path to avoid every functional unit 
being activated, and redundant operations are removed. The 
corresponding circuit structure is shown in shaded block 2. In 
a TTA processor, there is an instruction which is called 

dummy instruction, and when the dummy instruction is 
performed none of the functional units will be triggered. In 
this situation, an acknowledge signal must be generated to 
make the processor proceed. The acknowledge signal generat- 
ing circuit is shown in shaded block 1. 

The results of functional units are usually used by the logic 
in ID and MV stages, and the DSS scheme is added to guar- 
antee the correctness of the asynchronous processor. For this 
reason, the structure of functional units and combinational 
logic in ID and MV stages must be modified. The newly 
modified structure will be explained in Section IV.B and IV.C. 

B. Modified Functional units 

The asynchronous functional unit pipeline is shown in Fig. 
6(a). To implement the DSS scheme, the data path of the 
functional unit is revised. For each intermediate register, an 
instruction index i and a data usability tag v are added. A new 
stage for buffering results is also added to the end of each 
functional unit. Instruction index indicates which instruction 
produced the intermediate result, and data usability tag indic- 
ates whether the data is suitable to be transported through the 
network. The results of each functional unit are firstly latched 

 
 

Fig. 4.  Asynchronous TTA block diagram. 

 
 

Fig. 5.  Pipeline structure of asynchronous TTA. 

324



to register R1, and if R2 is empty then the result in R1 will be 
delivered to R2. In this case, the process of transferring the 
result from register R1 to R2 surely will increase the execution 
time. In order to solve this problem, we propose a modified 
pipeline structure as shown in Fig. 6(b). The output request 
signals also indicate the validity of the value in the corres- 
ponding registers. If the signal req1 and req2 in Fig. 6(b) are 
both low, indicating that values in both registers R1 and R2 are 
invalid, then the result can move directly to R2 without 
passing through R1 temporarily. This will decrease execution 
time significantly. To improve performance further, the fine- 
grain asynchronous pipeline such as LDA (locally distributed 
asynchronous pipelines) [23] can also be used to implement 
the result buffer. In an asynchronous TTA, a data source 
selecting table (DSST) containing results of all the functional 
units and their related information is created. In ID and MV 
stages of an asynchronous TTA, the correct data are selected 
from the DSST and then used. Each item of the table is related 
to a functional unit, comprising execution cycles (n) of the 
corresponding functional unit implemented in synchronous 
circuits, value of the results (value), index (i) of the instruction 
running in the functional unit and validity tag of the results 
(req). When a new instruction enters the pipeline an index 
number is assigned to the instruction, and the index number is 
generated by an instruction index counter in IF stage of the 
processor. We encode the instruction index according to the 
maximum length of the TTA pipeline, i.e. if the maximum 
length of the pipeline is N, then we might encode the instr- 
uction index by a binary number of ⎡log2N⎤ bits. 

C. Data Source Selecting Scheme 

The DSS scheme is used to ensure that the asynchronous 
TTA pipeline runs in the correct order and the ID and MV 
stages always select correct data sources. This approach is 
based on the hardware structure described in Section IV.B. 
The structure of DSS scheme is shown in Fig. 7. When a new 
result is produced, it will be latched in the result register 

buffers as shown in the DSST. The data source selecting logic 
(DSSL) calculates the usability of the current result, according 
to the information in the DSST, for the ID or MV stage. The 
DSSL works as follows: firstly, a difference is calculated by 
subtracting the index of the current instruction (I) with the 
index stored in the result buffer (i); secondly the difference is 
compared with the delay of the functional unit (n); and lastly if 
the difference value is bigger than the delay, then the value in 
the result register is usable for the ID or MV stage, otherwise 
the result is unusable. The difference value can be calculated 
by the formula (I-i+N) mod N. 

If the value in the result register is usable and corresponding 
req in the control path is high, then the usability tag v will be 
reset to high. If there is only one usable result, this value will 
be selected and sent to destination through the network. If the 
two results are both usable, then the latest result will be 
selected. In the mean time, the older result is no longer needed, 
so we can move it out of result buffers. The signal s in Fig. 7 
indicates which result should be sent through the network. If s 
is high, then register R1 carries the latest result and value1 is 
connected to the network as the selected data source, other- 
wise value2 is selected as the data source. The signal fetch_ 
gen in Fig. 7 is used to generate a pulse for the fetch port of the 
asynchronous functional unit. Thus, the older result can be 
removed from the result buffers and the space is provided for 
the next result. 

V. EXPERIMENTS AND EVALUATION 

A. Asynchronous Processor Implementation 

We selected a set of multimedia kernels from the Berkeley 
multimedia kernel library (BMKL) [24] and a multimedia 
application oriented embedded processor named Tengyue was 
implemented to validate ideas proposed. Tengyue works as a 
co-processor and the host processor can access Tengyue thr- 
ough the adapter interface. There are two processor cores in 
Tengyue, a synchronous one called Syn-TTA and an asynch- 
ronous one called Asyn-TTA. For the purpose of comparison, 
these two cores are configured with same functional units. The 
process of design space exploration and cost estimation of 
Tengyue has been described in [25]. In each core, there are 4 

1

0

1

0

1

0

1

0

0

。

0

（ ）

（ ）

1

0

 
Fig. 6.  Pipeline structure of a functional unit and the modified structure. 

 
 

Fig. 7.  Data source selecting scheme in MV stage. 

325



ALUs, 4 multiply-accumulate (MAC) units, 2 floating point 
units, 1 integer divide functional unit, 1 floating point divide 
functional unit, 2 load/store units, 2 comparison units, 1 I/O 
unit and register files. All the functional units and register files 
in each core are connected by an interconnection network con- 
sisting of 8 transport buses. 

Tengyue is implemented using the standard cell based semi- 
custom synchronous design flow and the asynchronous design 
flow described in Section II.B. The layout of Tengyue is 
shown in Fig. 8, and the area is 4.89mm×4.89mm. 

B. Performance Analysis 

In the processor core Syn-TTA, the clock cycle is usually 
set according to the maximum delay of all the stages at 
worst-case condition. As a result, the synchronous cycle is 
4.64 ns. In the Asyn-TTA, the delay of IF, ID and MV stages 
are set to be the maximum delay of all the stages to guarantee 
correctness, while the delay of  every stage of functional units 
are set according to actual execution time of the corresponding 
combinational logic. At worst-case condition, the cycle of 
asynchronous pipeline is about 5.34ns. The performance over- 
head is due to the return-to-zero attribute of the four phase 
handshake protocol. 

However, the asynchronous circuit has the ability to operate 
at their average speed. Andrikos [26] assumed that the perfor- 
mance of asynchronous pipelines obey the normal distribution 
between the best-case and worst-case condition according to 
actual running environments of the processor. At the best-case 
condition, the cycle of Asyn-TTA is about 2.49ns. In a word, 
the cycle range of Asyn-TTA swings between 2.49ns and 5.34 

ns. Fig. 9 shows the probability of Asyn-TTA having better 
performance than Syn-TTA. In Fig. 9, three different standard 
deviations are used (σ=0.4, σ=0.5 and σ=0.6). We conclude 
that at more than 90% of cases, the cycle of the asynchronous 
pipeline is shorter than the cycle of the synchronous pipeline. 

C. Area Comparison 

Both the areas for Syn-TTA and Asyn-TTA are shown in 
Table 1. After logic synthesis, the area of Syn-TTA is 3.42 
mm2, and the area of Asyn-TTA is 3.57mm2. Asyn-TTA is 
about 4.44% larger than the Syn-TTA. The extra area cost of 
Asyn-TTA is mainly due to the control path circuits. Additi- 
onally, optimizing asynchronous functional units will increase 
the data paths and thus increase the area cost. In the process of 
place and route, some buffer circuits must be inserted to 
optimize the timing, resulting in an increase in area. In Syn- 
TTA, an entire clock network must be created, which takes up 
significant area. For Asyn-TTA, we just need to optimize the 
local clock network, so the increased area is relatively smaller. 
Finally, the area of Asyn-TTA is 3.25% larger than Syn-TTA 
after layout. 

D. Power Consumption 

In synchronous circuits, the clock network requires signi- 
ficant power whether or not any computations are performed. 
However, control paths of asynchronous circuits consume 
dynamic power only when they are active. In EICT architect- 
ures, functional unit resources are abundant, but they may be 
heavily underutilized due to the limited parallelism of some 
programs and the narrow width of the interconnection network. 
In this situation, there will always be some functional units at 
idle state, which provides the opportunities for asynchronous 
circuit to save power. Furthermore, if the whole computational 
core is idle, then asynchronous circuits will dissipate much 

 
 

Fig. 8.  Layout of Tengyue. 

Table 1.  Area Comparison of Syn-TTA and Asyn-TTA (μm2). 

 Attributes Syn-TTA Asyn-TTA +% 
cell number 151713 163225 7.59 
comb. logic 2651649 2799977 5.59 
seq. logic 765388 768772 0.44 

logic 
synthesis 

cell area 3417037 3568749 4.44 
layout cell area 3661355 3780376 3.25 

 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7
delay(ns)

P
r
o
b
a
b
i
l
i
t
y

σ=0.4

σ=0.5

σ=0.6
syn

 
Fig. 9.  Performance comparison of Syn-TTA and Asyn-TTA. 

0

100

200

300

400

500

600
Loop_with_Prefetch
Once_with_Prefetch
Once_without_Prefetch

 

Fig. 10.  Power comparison of Syn-TTA and Asyn-TTA. 

326



less power compared to synchronous circuits. 
To quantify the power advantage of the Asyn-TTA, we use 

PrimePower to simulate the power dissipation of the Syn-TTA 
and Asyn-TTA respectively. The two processor cores are 
simulated under the same environment, i.e. they are both under 
the typical case conditions and the cycle of Tengyue is 5ns. 
Several kernels randomly chosen form BMKL were used to 
evaluate power dissipation, and simulation results are shown 
in Fig. 10. There are 3 test modes used for the power simul- 
ations: mode I, the program is prefetched into the instruction 
cache before the processor is started and the program is perf- 
ormed repeatedly; mode II, the program is prefetched and 
performed only once; and mode III, the program is not 
prefetched and performed once. In mode I, the power of the 
asynchronous core takes about 55%~65% of the synchronous 
core; while in mode II and mode III, the percentage is reduced 
to about 47%~52% and 43%~47% respectively. This is 
because the cache miss in the later two modes may make the 
TTA core idle, and asynchronous circuits exhibit their low 
power advantage. 

VI. CONCLUSIONS 
High performance and low power are both important req- 

uirements in embedded application environments. The design 
of asynchronous processors with EICT architectures is an eff- 
icient way to satisfy the above requirements. However, the 
previously introduced asynchronous processors are almost all 
based on RISC-like architectures. This paper investigates 
asynchronous processor structures with EICT architectures, 
and an asynchronous processor based on transport triggered 
architecture is presented as an example. Using the DSS 
scheme, asynchronous techniques can be applied to the EICT 
architectures. The experiments show that the designed asyn- 
chronous processor can operate correctly and the proposed 
scheme works effectively. The asynchronous TTA processor 
achieves better performance and lower power consumption 
with a little more area overhead. In particular, the more time 
the asynchronous processor is idle, the greater the power 
saving compared to the synchronous equivalent. 

ACKNOWLEDGMENT 
The authors gratefully acknowledge the contribution of Dr. 

John Zigman at Australian National University and the 
reviewers for their valuable comments. This work is supported 
by the National Basic Research Program of China under grand 
2007CB310901 and the National Natural Science Foundation 
of China under grand 60773024, 60903039. 

REFERENCES 
[1] V. Venkatachalam, and M. Franz, “Power reduction techniques for 

microprocessor systems,” ACM Computing Surveys, vol. 37, no. 3, pp. 
195–237, Mar. 2005. 

[2] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Red- 
ucing power in high-performance microprocessros,” in Proc. of the  AC- 
M/IEEE conf. on Design Automation Conference, 1998, pp. 732–737. 

[3] E. G. Friedman, “Clock distribution networks in synchronous digital 
integrated circuits,” Proceedings of the IEEE, vol. 89, no. 5, pp. 
665–692, May 2001. 

[4] C. J. Anderson, J. Petrovick, J. M. Keaty, J. Warnock, G. Nussbaum, J. 
M. Tendier, et al, “Physical design of a fourth-generation POWER GHz 
microprocessor,” in IEEE Int. Solid-State Circuits Conf., 2001, pp. 
232–233. 

[5] M. K. Gowan, L. L. Biro, and D. B. Jackson, “Power considerations in 
the design of the Alpha 21264 microprocessor,” in Proc. of the ACM/ 
IEEE Design Automation Conf., 1998, pp. 726–731. 

[6] T. Yamada, M. Abe, Y. Nitta, and K. Ogura, “Low-power design of 
90-nm SuperHTM processor core,” in Proc. of the IEEE Int. Conf. on 
Computer Design, 2005, pp. 258–263. 

[7] M. E. A. Ibrahim, M. Rupp, and H. A. H. Fahmy, “Power estimation 
methodology for VLIW digital signal processors,” in Proc. of the 
Asilomar Conf. on Signals, Systems, and Computers, 2008, pp. 26–29. 

[8] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P.J. Hzaewindus, 
“The design of an asynchronous microprocessor,” in Proc. of the 
Decennial Caltech Conf. on VLSI, 1989, pp. 351–373. 

[9] K. R. Cho, K, Okura, and K. Asada, “Design of a 32-bit fully 
asynchronous microprocessor (FAM),” in Proc. of the Midwest Symp. 
on Circuits and Systems, 1992, pp. 1500–1503. 

[10] E. Brunvand, “The NSR processor,” in Proc. of the Annu. Hawaii Int. 
Conf. on System Sciences, 1993, pp. 428–435. 

[11] M. E. Dean, “STRiP: A Self-Timed RISC Processor,” PhD thesis, Dept. 
of Computer Science, Stanford Univ., CA, USA, 1992. 

[12] J. V. Woods, P. Day, S. B. Furber, J. D. Garside, N. C. Paver and S. 
Temple, “AMULET1: an asynchronous ARM microprocessor,” IEEE 
Trans. on Computers, vol. 46, no.4, pp. 385–398, Apr. 1997. 

[13] T. Nanya, Y. Ueno, H. Kagotani, M.Kuwako, and A.Takamura, “TITAC: 
design of a quasi-delay-insensitive microprocessor,” IEEE Design and 
Test of Computers, vol. 11, no. 3, Mar. 1994, pp. 50–63. 

[14] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, et al, “The 
design of an asynchronous MIPS R3000 micro-processor,” in Proc. 
Conf. Advanced Research in VLSI, 1997, pp. 164–181. 

[15] A. Bink and R. York, “ARM996HS: the first licensable, clockless 32-bit 
processor core,” IEEE Micro, vol. 27, no. 2, Mar.-Apr. 2007, pp. 58–68. 

[16] A. C. S. Beck and L. Carro, “A VLIW low power java processor for 
embedded applications,” in Proc. of the Symp. on Integrated Circuits 
and System Design, 2004, pp. 157–162. 

[17] P. Hamalainen, J. Heikkinen, M. Hannikainen, and T. D. Hamalainen, 
“Design of transport triggered architecture processors for wireless 
encryption,”  in Proc. of the Euromicro conf. on Digital System Design, 
2005, pp. 144–152. 

[18] H. Corporaal, Microprocessor architecture: from VLIW to TTA. West 
Sussex, England: John Wiley & Sons Ltd, 1998. 

[19] M. Simlastik, V. Stopjakova, “Automated synchronous-to-asynchronous 
circuits conversion: a survey,” in Int. Workshop on Power and Timing 
Modeling, Optimization and Simulation, 2008, pp. 348–358. 

[20] J. Cortadella, A. Kondratyev, S. Member, L. Lavagno, and C. P. Sotriou, 
“Desynchronization: synthesis of asynchronous circuits from synch- 
ronous specifications,” IEEE Trans. on Computer-Aided Design, vol. 25, 
no. 10, Oct. 2006, pp. 1904–1921. 

[21] J. L. Hennessy, and D. A. Patterson, Computer architecture: a 
quantitative approach, third edition. San Francisco, CA: Morgan 
Kaufmann Publishers, 2003. 

[22] M. C. Chang, and D. S. Shiau, “Design of an asynchronous pipelined 
processor,” in Int. Conf. on Communications, Circuits and System, 2008, 
pp. 1226–1229. 

[23] C. Choy, J. Butas, J. Povazanec, and C. Chan, “A fine-grain asyn- 
chronous pipeline reaching the synchronous speed,” in Proc. of the conf. 
on ASIC, 2001, pp. 547–550. 

[24] N. Slingerland, and A. J. Smith, “Measuring the performance of multi- 
media instruction sets,” IEEE Trans. on Computers, vol. 51, no. 11, pp. 
1317–1332, Nov. 2002. 

[25] M. Lai, J. Guo, Z. Zhang, and Z. Wang, “Using an automated approach 
to explore and design a high-efficiency processor element for the 
multimedia domain,” in Proc. of Int. Conf. on Complex, Intelligent and 
Software Intensive Systems, 2008, pp.613–618. 

[26] N. Andrikos, L. Lavagno, D. Pandini, C. P. Sotiriou, “A fully-automated 
desynchronization flow for synchronous circuits,” in Proc. of the ACM/ 
IEEE Design Automation Conf., 2007, pp. 982–985. 

 

327


