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Abstract In this chapter we present a realistic new model for wireless multiple-
input multiple-output (MIMO) channels which is more general than pre-
vious models. A novel spatial decomposition of the channel is developed
to provide insights into the spatial aspects of multiple antenna communi-
cation systems. By exploiting the underlying physics of free-space wave
propagation we characterize the fundamental communication modes of
a physical aperture and develop an intrinsic capacity which is indepen-
dent of antenna array geometries and array signal processing. We show
there exists a maximum achievable capacity for communication between
spatial regions of space, which depends on the size of the regions and
the statistics of the scattering environment.
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1. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) communications systems us-
ing multi-antenna arrays simultaneously during transmission and recep-
tion have generated significant interest in recent years. Theoretical work
of [1,2] showed the potential for significant capacity increases in wireless
channels via spatial multiplexing with sparse antenna arrays. With these
developments comes the need for better understanding of the spatial
properties of the wireless communications channel. The spatial proper-
ties of multiple antenna channels have significant impact on the capacity
of MIMO systems, therefore, a good understanding of these properties
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is required for effective design and implementation of wireless MIMO
systems.

For randomly fading channels, much of the literature is limited to
the idealistic situation of independent and identically distributed (i.i.d.)
Gaussian channels, where the channel gains are modelled as independent
Gaussian random variables (for example see [1, 2]). The i.i.d. model
corresponds to sufficiently spaced antennas such that there is no spatial
correlation between antenna elements at the transmit and receive arrays,
along with significant scattering between arrays. However, in practice,
realistic scattering environments and limited antenna separation leads
to channels which exhibit correlated fades.

For correlated fading, MIMO channel modelling can be approached
via field measurements [3–6], and deterministic physical models such as
ray tracing [7,8], where the significant characteristics of the channel are
obtained and incorporated into the model. Such methods give an accu-
rate characterization of the channel, however, they are computationally
expensive and provide results for specific scenarios only. Finally, a sta-
tistical model can be postulated which attempts to capture the physical
channel characteristics based on the basic principles of radio propaga-
tion [9–12]. These scattering models can often be used as simple analysis
tools which illustrate the essential characteristics of the MIMO channel,
provided the constructed scattering environment is reasonable.

With the notable exception of [10] and [12], the statistical models men-
tioned above have poor physical significance. In particular, the separate
effects of the scatterers and the antenna correlation are not accounted
for. As outlined in [10], the models assume that only the spatial fading
correlation is responsible for the rank structure of the MIMO channel.
In practice, however, high rank MIMO channels correspond not only to
the low fading correlation, but also to the structure of scattering in the
propagation environment.

The models presented in [10, 12] allow for insight into the effects of
spatial correlation and scattering, however, they are unfortunately lim-
ited to particular array geometries and model the scattering environment
using a discrete representation. Therefore, although offering consider-
able insight into the scattering characteristics of the channel they are
restricted spatially, in the sense that the antenna geometry is restricted
to a particular array configuration and discrete scattering environments.

In contrast to previous models, the contribution of this chapter is
a spatial channel model which includes the physical parameters of ar-
bitrary antenna configurations and a tractable parameterization of the
complex scattering environment. We approach the MIMO channel mod-
elling problem from a physical wave field perspective. By using the
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underlying physics of free-space wave propagation we explore the fun-
damental properties of the channel due to constraints imposed by the
basic laws governing wave field behavior. Furthermore, we show that
there exists a maximum achievable capacity for communication between
spatial regions of space, which depends on the size of the regions and the
statistics of the scattering environment. This bound on capacity gives
the optimal MIMO capacity and thus provides a benchmark for future
array and space-time coding developments.

2. CHANNEL MODEL

Consider the 2D MIMO system shown in Fig. 12-1, where the trans-
mitter consists of nT transmit antennas located within a circular aper-
ture of radius rT. Similarly, at the receiver, there are nR antennas within
a circular aperture of radius rR. Denote the nT transmit antenna posi-
tions by xt = (‖xt‖, θt), t = 1, 2, . . . , nT, in polar coordinates, relative
to the origin of the transmit aperture, and the nR receive antenna po-
sitions by yr = (‖yr‖, ϕr), r = 1, 2, . . . , nR, relative to the origin of the
receive aperture. Note that all transmit and receive antennas are con-
strained to within the transmit and receive apertures respectively, that
is, ‖xt‖ ≤ rT, ∀t, and ‖yr‖ ≤ rR, ∀r. It is also assumed that the scatter-
ers are distributed in the farfield from all transmit and receive antennas,
therefore, define circular scatterer free regions of radius rTS > rT, and
rRS > rR, such that any scatterers are in the farfield to any antenna
within the transmit and receive apertures, respectively.

Finally, the random scattering environment is defined by the effective
random complex scattering gain g(φ, ψ) for a signal leaving from the
transmit aperture at an angle φ, and entering the receive aperture at an
angle ψ, via any number of paths through the scattering environment.

Consider the narrowband transmission of nT baseband signals, {xt},
t = 1, . . . , nT, over a single signalling interval from the nT transmit an-
tennas located within the transmit aperture. From Fig. 12-1 the noiseless
signal at yr is given by

zr =

nT
∑

t=1

xt

∫∫

S1

g(φ, ψ) eik‖xt‖ cos(θt−φ) e−ik‖yr
‖ cos(ϕr−ψ) dφdψ. (12.1)

where S
1 denotes the unit circle.

Denote x = [x1, x2, . . . , xnT
]′ as the column vector of the transmitted

signals, and n = [n1, n2, . . . , nnR
]′, as the noise vector where nr is the

independent additive white Gaussian noise (AWGN) with variance N0 ∈
N (0, 1) at the r-th receive antenna, then the vector of received signals
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Figure 12-1. Scattering model for a 2D flat fading narrowband MIMO system. rT
and rR are the radii of circular apertures which contain the transmit and receive
antenna arrays, respectively. The radii rTS and rRS describe scatterer free circular
regions surrounding the transmit and receive apertures, assumed large enough that
any scatterer is farfield to all antennas. The scattering environment is described
by g(φ, ψ) which gives the effective random complex gain for signals departing the
transmit aperture from angle φ and arriving at the receive aperture from angle ψ, via
any number of scattering paths.

y = [y1, y2, . . . , ynR
]′ is given by

y = Hx + n, (12.2)

where H is the complex random channel matrix with r, t-th element

H|r,t =

∫∫

S1

g(φ, ψ)eik‖xt‖ cos(θt−φ) e−ik‖yr
‖ cos(ϕr−ψ) dφdψ, (12.3)

representing the channel gain between the t-th transmit antennna and
the r-th receive antenna.

2.1 Channel Matrix Decomposition

Consider the modal expansion1 of the plane wave [13]

eik‖x‖ cos(θx−φ) =
∞

∑

n=−∞

inJn(k‖x‖)e
−in(θx−φ), (12.4)

1Each mode, indexed by n, corresponds to a different solution of the governing electromag-
netic equations (Maxwell’s equations) for the given boundary conditions.
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for vector x = (‖x‖, θx), and Jn(·) are the Bessel functions of the first
kind.

Bessel functions Jn(z), |n| > 0 exhibit spatially high pass behavior,
that is, for fixed order n, Jn(z) starts small and becomes significant
for arguments z ≈ O(n). Therefore, for a fixed argument z, the Bessel
function Jn(z) ≈ 0 for all but a finite set of low order modes n ≤ N ,
hence (12.4) is well approximated by the finite sum

eik‖x‖ cos(θx−φ) '
N

∑

n=−N

Jn(x)einφ, (12.5)

where Jn(x) is the complex conjugate of function Jn(x), defined as the
spatial-to-mode function

Jn(x) , Jn(k‖x‖)e
in(φx−π/2), (12.6)

which maps the sampling point x to the nth mode of the expansion (12.4).
In [14] it was shown that Jn(z) ≈ 0 for n > dze/2e, with d·e the ceiling
operator. Therefore, we can define

NT , dπerT/λe, (12.7)

NR , dπerR/λe, (12.8)

such that the truncated expansions

eik‖xt‖ cos(θt−φ) '

NT
∑

n=−NT

Jn(xt)e
inφ, (12.9)

e−ik‖yr
‖ cos(ϕr−ψ) '

NR
∑

m=−NR

Jm(yr)e
−inψ, (12.10)

hold for every antenna within the transmit and receive apertures of ra-
dius rT and rR, respectively.

Substitution of (12.9) and (12.10) into (12.3), gives the closed-form
expression for the channel gain between the t-th transmit antenna and
r-th receive antenna as

H|r,t =

NT
∑

n=−NT

NR
∑

m=−NR

Jn(xt)Jm(yr)

∫∫

S1

g(φ, ψ)einφe−imψdφdψ.

(12.11)

From (12.11) the channel matrix H can be decomposed into a product
of three matrices, which correspond to the three spatial regions of signal



150 Chapter 12

propagation,

H = JRHSJ
†
T, (12.12)

where JT is the nT × (2NT + 1) transmit aperture sampling matrix,

JT =











J−NT
(x1) · · · JNT

(x1)
J−NT

(x2) · · · JNT
(x2)

...
. . .

...
J−NT

(xnT
) · · · JNT

(xnT
)











, (12.13)

which describes the sampling of the transmit aperture, JR is the nR ×
(2NR + 1) receive aperture sampling matrix,

JR =











J−NR
(y1) · · · JNR

(y1)
J−NR

(y2) · · · JNR
(y2)

...
. . .

...
J−NR

(ynR
) · · · JNR

(ynR
)











, (12.14)

which describes the sampling of the receive aperture, and HS is a (2NR+
1) × (2NT + 1) scattering environment matrix, with p, q-th element

HS|p,q =

∫∫

S1

g(φ, ψ)ei(q−NT−1)φe−i(p−NR−1)ψdφdψ, (12.15)

representing the complex gain between the (q−NT − 1)-th mode of the
transmit aperture and the (p−NR−1)-th mode of the receive aperture2.

The channel matrix decomposition (12.12) separates the channel into
three distinct regions of signal propagation: free space transmitter re-
gion, scattering region, and free space receiver region, as shown in Fig. 12-
1. The transmit aperture and receive aperture sampling matrices, JT

and JR, describe the mapping of the transmitted signals to the modes of
the system, and the modes to received signals, given the respective posi-
tions of the antennas, and are constant for fixed antenna locations within
the spatial apertures. Conversely, for a random scattering environment
the scattering channel matrix HS will have random elements.

3. MODE-TO-MODE COMMUNICATION

It is well known that the rank of the channel matrix H gives the
effective number of independent parallel channels between the trans-
mit and receive antenna arrays, and thus determines the capacity of

2It is important to note the distinction between the mode-to-mode gains due to the scattering
environment described by HS, and the antenna-to-antenna channel gains described by H.
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the system. For the decomposition (12.12) the rank of H is given by
min{rank(JT ), rank(JR), rank(HS)}, which for a large number of an-
tennas and finite regions, becomes min{2NT + 1, 2NR + 1, rank(HS)}.
Therefore we see that the number of available modes for the transmit
and receive apertures, determined by the size of the apertures, and any
possible modal correlation or key-hole effects [15] (rank 1 HS) limit the
capacity of the system, regardless of how many antennas are packed into
the apertures.

Assume nT = 2NT + 1 and nR = 2NR + 1 antennas are optimally
placed (perfect spatial-to-mode coupling) within the transmit and re-
ceive regions of radius rT and rR, respectively, with total transmit power

PT. In this situation JTJ
†
T = I and J

†
RJR = I, hence the transmit and

receive aperture sampling matrices are unitary and HS is then unitarily
equivalent to H. The instantaneous channel capacity with no channel
state information at the transmitter and full channel knowledge at the
receiver [2] is then given by

C = log

∣

∣

∣

∣

I2NR+1 +
η

2NT + 1
HSH

†
S

∣

∣

∣

∣

, (12.16)

where η = PT/N0 is the average SNR at any point within the receive
aperture.

The ergodic capacity of uniform linear (ULA) and uniform circular
(UCA) arrays are shown in Fig. 12-2 for an increasing number of anten-
nas constrained within transmit and receive apertures of radius 0.8λ, i.e.
the physical size of the array remains fixed as the number of antennas
is increased. Here we can see that by spatially constraining the antenna
arrays the capacity growth saturates and, unlike the i.i.d. case, provides
no further capacity improvement with increasing numbers of antennas.
The mode-to-mode capacity (12.16) represents the intrinsic capacity for
communication between two spatial apertures, giving the maximum ca-
pacity for all possible array configurations and array signal processing.
We can see from (12.7) and (12.8) that the intrinsic capacity is limited
by the size of the regions containing the antenna arrays (number of avail-
able modes), and the statistics of the scattering channel matrix (modal
correlation).

Fig. 12-3 shows the radiation pattern of the first 6 modes of the circular
and spherical apertures3. Each mode has a unique radiation pattern,
therefore, mode-to-mode communication can be considered as a pattern
diversity scheme, where the signals obtained by different modes may

3For extension of the model to the 3D spatial environment see [17].
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Figure 12-2. Ergodic capacity for increasing number of antennas of uniform linear
(ULA) and uniform circular (UCA) arrays constrained within spatial regions of ra-
dius 0.8λ and isotropic scattering. The mode-to-mode capacity gives the maximum
achievable capacity between the two apertures.

be combined to yield a diversity gain. However, the level of diversity
achieved depends on the correlation between the modes, which strongly
depends on the scattering environment as shown in the following section.

4. PROPERTIES AND STATISTICS OF
SCATTERING CHANNEL MATRIX HS

As the scattering gain function g(φ, ψ) is periodic with φ and ψ it can
be expressed using a Fourier expansion. For this 2D model with circular
apertures a natural choice of basis functions are the orthogonal circular
harmonics einφ which form a complete orthogonal function basis set on
the unit circle4, thus express

g(φ, ψ) =
1

4π2

∞
∑

n=−∞

∞
∑

m=−∞

βnme
−inφeimψ, (12.17)

4with respect to the natural inner product 〈f, g〉 =
∫

2π

0
f(φ)g(φ)dφ
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Figure 12-3. Radiation patterns of the first 6 modes of a (a) circular and (b) spherical
aperture.

with coefficients

βnm =

∫∫

S1

g(φ, ψ)einφe−imψdφdψ. (12.18)

Therefore, letting n = q − NT − 1, and m = p − NR − 1 denote the
transmitter mode and receiver mode index, respectively, the scattering
environment matrix coefficients are given by

HS|p,q = βq−NT−1
p−NR−1 = βnm. (12.19)

Thus the random scattering environment can be parameterized by the
complex random coefficients βnm, n = −NT, . . . , NT, m = −NR, . . . , NR,
which gives the scattering gain between the n-th transmit mode and the
m-th receive mode, and HS becomes

HS =













β−NT

−NR
· · · βNT

−NR

β−NT

−NR+1 · · · βNT

−NR+1
...

. . .
...

β−NT

NR
· · · βNT

NR













. (12.20)

Assuming a zero-mean uncorrelated scattering environment (Rayleigh),
the scattering channel is characterized by the second-order statistics of
the scattering gain function g(φ, ψ), given by,

E
{

g(φ, ψ)g(φ′, ψ′)
}

= G(φ, ψ)δ(φ− φ′)δ(ψ − ψ′), (12.21)
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where δ(·) is the Kronecker delta function, and G(φ, ψ) = E
{

|g(φ, ψ)|2
}

is the 2D power spectral density (PSD) of the modal correlation function,

γn−n′,m−m′ , E
{

βnmβ
n′

m′

}

=

∫∫

S1

G(φ, ψ)ei(n−n
′)φe−i(m−m′)ψdφdψ, (12.22)

and represents the scattering channel power over departure and arrival
angles φ and ψ, normalized such that the total scattering channel power

σ2
HS

=

∫∫

S1

G(φ, ψ)dφdψ = 1. (12.23)

For the special case of uniform PSD, G(φ, ψ) = 1/4π2, the modal corre-
lation becomes

γn−n′,m−m′ = γ0,0δn−n′δm−m′ , (12.24)

corresponding to the i.i.d. {βmn } case.

4.1 Modal Correlation in General Scattering
Environments

Define P(ψ) as the average power density of the scatterers surrounding
the receiver, given by the marginalized PSD

P(ψ) ,

∫

S1

G(φ, ψ) dφ, (12.25)

then, from (12.22) we see the modal correlation between the m and m′

communication modes at the receiver is given by

γm−m′ =

∫

S1

P(ψ)e−i(m−m′)ψdψ, (12.26)

which gives the modal correlation for all common power distributions
P(ψ): von-Mises, gaussian, truncated gaussian, uniform, piecewise con-
stant, polynomial, Laplacian, Fourier series expansion, etc. Similarly,
defining P(φ) as the power density of the scatterers surrounding the
transmitter, we have the modal correlation at the transmitter

γn−n′ =

∫

S1

P(φ)ei(n−n
′)φdφ. (12.27)

As shown in [18] there is very little variation in the correlation due
to the various non-isotropic distributions mentioned above, therefore
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without loss of generality, we restrict our attention to the case of energy
arriving uniformly over limited angular spread ∆ around mean ψ0, i.e.,
(ψ0 − ∆, ψ0 + ∆). In this case the modal correlation is given by

γm−m′ = sinc((m−m′)∆)e−i(m−m′)ψ0 , (12.28)

which is shown in Fig. 12-4 for various modes and angular spread. As
one would expect, for increasing angular spread we see a decrease in
modal correlation, with more rapid reduction for well separated mode
orders, e.g. large |m−m′|. For the special case of a uniform isotropic
scattering environment, ∆ = π, we have zero correlation between all
modes, e.g., γm−m′ = δm−m′ .

Fig. 12-5 shows the impact of modal correlation on the ergodic mode-
to-mode capacity for increasing angular spread at the transmitter and
isotropic scattering at the receiver5 for 10dB SNR. We consider transmit
and receive apertures of radius 0.8λ, corresponding to 2dπe0.8e+1 = 15
modes at each aperture. For comparison, the capacity for a 15 antenna
ULA and UCA, contained within the same aperture size is presented.
Also shown is the 15 × 15 antenna i.i.d. case, corresponding to the rich
scattering environment with no restrictions on the antenna placement,
i.e., rT, rR → ∞.

The mode-to-mode capacity is the maximum achievable capacity be-
tween the two apertures, and represents the upper bound on capacity for
any antenna array geometry or multi-mode antennas constrained within
those apertures. All four cases show no capacity growth for angular
spread greater than approximately 60◦, which corresponds to low modal
correlations (� 0.5) for the majority of modes, as seen in Fig. 12-4.

5. DISCUSSION

In this chapter we have presented a novel multiple antenna channel
model which includes the spatial aspects of a MIMO system not pre-
viously considered. The spatial channel model developed includes the
physical parameters of arbitrary antenna configurations (number of an-
tenna and their location) and a tractable parameterization of the com-
plex scattering environment.

Using the model we have developed a new upper bound on the capac-
ity for communication between regions in space. Using the underlying
physics of free space wave propagation we have shown that there is a

5This models a typical mobile communication scenario, where the receiver is usually sur-
rounded by scatterers, and the base station is mounted high above the scattering environ-
ment.
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fundamental limit to capacity for realistic scattering environments. By
characterizing the behavior of possible communication modes for a given
aperture, the upper bound on capacity is independent of antenna con-
figurations and array signal processing, and provides a benchmark for
future array and space-time coding designs.

In this chapter we have restricted the analysis to 2D circular apertures,
however, extension to arbitrary shaped regions can be achieved by using
a different choice of orthonormal basis functions (e.g. see [17,19]), how-
ever, with the exception of spherical apertures [17], finding analytical
solutions for more general volumes poses a much harder problem.
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