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Nearfield Beamforming Using Radial Reciprocity
Rodney A. Kennedy,Member, IEEE, Darren B. Ward, and Thushara D. Abhayapala,Student Member, IEEE

Abstract—We establish the asymptotic equivalence, up to com-
plex conjugation, of two problems: 1) determining the nearfield
performance of a farfield beampattern specification and 2) de-
termining the equivalent farfield beampattern corresponding to
a nearfield beampattern specification. Using this reciprocity re-
lationship, we develop a computationally simple procedure to
design a beamforming array to achieve a desired nearfield beam-
pattern response. The superiority of this approach to existing
methods, both in ease of design implementation and performance
obtained, is analyzed and then illustrated by a design example.

Index Terms— Array processing, broadband beamforming,
nearfield beamforming.

I. INTRODUCTION

T HE MAJORITY of array processing literature deals with
the case in which the source is assumed to be in the

farfield of the array, and hence, the received wavefront from
a single point source is planar. This assumption significantly
simplifies the beamformer design problem. The common rule
of thumb is that farfield operation can be assumed for sources
at a distance of

where

radial distance from an arbitrary array origin;
largest array dimension;
operating wavelength [1].

However, in many practical situations,1 the source is well
within this distance and using the farfield assumption to
design the beamformer results in severe degradation in the
beampattern. Despite this, nearfield beamforming is a problem
that has been largely ignored in the signal processing literature.

One common design method for nearfield beamforming is
nearfield compensation(e.g., [4]) in which a delay correction
is used on each sensor to account for the nearfield spherical
wavefronts. This method depends on the array geometry and
takes its simplest form when the sensors are colinear. Even
with the simplest array geometries, designs based on nearfield
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1One such example is speech acquisition with a microphone array, which

finds application in teleconferencing, hands-free telephones, and voice-only
data entry (see, e.g., [2]–[4]).

compensation tend only to achieve the desired nearfield beam-
pattern over a limited range of angles because they focus the
array to a single point in three dimensional space. Other meth-
ods that deal explicitly with nearfield beamforming include
[5]–[7].

We use a nearfield-farfield transformation [8] as a theoretical
tool to establish the asymptotic equivalence up to complex
conjugation of two transformation problems: 1) determining
the nearfield performance of a desired beampattern speci-
fication in the farfield and 2) determining the equivalent
farfield beampattern corresponding to a given desired beam-
pattern specification in the nearfield. As a consequence of
this relationship, we show that the computationally difficult
nearfield-farfield transformation [8] may be circumvented by
use of a simpler farfield to nearfield determination. Equally
importantly, we show that farfield techniques may be used
directly to solve the nearfield beamformer design problem.
This design process is independent of the wave equation based
decompositions that lie at the heart of some design procedures
such as those given in [8].

The paper is organized as follows. The following section de-
scribes how a beampattern specification may be represented as
an orthogonal expansion in spherical coordinates. Section III
derives a relationship between a beampattern specification
at one radius and a beampattern specification at a second
radius. Based on this relationship, Section IV outlines a novel
computationally simple nearfield beamformer design technique
based on the nearfield-farfield reciprocity relationship. Finally,
a simulation example is presented in Section V and the paper
is concluded in Section VI.

II. BEAMPATTERN FORMULATION

At the physical level, beamforming is characterized by the
wave equation. In the engineering literature, this detail of
modeling is usually unnecessary as much simpler formula-
tions can be made exploiting the common array geometries
(typically equally spaced sensors in a straight line), phasor
representations (where the time dependence through the fre-
quency of modulation is not explicitly indicated), and farfield
data (facilitating the use of the Fourier Transform). The modal
decomposition of the solution to the wave equation presents
a preferred way to represent a beampattern as a sum of
appropriately weighted orthogonal functions of the spatial
coordinates. When represented in spherical coordinates, this
decomposition lends two advantages: The beampattern can be
readily determined at any radial distance (not just at infinity),
and the radial dependence enters in a separable fashion that is
independent of direction (azimuth and elevation).
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Fig. 1. Spherical coordinate system.

Let denote radial distance, and let and denote the
azimuth and elevation angles, respectively, as shown in Fig. 1.
Then, a general solution to the classical wave equation in the
beampatternform (synthesis equation) under mild condition
[8] is given by

(1)

where and are integers, is the
wavenumber that can be expressed in terms of the propagation
speed and the frequency or the wavelength , is
the associated Legendre function, and is the half
odd integer order Hankel Function of the first kind. The
Fourier-like complex constants can be expressed explicitly
(analysis equation) as

(2)

where is the radius corresponding to the
specification

(3)

and

Based on the above results, we can make two observations:

1) Since the complex coefficients (2), in the expansion
(1), completely characterize the beampattern at all dis-
tances, the beampattern response can be reconstructed
at arbitrary points in space.

2) There is a significant computational burden in accu-
rately evaluating the coefficients (2) because of the

multidimensional integration necessary from (3). Over-
coming this complication is the major motivation for
the development of our novel scheme.

III. RADIAL TRANSFORMATIONS AND RECIPROCITY

A. Problem Formulation

The objective is to relate a beampattern specification given
on a sphere at one radius, say, from the origin, to a
beampattern specification at a second radius, say,from
the origin. This is achieved by beampattern analysis at
[through (2)] and resynthesis at [through (1)]. The key
technical observation we make is that this problem is essen-
tially identical to the problem of beampattern analysis at
and resynthesis at (for a different solution to the wave
equation) up to complex conjugation and an error term that is
typically small for problems of interest. This is exploited later
in a nearfield design procedure given in Section IV-B, which
permits bypassing the computationally difficult analysis step
of the exact design method [8], which we characterize.

B. Asymptotic Equivalence

Given that our key technical development is cast in terms of
asymptotic equivalence, we present some concise definitions.

Let and be two complex functions of a real
variable within some real domain both possessing limits as

in ; then, we say that as if
there exists positive constants and such that
whenever .

We say that is asymptotically equivalentto under
the limit if and are such that .
The notation in this case is as . As an
example of asymptotic equivalence, we can write

as (4)

which follows from (19) in the Appendix.

C. Hankel Function Property

Associated with a single mode indexed by(and indepen-
dent of ), we have a reciprocity relationship, which is given
next. It is referred to as a reciprocity relationship because the
radial behavior relating an ordered pair of distances
for one beampattern problem can be related to the reversed
ordered pair of another beampattern problem after
complex conjugation and up to some error term related to
the closeness of and .

Proposition 1: Let and denote the half
odd integer order Hankel functions of the first and second
kinds, respectively, where

modal index;
wavelength;
wavenumber.
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Then

(5a)

where

as (5b)

with .
The proof of Proposition 1 is given in the Appendix. We

make the following observations regarding this result. We can
take and to make the reciprocity
between the nearfield and the farfield. The quantities in (5a) are
complex. However, the error term is purely real,
meaning the error is only in the magnitude, or equivalently,
there is no error in the phase angle. This follows from the
property , where and are
complex numbers.

D. Key Reciprocity Relationship

We now show how beampattern specification (analysis) at
and resynthesis at relates to a conjugate beampattern

specification (analysis) at and resynthesis at , leading
to Proposition 2 below. While modal techniques are used to
evaluate the result, they are not needed to use the result.

With a beampattern specification given at radius ,
the resultant beampattern at distanceis denoted and given
by

(6)

This equation follows from substituting (2) in (1).
Compare this with a complex conjugate beampattern

specification at radius that at results in

(7)

From (3), . Then, taking the complex
conjugate of (7) by change of variable in the summation
by and then using Proposition 1 yields

(8)

as , where (alternatively, for ,
this also holds). Thus, we have established the following
proposition.

Proposition 2: Let be the wavelength and the
wave number; then

(9)

as , where .
By associating with the nearfield and with the farfield,

this proposition establishes an asymptotic equivalence, up to
complex conjugation, of two problems: 1) determining the
nearfield performance of a farfield beampattern specification
and 2) determining the equivalent farfield beampattern corre-
sponding to a nearfield beampattern specification. We make
the following observations.

1) If , then this result is saying that a nearfield
problem can be solved approximately by solving a
related farfield problem.

2) Consider the tradeoff between operating at a distance
(measured in wavelengths) sufficiently large to ensure
the dominant error term in (5b) to be small. (For
analysis purposes, we take and .) This
requires, after taking the square root

(10)

whereas for the first-order term in the asymptotic ex-
pansion of (4) to be small [see (19) in the
Appendix] requires

(11)

This shows the asymptotic reciprocity holds much
better than might be gleaned by taking a naive approach
of operating at a distance with large enough such
to guarantee the asymptotic form (4) can be used as an
approximation. Further, the true dominant error term
(10) grows linearly with relative to versus the
naive condition (11), which grows quadratically with
relative to .

3) The reciprocity holds whenever the dominant error
term can be made small, which implies either the
beampattern is lowpass in character, i.e., most of the
energy is in the lower order modes (small, which
generally holds), or the difference in the radial distances

is small enough. The meaning of the former
condition will be fleshed out later in Section V-C.

IV. NEARFIELD DESIGN PROCEDURES

A. Background

A largely hitherto unrecognized fact in the signal processing
literature before [8] is that any nearfield beampattern specifi-
cation can be transformed into an equivalent farfield speci-
fication. That is, realizing through design, a particular well-
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defined farfield beampattern specification achieves, without
approximation, a desired nearfield beampattern specification.

In this work, we restrict attention to a nearfield specification
on a sphere that simplifies the analysis equations. However, the
result can be generalized to a nearfield beampattern specifica-
tion on an arbitrary manifold at the cost of further complication
in determining in (1).

An exact nearfield design [8] can be implemented by
transforming the nearfield specification defined on a
sphere of radius to the farfield. This method requires in
the analysis step (3) multidimensional numerical integrations
to be performed, which must contend with numerical issues.
The advantage of the radial reciprocity technique defined in
Section IV-B, although only asymptotically exact, is thatno
analysis step or modal expansion needs to be performed. This
leads to a sequence of computationally straightforward signal
processing steps to achieve a high-quality nearfield design.

B. Novel Design Using Reciprocity

The reciprocity relationship (9) with and
leads to the corollary of Proposition 2.

Proposition 3: The farfield beampattern corresponding to a
desired nearfield beampattern specification
satisfies the asymptotic equivalence

as (12)

By assuming (12) holds with equality, we have the following
approximate design procedure.

Nearfield Design Procedure

Step 0) Specify the desired nearfield beampattern
at distance .

Step 1) Synthesize the farfield beampattern at
, i.e., .

Step 2) Using the sensor weights of Step 1) evaluate the
resultant nearfield beampattern at , i.e.,

.
Step 3) Synthesize a farfield beampattern at

. These weights will produce the desired beam-
pattern at distance .

This procedure requires a nearfield beampattern determination
from farfield data sandwiched between two farfield designs.

The farfield design in Step 1 may be implemented as
follows. Determine sensor weights using standard
farfield techniques to synthesize the response using

(13)

where is the location of the th sensor—this is
a well-studied design procedure and can be effected by using
least squares techniques.

Step 2) requires determination of the nearfield response from
the farfield design. The response can be computed using the
weights and array geometry used in Step 1), i.e.,

(14)

where is the distance from a point at to the
th sensor, and is some normalizing complex constant. Note

that in (14), we use the propagation model where magnitude
attenuates like the reciprocal of distance and the phase is pro-
portional to distance. This type of response determination [see
(14)], which requires explicit sensor locations and weights,
can be contrasted with the more general methods given in
Section III-D and [8], which do not require any array geometry
information [but do require the determination of the modal
weights (3)].

The final step [Step 3)] determines the sensor weights
to give the farfield response

(15)

where is the location of the th sensor. Note that
this array geometry need not necessarily be the same as in
Step 1 but should correspond to the actual array. A typical
design procedure is illustrated in the next section.

The primary utility in the procedure is the circumvention of
the computationally nontrivial transformation from a desired
nearfield beampattern to the equivalent farfield beampattern
requiring numerical integration and the direct use of farfield
design procedures.

V. DESIGN EXAMPLE AND ANALYSIS

A. Parseval Relation

Here, we present a Parseval relation, which will be essential
later in assessing the novel design using reciprocity by deter-
mining the distribution of power across the modal components
for a given beampattern specification on a sphere of arbitrary
radius.

The beampattern form of the wave equation in
(1) gives the field strength in an incremental solid angle

on a sphere of radius, leading to the following
Parseval relation.

Proposition 4: Let be the beampattern
specification (at radius). Then

(16)

where , and is given by (3).
The proof is given in the Appendix.
An observation regarding the in (3) is that these

represent modal amplitudes and depend only on the shape of
the beampattern and not on the radius of the sphere on which
the beampattern is given, e.g., the computation is identical
whether the beampattern is nearfield or farfield.

The Parseval relation (16) gives some engineering insights
into the number of modes with significant power required
to get a good beampattern match. In close analogy with
frequency domain filter analysis, we will see that the lower
order modes are the significant ones that give the broad
beampattern features (analogous to the lower frequencies in a
filter design problem), whereas the higher order modes give the
finer detail (analogous to higher frequencies in a filter design
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(a)

(b)

Fig. 2. Demonstration of Steps 0, 1, and 2 of the nearfield design procedure
using nearfield/farfield reciprocity.

problem). We assert that sensible beampattern specifications
should involve only the lower order modes. As indicated in the
following example, whenever such a “lowpass” beampattern
specification is used, the novel design procedure using reci-
procity has been observed to work extremely well. The anal-
ysis that follows the example puts substance to these claims.

B. Linear 1-D Array Example

The following example shows the result of the nearfield
design procedure of Section IV-B in comparison with a
technique developed in [4]. The objective was to realize
a seventh-order zero-phase Chebyshev 25-dB beampattern,
which is shown in Fig. 2(a), in the nearfield at a radius of
three wavelengths—this is Step 0) of the nearfield design
procedure. The array sensors are colinear and aligned
along the axis in Fig. 1.

Step 1) of the nearfield design procedure required a design to
realize the complex conjugate of this Chebyshev beampattern
in the farfield. This is a classical design problem [9], and

(a)

(b)

Fig. 3. Demonstration of Step 3 of the nearfield design procedure using
nearfield/farfield reciprocity.

the weights for a seven-sensor half-wavelength spaced farfield
array are easily calculated. The resultant designed farfield
beampattern is identical to that shown in Fig. 2(a). This is

in the design procedure, i.e., the complex conjugate
of the objective beampattern.

The response of this farfield beamformer was then evaluated
in the nearfield at the required radius of three wavelengths
according to (14). Fig. 2(b) shows the resulting beampattern.
This is in Step 2) of the nearfield design procedure.

Step 3) of the nearfield design procedure required designing
a farfield beamformer to realize . We used a weighted
complex-valued least-squares design method [10] to realize

with a quarter-wavelength spaced array. Thirteen
elements, corresponding to a three-wavelength aperture, were
used to achieve an adequate match to the desired beampattern.
Angles outside the range 70–110 were weighted more
heavily so that the sidelobe region of the desired Chebyshev
beampattern would be accurately approximated. The resulting
farfield realization is shown in Fig. 3(a).
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Fig. 4. Performance of the beamformer design magnitude as a function of
angle(degrees) and radial distance (wavelengths). The phase response is not
shown.

Finally, to verify that the design objectives had been met,
this beamformer was simulated in the nearfield at a radius of
three wavelengths; the nearfield beampattern shown solid in
Fig. 3(b) resulted. The desired Chebyshev 25 dB beampattern
(dotted) is also shown, as is the response of the nearfield
method of [4] (dashed). We note that the proposed nearfield
design technique provides a very close realization of the
desired beampattern over all angles and not just at angles close
to broadside as for the nearfield method of [4]. Fig. 4 shows
the performance of the beamformer versus angle (degrees) and
distance (wavelengths). It shows the desired beampattern at
three wavelengths (near edge) and the variation with distance
as we move toward the farfield (far edge).

This example highlights the main feature of our proposed
nearfield beamforming procedure. When the reciprocity rela-
tion holds, it is only necessary to use well-established farfield
beamformer design techniques in the design of a nearfield
beamformer.

C. Modal Analysis of the Example

Since the array sensors are aligned along theaxis only,
the modes are potentially nonzero, i.e., only the
coefficients [see (3)] can be nonzero. Further, since the phase
is zero for this example, the coefficients are purely real,
and because the beampattern is symmetric, the odd coefficients
are zero.

In order to determine the validity of the reciprocity relation
(9), we analyze the modal expansion for this example. The
results are summarized in Table I and Fig. 5. Table I shows
a decomposition of the beampattern as a modal expansion
indexed by .

A conservative check can first be made by seeing whether
(10) is satisfied for all significant terms used in the beampattern
synthesis equation (1). The Parseval relation (16) identifies the
power contained in each mode with . In this
way, we can see the error measured in beampattern power

TABLE I
POWER AND ERRORS VERSUSMODAL COEFFICIENTS FOREXAMPLE 1

Fig. 5. Number of terms required in (1) to accurately model a seventh-order
Chebyshev 25 dB beampattern. There is insignificant power beyond the tenth
order mode.

associated with using a finite number of analysis coefficients
in the synthesis equation (1); in addition, we see which are the
dominant modes. Using this Parseval expression, we calculated
the power in each mode in the fourth column of Table I. In
Fig. 5, we have plotted the cumulative beampattern power
versus . Clearly, only the even terms up to are
significant. Substituting into the error bound (10) gives
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which can be compared with our design for wavelengths.
Note that for this distance , and we take and

.
A more detailed examination of the modal expansion shows

that the lower order modes (small) dominant the power, but
it is these modes that contribute the least asymptotic error in
(5). From (5), for the parameters in this example, we have

(17)

which is computed in the third column of Table I. However,
to better gauge the overall error this causes to the reciprocity
condition (9), we weight these error magnitudes by the power
in the corresponding mode, and the result is the sixth column
of Table I, which is provided as a guide only. Therefore, it
can be seen that an upper bound on the approximate accuracy
of the reciprocity is, at most, of the order of 2.5% in error.

VI. SUMMARY

Nearfield modal beamforming (based on the wave equa-
tion) can lead to an approximation-free design formula-
tion—nearfield beampattern specifications can be transformed
to a strictly equivalent farfield beampattern, liberating a
plethora of farfield design techniques to tackle nearfield design
problems. This paper identifies that the computation of the
modal representation represents a hurdle in fully exploiting
this design strategy and presents a novel computationally
straightforward design procedure that asymptotically achieves
the same goal without recourse to a modal decomposition.

APPENDIX

PROOFS OFKEY TECHNICAL RESULTS

Proof of Proposition 1: Since is the complex con-

jugate of , it is sufficient to characterize the behavior

of , which may be defined through the recursion

(18)

with

From the form of the recursion [see (18)] and after some
simplification, it follows that

for some real-valued coefficients . These coefficients can
be readily determined in the form

leading to the asymptotic representation

(19)

as .
Of interest in proving the proposition is the square magni-

tude of the polynomial portion of the Hankel function, which
can be written

where are suitable real-valued coefficients. From (5a)

as , where . Using (19), the first
correction term has coefficient

Letting and establishes the result.
Proof of Proposition 4: Using (2) and (3), the beampattern

synthesis equation (1) can be written

(20)

when . In the following, we simplify the notation by
dropping explicit reference to the beampattern ,
which is understood. With the change of variables ,
multiplying (20) by its complex conjugate, and integrating with
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respect to and gives

where

The orthogonality property of the associated Legendre func-
tion [11] is

(21)

By substituting (21) and carrying out the integration with
respect to gives
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